metal-organic compounds
Poly[di-μ2-aqua-μ2-(5-methylpyrazine-2-carboxylato)-(5-methylpyrazine-2-carboxylato)-μ3-nitrato-trilithium]
aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
The 3(C6H5N2O2)2(NO3)(H2O)2]n contains three LiI ions, two ligand anions, two water molecules and a nitrate anion. Related by a centre of inversion, they form a centrosymmetric molecular cluster in which one of the LiI ions shows trigonal–bipyramidal and the other two distorted tetrahedral coordination. LiI ions are bridged by water O atoms and carboxylate O atoms donated by one of the ligands. The clusters, bridged by two nitrato O atoms, form molecular columns along [010], which are held together by O—H⋯O and O—H⋯N hydrogen bonds and π–π interactions [centroid–centroid distances = 3.694 (1) and 3.796 (1) Å].
of the title compound, [LiRelated literature
For the structure of a lithium complex with 3-aminopyrazine-2-carboxylate and aqua ligands, see: Starosta & Leciejewicz (2010). The structures of two complexes with pyridazine carboxylate ligands have been also determined, see: Starosta & Leciejewicz (2011a,b). For the structure of a LiI complex with pyrimidine carboxylate and nitrate ligands, see: Starosta & Leciejewicz (2011c).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811024548/kp2334sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024548/kp2334Isup2.hkl
Hot aqueous solutions, one containig 1 mmol of 5-methylpyrazine-2-carboxylic acid (Aldrich), the other 1 mmol of lithium (I) nitrate were mixed and boiled under reflux with constant stirring for 5 h. Left for evaporation at room temperature. After a couple of days yellow single-crystal plates of the title complex deposited on the bottom of a crystallization pot. Crystals were washed with cold ethanol and dried in air.
Pyrazine ring H atoms atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C)or Uiso(H)=1.5U eq(Cmethyl). Water H atoms were found in Fourier map and refined isotropically.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The dimeric structural unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x + 2, -y, -z + 2; (ii) x, y - 1, z; (iii) x, y + 1, z. | |
Fig. 2. The alignment of the polyhedra columns in the unit cell. |
[Li3(C6H5N2O2)2(NO3)(H2O)2] | Z = 4 |
Mr = 393.10 | F(000) = 808 |
Monoclinic, P21/c | Dx = 1.519 Mg m−3 |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 13.0222 (1) Å | µ = 1.10 mm−1 |
b = 7.2288 (1) Å | T = 293 K |
c = 18.5819 (2) Å | Plate, yellow |
β = 100.760 (1)° | 0.23 × 0.20 × 0.07 mm |
V = 1718.45 (3) Å3 |
Oxford Diffraction Xcalibur Ruby diffractometer | 3215 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2787 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.4922 pixels mm-1 | θmax = 70.1°, θmin = 3.5° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −8→7 |
Tmin = 0.672, Tmax = 1.000 | l = −22→22 |
15696 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0709P)2 + 0.484P] where P = (Fo2 + 2Fc2)/3 |
3215 reflections | (Δ/σ)max = 0.001 |
277 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Li3(C6H5N2O2)2(NO3)(H2O)2] | V = 1718.45 (3) Å3 |
Mr = 393.10 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.0222 (1) Å | µ = 1.10 mm−1 |
b = 7.2288 (1) Å | T = 293 K |
c = 18.5819 (2) Å | 0.23 × 0.20 × 0.07 mm |
β = 100.760 (1)° |
Oxford Diffraction Xcalibur Ruby diffractometer | 3215 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2787 reflections with I > 2σ(I) |
Tmin = 0.672, Tmax = 1.000 | Rint = 0.026 |
15696 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.35 e Å−3 |
3215 reflections | Δρmin = −0.31 e Å−3 |
277 parameters |
Experimental. (CrysAlis PRO; Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.90455 (19) | 0.0331 (4) | 1.03878 (13) | 0.0379 (6) | |
Li2 | 0.7564 (2) | −0.2877 (4) | 0.97211 (14) | 0.0373 (6) | |
Li3 | 0.6256 (2) | 0.0936 (5) | 0.92945 (15) | 0.0486 (7) | |
O31 | 0.47521 (9) | 0.15187 (19) | 0.91969 (6) | 0.0482 (3) | |
O32 | 0.32570 (9) | 0.1336 (2) | 0.83857 (6) | 0.0519 (4) | |
N31 | 0.58804 (10) | 0.1142 (2) | 0.81387 (7) | 0.0371 (3) | |
C32 | 0.48413 (11) | 0.1347 (2) | 0.79451 (8) | 0.0324 (3) | |
C33 | 0.43759 (12) | 0.1538 (2) | 0.72158 (8) | 0.0392 (4) | |
H33 | 0.3653 | 0.1662 | 0.7095 | 0.047* | |
N32 | 0.49310 (11) | 0.1548 (2) | 0.66817 (7) | 0.0419 (3) | |
C35 | 0.59618 (13) | 0.1305 (2) | 0.68670 (9) | 0.0378 (4) | |
C36 | 0.64232 (12) | 0.1096 (2) | 0.76008 (9) | 0.0407 (4) | |
H36 | 0.7142 | 0.0918 | 0.7720 | 0.049* | |
C37 | 0.42190 (12) | 0.1403 (2) | 0.85605 (8) | 0.0357 (4) | |
C38 | 0.65821 (16) | 0.1281 (3) | 0.62641 (10) | 0.0541 (5) | |
H38A | 0.7279 | 0.0859 | 0.6454 | 0.081* | |
H38B | 0.6609 | 0.2506 | 0.6070 | 0.081* | |
H38C | 0.6256 | 0.0461 | 0.5882 | 0.081* | |
O12 | 1.20280 (8) | 0.20920 (18) | 1.11942 (6) | 0.0430 (3) | |
O11 | 1.05909 (8) | 0.09788 (18) | 1.04975 (6) | 0.0440 (3) | |
N11 | 0.95349 (10) | 0.11349 (19) | 1.15973 (7) | 0.0353 (3) | |
N1 | 0.77531 (11) | 0.3393 (2) | 0.98615 (7) | 0.0428 (4) | |
O1 | 0.76826 (9) | 0.16678 (16) | 0.98797 (6) | 0.0457 (3) | |
O2 | 0.70264 (13) | 0.4302 (2) | 0.95323 (9) | 0.0748 (5) | |
O3 | 0.85484 (14) | 0.4171 (3) | 1.01733 (9) | 0.0840 (6) | |
O5 | 0.61725 (8) | −0.17265 (17) | 0.96171 (6) | 0.0378 (3) | |
H51 | 0.5869 (17) | −0.177 (3) | 0.9989 (13) | 0.057* | |
H52 | 0.5778 (18) | −0.236 (3) | 0.9301 (13) | 0.057* | |
O4 | 0.81382 (9) | −0.18568 (16) | 1.06931 (5) | 0.0335 (3) | |
C15 | 0.95823 (13) | 0.1348 (2) | 1.28881 (8) | 0.0373 (4) | |
C12 | 1.05656 (11) | 0.1468 (2) | 1.17399 (7) | 0.0295 (3) | |
C16 | 0.90570 (12) | 0.1100 (2) | 1.21690 (9) | 0.0401 (4) | |
H16 | 0.8339 | 0.0900 | 1.2086 | 0.048* | |
C13 | 1.10941 (12) | 0.1720 (2) | 1.24494 (8) | 0.0360 (4) | |
H13 | 1.1809 | 0.1954 | 1.2531 | 0.043* | |
C17 | 1.11144 (11) | 0.1522 (2) | 1.10905 (7) | 0.0302 (3) | |
N12 | 1.06118 (11) | 0.1639 (2) | 1.30230 (7) | 0.0402 (3) | |
C18 | 0.90366 (16) | 0.1308 (3) | 1.35290 (10) | 0.0538 (5) | |
H18A | 0.9461 | 0.0659 | 1.3928 | 0.081* | |
H18B | 0.8377 | 0.0688 | 1.3393 | 0.081* | |
H18C | 0.8922 | 0.2551 | 1.3678 | 0.081* | |
H42 | 0.8562 (17) | −0.250 (3) | 1.0999 (12) | 0.050 (5)* | |
H41 | 0.7640 (17) | −0.161 (3) | 1.0912 (11) | 0.048 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0343 (12) | 0.0511 (16) | 0.0284 (11) | −0.0012 (11) | 0.0061 (9) | −0.0045 (11) |
Li2 | 0.0387 (13) | 0.0443 (15) | 0.0308 (12) | −0.0021 (11) | 0.0115 (10) | −0.0018 (11) |
Li3 | 0.0405 (14) | 0.073 (2) | 0.0317 (13) | 0.0052 (14) | 0.0061 (11) | 0.0076 (13) |
O31 | 0.0377 (6) | 0.0820 (9) | 0.0270 (5) | 0.0121 (6) | 0.0111 (4) | 0.0055 (5) |
O32 | 0.0318 (6) | 0.0881 (10) | 0.0383 (6) | 0.0059 (6) | 0.0127 (5) | 0.0048 (6) |
N31 | 0.0315 (6) | 0.0520 (8) | 0.0286 (6) | 0.0081 (6) | 0.0075 (5) | 0.0056 (5) |
C32 | 0.0307 (7) | 0.0395 (8) | 0.0280 (7) | 0.0055 (6) | 0.0078 (6) | 0.0043 (6) |
C33 | 0.0318 (8) | 0.0559 (10) | 0.0300 (7) | 0.0047 (7) | 0.0061 (6) | 0.0059 (7) |
N32 | 0.0425 (8) | 0.0568 (9) | 0.0271 (6) | 0.0027 (6) | 0.0081 (5) | 0.0045 (6) |
C35 | 0.0411 (8) | 0.0423 (9) | 0.0327 (7) | 0.0025 (7) | 0.0143 (6) | 0.0017 (6) |
C36 | 0.0311 (7) | 0.0565 (10) | 0.0366 (8) | 0.0083 (7) | 0.0120 (6) | 0.0049 (7) |
C37 | 0.0332 (8) | 0.0464 (9) | 0.0292 (7) | 0.0086 (6) | 0.0102 (6) | 0.0063 (6) |
C38 | 0.0568 (11) | 0.0709 (13) | 0.0409 (9) | 0.0036 (9) | 0.0256 (8) | 0.0030 (9) |
O12 | 0.0359 (6) | 0.0620 (8) | 0.0335 (5) | −0.0121 (5) | 0.0123 (4) | −0.0051 (5) |
O11 | 0.0376 (6) | 0.0699 (8) | 0.0255 (5) | −0.0032 (5) | 0.0082 (4) | −0.0126 (5) |
N11 | 0.0322 (6) | 0.0450 (8) | 0.0292 (6) | −0.0065 (5) | 0.0065 (5) | −0.0037 (5) |
N1 | 0.0540 (9) | 0.0426 (8) | 0.0383 (7) | 0.0039 (7) | 0.0255 (7) | 0.0003 (6) |
O1 | 0.0556 (7) | 0.0316 (6) | 0.0503 (7) | 0.0030 (5) | 0.0106 (6) | 0.0020 (5) |
O2 | 0.0892 (11) | 0.0701 (10) | 0.0720 (10) | 0.0418 (9) | 0.0327 (8) | 0.0276 (8) |
O3 | 0.0938 (12) | 0.0904 (12) | 0.0750 (11) | −0.0459 (10) | 0.0344 (9) | −0.0309 (9) |
O5 | 0.0318 (5) | 0.0577 (7) | 0.0245 (5) | 0.0002 (5) | 0.0069 (4) | −0.0042 (5) |
O4 | 0.0312 (5) | 0.0455 (6) | 0.0240 (5) | 0.0041 (5) | 0.0054 (4) | 0.0039 (4) |
C15 | 0.0459 (9) | 0.0362 (8) | 0.0336 (8) | −0.0085 (7) | 0.0173 (7) | −0.0046 (6) |
C12 | 0.0309 (7) | 0.0318 (7) | 0.0262 (7) | −0.0033 (6) | 0.0067 (6) | −0.0024 (5) |
C16 | 0.0328 (8) | 0.0505 (10) | 0.0389 (8) | −0.0080 (7) | 0.0121 (6) | −0.0050 (7) |
C13 | 0.0337 (8) | 0.0477 (9) | 0.0271 (7) | −0.0078 (7) | 0.0071 (6) | −0.0064 (6) |
C17 | 0.0322 (7) | 0.0344 (8) | 0.0246 (6) | 0.0009 (6) | 0.0065 (5) | −0.0014 (5) |
N12 | 0.0458 (8) | 0.0499 (8) | 0.0257 (6) | −0.0101 (6) | 0.0090 (5) | −0.0059 (5) |
C18 | 0.0676 (12) | 0.0582 (11) | 0.0439 (9) | −0.0142 (9) | 0.0322 (9) | −0.0076 (8) |
Li1—O11i | 2.029 (3) | C38—H38A | 0.9600 |
Li1—O11 | 2.039 (3) | C38—H38B | 0.9600 |
Li1—O1 | 2.085 (3) | C38—H38C | 0.9600 |
Li1—O4 | 2.114 (3) | O12—C17 | 1.2397 (18) |
Li1—N11 | 2.293 (3) | O12—Li2i | 1.958 (3) |
Li1—Li1i | 3.134 (5) | O11—C17 | 1.2460 (18) |
Li2—O12i | 1.958 (3) | O11—Li1i | 2.029 (3) |
Li2—O4 | 1.965 (3) | N11—C16 | 1.328 (2) |
Li2—O5 | 1.970 (3) | N11—C12 | 1.3404 (19) |
Li2—O2ii | 2.163 (3) | N1—O2 | 1.219 (2) |
Li2—O3ii | 2.550 (4) | N1—O3 | 1.225 (2) |
Li2—C17i | 2.677 (3) | N1—O1 | 1.2516 (19) |
Li2—N1ii | 2.715 (3) | N1—Li2iii | 2.715 (3) |
Li2—H52 | 2.34 (2) | O2—Li2iii | 2.163 (3) |
Li3—O31 | 1.978 (3) | O3—Li2iii | 2.550 (4) |
Li3—O5 | 2.025 (4) | O5—H51 | 0.86 (2) |
Li3—O1 | 2.039 (3) | O5—H52 | 0.84 (2) |
Li3—N31 | 2.117 (3) | O4—H42 | 0.85 (2) |
Li3—O2 | 2.637 (4) | O4—H41 | 0.85 (2) |
O31—C37 | 1.2573 (19) | C15—N12 | 1.334 (2) |
O32—C37 | 1.2351 (19) | C15—C16 | 1.394 (2) |
N31—C36 | 1.328 (2) | C15—C18 | 1.497 (2) |
N31—C32 | 1.3419 (19) | C12—C13 | 1.381 (2) |
C32—C33 | 1.384 (2) | C12—C17 | 1.5134 (18) |
C32—C37 | 1.5205 (19) | C16—H16 | 0.9300 |
C33—N32 | 1.332 (2) | C13—N12 | 1.336 (2) |
C33—H33 | 0.9300 | C13—H13 | 0.9300 |
N32—C35 | 1.334 (2) | C17—Li2i | 2.677 (3) |
C35—C36 | 1.392 (2) | C18—H18A | 0.9600 |
C35—C38 | 1.498 (2) | C18—H18B | 0.9600 |
C36—H36 | 0.9300 | C18—H18C | 0.9600 |
O11i—Li1—O11 | 79.21 (10) | N31—C36—H36 | 118.6 |
O11i—Li1—O1 | 99.02 (11) | C35—C36—H36 | 118.6 |
O11—Li1—O1 | 132.82 (15) | O32—C37—O31 | 127.21 (13) |
O11i—Li1—O4 | 95.45 (12) | O32—C37—C32 | 117.25 (13) |
O11—Li1—O4 | 137.34 (15) | O31—C37—C32 | 115.53 (13) |
O1—Li1—O4 | 89.83 (11) | C35—C38—H38A | 109.5 |
O11i—Li1—N11 | 148.03 (14) | C35—C38—H38B | 109.5 |
O11—Li1—N11 | 75.84 (9) | H38A—C38—H38B | 109.5 |
O1—Li1—N11 | 112.56 (12) | C35—C38—H38C | 109.5 |
O4—Li1—N11 | 89.63 (10) | H38A—C38—H38C | 109.5 |
O11i—Li1—Li1i | 39.72 (7) | H38B—C38—H38C | 109.5 |
O11—Li1—Li1i | 39.50 (7) | C17—O12—Li2i | 111.69 (12) |
O1—Li1—Li1i | 122.93 (15) | C17—O11—Li1i | 133.79 (12) |
O4—Li1—Li1i | 122.68 (16) | C17—O11—Li1 | 121.84 (11) |
N11—Li1—Li1i | 112.96 (13) | Li1i—O11—Li1 | 100.79 (10) |
O12i—Li2—O4 | 124.82 (15) | C16—N11—C12 | 116.54 (13) |
O12i—Li2—O5 | 100.73 (13) | C16—N11—Li1 | 133.87 (12) |
O4—Li2—O5 | 96.72 (12) | C12—N11—Li1 | 108.90 (11) |
O12i—Li2—O2ii | 105.34 (13) | O2—N1—O3 | 119.92 (19) |
O4—Li2—O2ii | 123.98 (14) | O2—N1—O1 | 119.79 (17) |
O5—Li2—O2ii | 96.79 (12) | O3—N1—O1 | 120.29 (17) |
O12i—Li2—O3ii | 109.12 (12) | O2—N1—Li2iii | 50.83 (12) |
O4—Li2—O3ii | 85.96 (11) | O3—N1—Li2iii | 69.11 (13) |
O5—Li2—O3ii | 141.47 (14) | O1—N1—Li2iii | 170.49 (13) |
O2ii—Li2—O3ii | 52.56 (8) | N1—O1—Li3 | 107.95 (14) |
O12i—Li2—C17i | 25.49 (5) | N1—O1—Li1 | 114.41 (13) |
O4—Li2—C17i | 101.89 (11) | Li3—O1—Li1 | 137.29 (14) |
O5—Li2—C17i | 117.81 (13) | N1—O2—Li2iii | 103.26 (16) |
O2ii—Li2—C17i | 118.44 (11) | N1—O2—Li3 | 79.75 (13) |
O3ii—Li2—C17i | 98.94 (10) | Li2iii—O2—Li3 | 176.60 (12) |
O12i—Li2—N1ii | 109.68 (12) | N1—O3—Li2iii | 84.22 (14) |
O4—Li2—N1ii | 105.79 (12) | Li2—O5—Li3 | 109.33 (13) |
O5—Li2—N1ii | 119.60 (13) | Li2—O5—H51 | 117.3 (14) |
O2ii—Li2—N1ii | 25.90 (6) | Li3—O5—H51 | 109.4 (14) |
O3ii—Li2—N1ii | 26.66 (5) | Li2—O5—H52 | 105.8 (15) |
C17i—Li2—N1ii | 111.17 (10) | Li3—O5—H52 | 111.6 (15) |
O12i—Li2—H52 | 94.5 (6) | H51—O5—H52 | 103 (2) |
O4—Li2—H52 | 115.4 (6) | Li2—O4—Li1 | 99.79 (11) |
O5—Li2—H52 | 20.1 (6) | Li2—O4—H42 | 119.7 (14) |
O2ii—Li2—H52 | 80.0 (6) | Li1—O4—H42 | 105.3 (14) |
O3ii—Li2—H52 | 130.7 (6) | Li2—O4—H41 | 109.1 (14) |
C17i—Li2—H52 | 117.2 (6) | Li1—O4—H41 | 119.0 (14) |
N1ii—Li2—H52 | 105.0 (6) | H42—O4—H41 | 104.7 (19) |
O31—Li3—O5 | 97.02 (14) | N12—C15—C16 | 119.77 (13) |
O31—Li3—O1 | 141.39 (18) | N12—C15—C18 | 117.61 (15) |
O5—Li3—O1 | 100.53 (13) | C16—C15—C18 | 122.62 (15) |
O31—Li3—N31 | 81.64 (11) | N11—C12—C13 | 120.98 (13) |
O5—Li3—N31 | 110.61 (16) | N11—C12—C17 | 116.84 (12) |
O1—Li3—N31 | 122.54 (15) | C13—C12—C17 | 122.18 (13) |
O31—Li3—O2 | 99.10 (14) | N11—C16—C15 | 123.00 (14) |
O5—Li3—O2 | 150.13 (14) | N11—C16—H16 | 118.5 |
O1—Li3—O2 | 52.51 (9) | C15—C16—H16 | 118.5 |
N31—Li3—O2 | 96.54 (13) | N12—C13—C12 | 122.10 (14) |
C37—O31—Li3 | 115.81 (12) | N12—C13—H13 | 119.0 |
C36—N31—C32 | 116.92 (13) | C12—C13—H13 | 119.0 |
C36—N31—Li3 | 135.00 (13) | O12—C17—O11 | 126.37 (13) |
C32—N31—Li3 | 108.08 (12) | O12—C17—C12 | 117.84 (12) |
N31—C32—C33 | 120.58 (13) | O11—C17—C12 | 115.79 (13) |
N31—C32—C37 | 116.98 (12) | O12—C17—Li2i | 42.82 (9) |
C33—C32—C37 | 122.43 (13) | O11—C17—Li2i | 85.43 (10) |
N32—C33—C32 | 122.04 (14) | C12—C17—Li2i | 155.18 (12) |
N32—C33—H33 | 119.0 | C15—N12—C13 | 117.58 (13) |
C32—C33—H33 | 119.0 | C15—C18—H18A | 109.5 |
C33—N32—C35 | 117.83 (13) | C15—C18—H18B | 109.5 |
N32—C35—C36 | 119.78 (14) | H18A—C18—H18B | 109.5 |
N32—C35—C38 | 117.75 (15) | C15—C18—H18C | 109.5 |
C36—C35—C38 | 122.47 (15) | H18A—C18—H18C | 109.5 |
N31—C36—C35 | 122.80 (14) | H18B—C18—H18C | 109.5 |
O5—Li3—O31—C37 | −97.15 (15) | O11i—Li1—O1—Li3 | 59.4 (2) |
O1—Li3—O31—C37 | 146.2 (2) | O11—Li1—O1—Li3 | 142.98 (18) |
N31—Li3—O31—C37 | 12.75 (18) | O4—Li1—O1—Li3 | −36.13 (18) |
O2—Li3—O31—C37 | 108.09 (15) | N11—Li1—O1—Li3 | −125.66 (17) |
O31—Li3—N31—C36 | 174.23 (18) | Li1i—Li1—O1—Li3 | 93.8 (2) |
O5—Li3—N31—C36 | −91.4 (2) | O3—N1—O2—Li2iii | −1.90 (17) |
O1—Li3—N31—C36 | 26.8 (3) | O1—N1—O2—Li2iii | 178.05 (12) |
O2—Li3—N31—C36 | 75.9 (2) | O3—N1—O2—Li3 | 179.73 (15) |
O31—Li3—N31—C32 | −6.47 (16) | O1—N1—O2—Li3 | −0.32 (13) |
O5—Li3—N31—C32 | 87.93 (16) | Li2iii—N1—O2—Li3 | −178.38 (12) |
O1—Li3—N31—C32 | −153.94 (18) | O31—Li3—O2—N1 | 151.21 (13) |
O2—Li3—N31—C32 | −104.75 (13) | O5—Li3—O2—N1 | 29.4 (3) |
C36—N31—C32—C33 | −1.3 (2) | O1—Li3—O2—N1 | 0.22 (9) |
Li3—N31—C32—C33 | 179.29 (17) | N31—Li3—O2—N1 | −126.25 (13) |
C36—N31—C32—C37 | −179.90 (15) | O31—Li3—O2—Li2iii | −1 (2) |
Li3—N31—C32—C37 | 0.65 (19) | O5—Li3—O2—Li2iii | −122.9 (18) |
N31—C32—C33—N32 | −0.8 (3) | O1—Li3—O2—Li2iii | −152.1 (19) |
C37—C32—C33—N32 | 177.77 (15) | N31—Li3—O2—Li2iii | 81.4 (19) |
C32—C33—N32—C35 | 2.2 (3) | O2—N1—O3—Li2iii | 1.58 (14) |
C33—N32—C35—C36 | −1.5 (2) | O1—N1—O3—Li2iii | −178.38 (13) |
C33—N32—C35—C38 | 178.88 (17) | O12i—Li2—O5—Li3 | −46.98 (16) |
C32—N31—C36—C35 | 1.9 (3) | O4—Li2—O5—Li3 | 80.43 (14) |
Li3—N31—C36—C35 | −178.82 (18) | O2ii—Li2—O5—Li3 | −154.06 (12) |
N32—C35—C36—N31 | −0.5 (3) | O3ii—Li2—O5—Li3 | 172.38 (19) |
C38—C35—C36—N31 | 179.02 (17) | C17i—Li2—O5—Li3 | −26.82 (17) |
Li3—O31—C37—O32 | 164.44 (18) | N1ii—Li2—O5—Li3 | −167.10 (12) |
Li3—O31—C37—C32 | −15.7 (2) | O31—Li3—O5—Li2 | 176.72 (12) |
N31—C32—C37—O32 | −170.32 (15) | O1—Li3—O5—Li2 | −37.82 (15) |
C33—C32—C37—O32 | 11.1 (2) | N31—Li3—O5—Li2 | 93.04 (15) |
N31—C32—C37—O31 | 9.8 (2) | O2—Li3—O5—Li2 | −61.0 (3) |
C33—C32—C37—O31 | −168.76 (16) | O12i—Li2—O4—Li1 | 7.0 (2) |
O11i—Li1—O11—C17 | −161.36 (16) | O5—Li2—O4—Li1 | −101.06 (12) |
O1—Li1—O11—C17 | 106.3 (2) | O2ii—Li2—O4—Li1 | 156.06 (15) |
O4—Li1—O11—C17 | −75.0 (2) | O3ii—Li2—O4—Li1 | 117.56 (10) |
N11—Li1—O11—C17 | −1.51 (16) | C17i—Li2—O4—Li1 | 19.27 (13) |
Li1i—Li1—O11—C17 | −161.36 (16) | N1ii—Li2—O4—Li1 | 135.57 (11) |
O11i—Li1—O11—Li1i | 0.0 | O11i—Li1—O4—Li2 | −32.20 (13) |
O1—Li1—O11—Li1i | −92.35 (18) | O11—Li1—O4—Li2 | −112.19 (19) |
O4—Li1—O11—Li1i | 86.3 (2) | O1—Li1—O4—Li2 | 66.84 (12) |
N11—Li1—O11—Li1i | 159.85 (14) | N11—Li1—O4—Li2 | 179.41 (11) |
O11i—Li1—N11—C16 | −134.3 (3) | Li1i—Li1—O4—Li2 | −63.25 (18) |
O11—Li1—N11—C16 | −174.07 (17) | C16—N11—C12—C13 | 1.3 (2) |
O1—Li1—N11—C16 | 55.1 (2) | Li1—N11—C12—C13 | −170.60 (14) |
O4—Li1—N11—C16 | −34.6 (2) | C16—N11—C12—C17 | −179.63 (14) |
Li1i—Li1—N11—C16 | −160.31 (17) | Li1—N11—C12—C17 | 8.50 (17) |
O11i—Li1—N11—C12 | 35.6 (3) | C12—N11—C16—C15 | −1.4 (2) |
O11—Li1—N11—C12 | −4.18 (14) | Li1—N11—C16—C15 | 167.87 (16) |
O1—Li1—N11—C12 | −135.04 (14) | N12—C15—C16—N11 | 0.1 (3) |
O4—Li1—N11—C12 | 135.30 (12) | C18—C15—C16—N11 | 179.94 (16) |
Li1i—Li1—N11—C12 | 9.6 (2) | N11—C12—C13—N12 | 0.3 (2) |
O2—N1—O1—Li3 | 0.43 (18) | C17—C12—C13—N12 | −178.79 (14) |
O3—N1—O1—Li3 | −179.62 (14) | Li2i—O12—C17—O11 | 19.9 (2) |
Li2iii—N1—O1—Li3 | 9.6 (7) | Li2i—O12—C17—C12 | −160.09 (13) |
O2—N1—O1—Li1 | 174.88 (13) | Li1i—O11—C17—O12 | 32.3 (3) |
O3—N1—O1—Li1 | −5.17 (19) | Li1—O11—C17—O12 | −173.52 (16) |
Li2iii—N1—O1—Li1 | −175.9 (6) | Li1i—O11—C17—C12 | −147.73 (16) |
O31—Li3—O1—N1 | −50.3 (3) | Li1—O11—C17—C12 | 6.5 (2) |
O5—Li3—O1—N1 | −165.93 (12) | Li1i—O11—C17—Li2i | 45.70 (19) |
N31—Li3—O1—N1 | 71.2 (2) | Li1—O11—C17—Li2i | −160.08 (14) |
O2—Li3—O1—N1 | −0.22 (9) | N11—C12—C17—O12 | 169.59 (14) |
O31—Li3—O1—Li1 | 137.1 (2) | C13—C12—C17—O12 | −11.3 (2) |
O5—Li3—O1—Li1 | 21.5 (2) | N11—C12—C17—O11 | −10.4 (2) |
N31—Li3—O1—Li1 | −101.4 (2) | C13—C12—C17—O11 | 168.67 (15) |
O2—Li3—O1—Li1 | −172.75 (16) | N11—C12—C17—Li2i | 136.1 (2) |
O11i—Li1—O1—N1 | −112.83 (13) | C13—C12—C17—Li2i | −44.8 (3) |
O11—Li1—O1—N1 | −29.2 (2) | C16—C15—N12—C13 | 1.5 (2) |
O4—Li1—O1—N1 | 151.67 (11) | C18—C15—N12—C13 | −178.41 (16) |
N11—Li1—O1—N1 | 62.14 (16) | C12—C13—N12—C15 | −1.7 (2) |
Li1i—Li1—O1—N1 | −78.4 (2) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x, y−1, z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O32iv | 0.85 (2) | 1.92 (2) | 2.7449 (15) | 165.3 (19) |
O4—H42···N12v | 0.85 (2) | 2.03 (2) | 2.8414 (17) | 159.0 (19) |
O5—H52···N32vi | 0.84 (2) | 2.05 (2) | 2.8550 (17) | 162 (2) |
O5—H51···O31iv | 0.86 (2) | 1.85 (2) | 2.7055 (15) | 172 (2) |
Symmetry codes: (iv) −x+1, −y, −z+2; (v) −x+2, y−1/2, −z+5/2; (vi) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Li3(C6H5N2O2)2(NO3)(H2O)2] |
Mr | 393.10 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.0222 (1), 7.2288 (1), 18.5819 (2) |
β (°) | 100.760 (1) |
V (Å3) | 1718.45 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.10 |
Crystal size (mm) | 0.23 × 0.20 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.672, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15696, 3215, 2787 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.122, 1.07 |
No. of reflections | 3215 |
No. of parameters | 277 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.31 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li1—O11i | 2.029 (3) | Li2—O5 | 1.970 (3) |
Li1—O11 | 2.039 (3) | Li2—O2ii | 2.163 (3) |
Li1—O1 | 2.085 (3) | Li3—O31 | 1.978 (3) |
Li1—O4 | 2.114 (3) | Li3—O5 | 2.025 (4) |
Li1—N11 | 2.293 (3) | Li3—O1 | 2.039 (3) |
Li2—O12i | 1.958 (3) | Li3—N31 | 2.117 (3) |
Li2—O4 | 1.965 (3) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O32iii | 0.85 (2) | 1.92 (2) | 2.7449 (15) | 165.3 (19) |
O4—H42···N12iv | 0.85 (2) | 2.03 (2) | 2.8414 (17) | 159.0 (19) |
O5—H52···N32v | 0.84 (2) | 2.05 (2) | 2.8550 (17) | 162 (2) |
O5—H51···O31iii | 0.86 (2) | 1.85 (2) | 2.7055 (15) | 172 (2) |
Symmetry codes: (iii) −x+1, −y, −z+2; (iv) −x+2, y−1/2, −z+5/2; (v) −x+1, y−1/2, −z+3/2. |
Acknowledgements
Thanks are due to Dr J. K. Maurin for collecting the diffraction data on the instrument at the Institute of Atomic Energy, Swierk.
References
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744–m745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m425–m426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m818. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit of the title compound contains three LiI ions, two 5-methylpyrazine-2-carboxylate anions, two water molecules and a nitrate anion (Fig. 1). The coordination environment of the Li1 ion is composed of N11, O11i, O1, O4 and O11 atoms. The latter three form a base of a distorted trigonal bipyramid, N11,O11i atoms are at its apices. Li1 ion is 0.0097 (2)Å out of the basal plane. The Li2 ion is coordinated by water O4, O5, carboxylate O12i and nitrate O2iii atoms which form a distorted tetrahedral coordination environment. The same distorted tetrahedral coordination geometry shows the Li3 ion sorrounded by N31, O31, O1 and O5 atoms. The observed Li—O and Li—N bond distances (Table 1) are typical of Li complexes with azine carboxylate ligands. Both methylpyrazine rings are planar with r.m.s. of 0.0074 (1)Å for ring 1 and 0.0069 (1)Å for ring 3; carboxylate groups C17/O11/O12 and C37/O31/O32 make with relevant rings dihedral angles of 11.2 (1)°, and 11,0(1)°, respectively. The nitrate anion is planar [r.m.s. 0.0002 (1) Å]. Its O1 atom acts as bidentate and bridges Li1 and Li3 ions, while the O2 atom chelates the Li2 ion. Nitrato O3 atom is not coordinated at all. Li1 and Li1i ions bridged by bidentate carboxylate O11 and O11i form a core of a centrosymmetric cluster composed of Li1 and Li3 ions bridged by bidentate nitrato O1 atom, Li1 and Li2 bridged by the aqua O4 atom, Li2 and Li3 bridged by the aqua O5 atom. The clusters bridged via nitrato O1 and O2 atoms, form molecular columns along the direction [010] and they are held together by a network of hydrogen bonds in which aqua O4 and O5 molecules are as donors and carboxylate O31 and O32 atoms are acceptors. π-π interactions between methylpyrazine rings of adjacent columns are defined: the centres of gravity of the ring (N11, C12, C13, N12, C15, C16) and its symmetry generated hetrerocyclic rings [2-x, -1/2+y,5/2-z; 2-x,1/2+y,5/2-z] both are separated by 3.694 (1) Å, and the ring (N31, C32, C33, N32, C35, C36) operated by symmetry [1-x, -1/2+y, 3/2-z; 1-x, 1/2+y, 3/2-z] generates two equal stacking contacts of 3.796 (1) Å (Fig. 2). However, their shifts are about 3.5 Å. Molecular columns composed of centrosymmetric dimers have been also observed in the structure of a LiI complex with 3-aminopyrazine-2-carboxylate and water ligands (Starosta & Leciejewicz, 2010). Molecular layers built of centrosymmetric dimers have been reported in the structure of a complex with pyridazine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2011a) while centrosymmetric molecular ribbons bridged by nitrate ions form double-layers in the structure of a complex with pyrimidine-2-carboxylate and nitrate ligands (Starosta & Leciejewicz, 2011b). On the other hand, monomeric molecules, in which a LiI ion is chelated by ligand N,O bonding group and two aqua O atoms constitute the structure of a complex with pyridazine-3-carboxylate and water ligands (Starosta & Leciejewicz, 2011a).