metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m1000-m1001

Poly[di-μ2-aqua-μ2-(5-methyl­pyrazine-2-carboxyl­ato)-(5-methyl­pyrazine-2-carboxyl­ato)-μ3-nitrato-trilithium]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 10 June 2011; accepted 22 June 2011; online 30 June 2011)

The asymmetric unit of the title compound, [Li3(C6H5N2O2)2(NO3)(H2O)2]n contains three LiI ions, two ligand anions, two water mol­ecules and a nitrate anion. Related by a centre of inversion, they form a centrosymmetric mol­ecular cluster in which one of the LiI ions shows trigonal–bipyramidal and the other two distorted tetra­hedral coordination. LiI ions are bridged by water O atoms and carboxyl­ate O atoms donated by one of the ligands. The clusters, bridged by two nitrato O atoms, form mol­ecular columns along [010], which are held together by O—H⋯O and O—H⋯N hydrogen bonds and ππ inter­actions [centroid–centroid distances = 3.694 (1) and 3.796 (1) Å].

Related literature

For the structure of a lithium complex with 3-amino­pyrazine-2-carboxyl­ate and aqua ligands, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744-m745.]). The structures of two complexes with pyridazine carboxyl­ate ligands have been also determined, see: Starosta & Leciejewicz (2011a[Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m202.],b[Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m425-m426.]). For the structure of a LiI complex with pyrimidine carboxyl­ate and nitrate ligands, see: Starosta & Leciejewicz (2011c[Starosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m818.]).

[Scheme 1]

Experimental

Crystal data
  • [Li3(C6H5N2O2)2(NO3)(H2O)2]

  • Mr = 393.10

  • Monoclinic, P 21 /c

  • a = 13.0222 (1) Å

  • b = 7.2288 (1) Å

  • c = 18.5819 (2) Å

  • β = 100.760 (1)°

  • V = 1718.45 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.672, Tmax = 1.000

  • 15696 measured reflections

  • 3215 independent reflections

  • 2787 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.122

  • S = 1.07

  • 3215 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O11i 2.029 (3)
Li1—O11 2.039 (3)
Li1—O1 2.085 (3)
Li1—O4 2.114 (3)
Li1—N11 2.293 (3)
Li2—O12i 1.958 (3)
Li2—O4 1.965 (3)
Li2—O5 1.970 (3)
Li2—O2ii 2.163 (3)
Li3—O31 1.978 (3)
Li3—O5 2.025 (4)
Li3—O1 2.039 (3)
Li3—N31 2.117 (3)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O32iii 0.85 (2) 1.92 (2) 2.7449 (15) 165.3 (19)
O4—H42⋯N12iv 0.85 (2) 2.03 (2) 2.8414 (17) 159.0 (19)
O5—H52⋯N32v 0.84 (2) 2.05 (2) 2.8550 (17) 162 (2)
O5—H51⋯O31iii 0.86 (2) 1.85 (2) 2.7055 (15) 172 (2)
Symmetry codes: (iii) -x+1, -y, -z+2; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound contains three LiI ions, two 5-methylpyrazine-2-carboxylate anions, two water molecules and a nitrate anion (Fig. 1). The coordination environment of the Li1 ion is composed of N11, O11i, O1, O4 and O11 atoms. The latter three form a base of a distorted trigonal bipyramid, N11,O11i atoms are at its apices. Li1 ion is 0.0097 (2)Å out of the basal plane. The Li2 ion is coordinated by water O4, O5, carboxylate O12i and nitrate O2iii atoms which form a distorted tetrahedral coordination environment. The same distorted tetrahedral coordination geometry shows the Li3 ion sorrounded by N31, O31, O1 and O5 atoms. The observed Li—O and Li—N bond distances (Table 1) are typical of Li complexes with azine carboxylate ligands. Both methylpyrazine rings are planar with r.m.s. of 0.0074 (1)Å for ring 1 and 0.0069 (1)Å for ring 3; carboxylate groups C17/O11/O12 and C37/O31/O32 make with relevant rings dihedral angles of 11.2 (1)°, and 11,0(1)°, respectively. The nitrate anion is planar [r.m.s. 0.0002 (1) Å]. Its O1 atom acts as bidentate and bridges Li1 and Li3 ions, while the O2 atom chelates the Li2 ion. Nitrato O3 atom is not coordinated at all. Li1 and Li1i ions bridged by bidentate carboxylate O11 and O11i form a core of a centrosymmetric cluster composed of Li1 and Li3 ions bridged by bidentate nitrato O1 atom, Li1 and Li2 bridged by the aqua O4 atom, Li2 and Li3 bridged by the aqua O5 atom. The clusters bridged via nitrato O1 and O2 atoms, form molecular columns along the direction [010] and they are held together by a network of hydrogen bonds in which aqua O4 and O5 molecules are as donors and carboxylate O31 and O32 atoms are acceptors. π-π interactions between methylpyrazine rings of adjacent columns are defined: the centres of gravity of the ring (N11, C12, C13, N12, C15, C16) and its symmetry generated hetrerocyclic rings [2-x, -1/2+y,5/2-z; 2-x,1/2+y,5/2-z] both are separated by 3.694 (1) Å, and the ring (N31, C32, C33, N32, C35, C36) operated by symmetry [1-x, -1/2+y, 3/2-z; 1-x, 1/2+y, 3/2-z] generates two equal stacking contacts of 3.796 (1) Å (Fig. 2). However, their shifts are about 3.5 Å. Molecular columns composed of centrosymmetric dimers have been also observed in the structure of a LiI complex with 3-aminopyrazine-2-carboxylate and water ligands (Starosta & Leciejewicz, 2010). Molecular layers built of centrosymmetric dimers have been reported in the structure of a complex with pyridazine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2011a) while centrosymmetric molecular ribbons bridged by nitrate ions form double-layers in the structure of a complex with pyrimidine-2-carboxylate and nitrate ligands (Starosta & Leciejewicz, 2011b). On the other hand, monomeric molecules, in which a LiI ion is chelated by ligand N,O bonding group and two aqua O atoms constitute the structure of a complex with pyridazine-3-carboxylate and water ligands (Starosta & Leciejewicz, 2011a).

Related literature top

For the structure of a lithium(I) complex with 3-aminopyrazine-2-carboxylate and aqua ligands, see: Starosta & Leciejewicz (2010). The structures of two complexes with pyridazine carboxylate ligands have been also determined, see: Starosta & Leciejewicz (2011a,b). For the structure of a LiI complex with pyrimidine carboxylate and nitrate ligands, see: Starosta & Leciejewicz (2011c).

Experimental top

Hot aqueous solutions, one containig 1 mmol of 5-methylpyrazine-2-carboxylic acid (Aldrich), the other 1 mmol of lithium (I) nitrate were mixed and boiled under reflux with constant stirring for 5 h. Left for evaporation at room temperature. After a couple of days yellow single-crystal plates of the title complex deposited on the bottom of a crystallization pot. Crystals were washed with cold ethanol and dried in air.

Refinement top

Pyrazine ring H atoms atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C)or Uiso(H)=1.5U eq(Cmethyl). Water H atoms were found in Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dimeric structural unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x + 2, -y, -z + 2; (ii) x, y - 1, z; (iii) x, y + 1, z.
[Figure 2] Fig. 2. The alignment of the polyhedra columns in the unit cell.
Poly[di-µ2-aqua-µ2-(5-methylpyrazine-2-carboxylato)- (5-methylpyrazine-2-carboxylato)-µ3-nitrato-trilithium] top
Crystal data top
[Li3(C6H5N2O2)2(NO3)(H2O)2]Z = 4
Mr = 393.10F(000) = 808
Monoclinic, P21/cDx = 1.519 Mg m3
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 13.0222 (1) ŵ = 1.10 mm1
b = 7.2288 (1) ÅT = 293 K
c = 18.5819 (2) ÅPlate, yellow
β = 100.760 (1)°0.23 × 0.20 × 0.07 mm
V = 1718.45 (3) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3215 independent reflections
Radiation source: Enhance (Cu) X-ray Source2787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.4922 pixels mm-1θmax = 70.1°, θmin = 3.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 87
Tmin = 0.672, Tmax = 1.000l = 2222
15696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.484P]
where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Li3(C6H5N2O2)2(NO3)(H2O)2]V = 1718.45 (3) Å3
Mr = 393.10Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.0222 (1) ŵ = 1.10 mm1
b = 7.2288 (1) ÅT = 293 K
c = 18.5819 (2) Å0.23 × 0.20 × 0.07 mm
β = 100.760 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3215 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2787 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 1.000Rint = 0.026
15696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
3215 reflectionsΔρmin = 0.31 e Å3
277 parameters
Special details top

Experimental. (CrysAlis PRO; Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.90455 (19)0.0331 (4)1.03878 (13)0.0379 (6)
Li20.7564 (2)0.2877 (4)0.97211 (14)0.0373 (6)
Li30.6256 (2)0.0936 (5)0.92945 (15)0.0486 (7)
O310.47521 (9)0.15187 (19)0.91969 (6)0.0482 (3)
O320.32570 (9)0.1336 (2)0.83857 (6)0.0519 (4)
N310.58804 (10)0.1142 (2)0.81387 (7)0.0371 (3)
C320.48413 (11)0.1347 (2)0.79451 (8)0.0324 (3)
C330.43759 (12)0.1538 (2)0.72158 (8)0.0392 (4)
H330.36530.16620.70950.047*
N320.49310 (11)0.1548 (2)0.66817 (7)0.0419 (3)
C350.59618 (13)0.1305 (2)0.68670 (9)0.0378 (4)
C360.64232 (12)0.1096 (2)0.76008 (9)0.0407 (4)
H360.71420.09180.77200.049*
C370.42190 (12)0.1403 (2)0.85605 (8)0.0357 (4)
C380.65821 (16)0.1281 (3)0.62641 (10)0.0541 (5)
H38A0.72790.08590.64540.081*
H38B0.66090.25060.60700.081*
H38C0.62560.04610.58820.081*
O121.20280 (8)0.20920 (18)1.11942 (6)0.0430 (3)
O111.05909 (8)0.09788 (18)1.04975 (6)0.0440 (3)
N110.95349 (10)0.11349 (19)1.15973 (7)0.0353 (3)
N10.77531 (11)0.3393 (2)0.98615 (7)0.0428 (4)
O10.76826 (9)0.16678 (16)0.98797 (6)0.0457 (3)
O20.70264 (13)0.4302 (2)0.95323 (9)0.0748 (5)
O30.85484 (14)0.4171 (3)1.01733 (9)0.0840 (6)
O50.61725 (8)0.17265 (17)0.96171 (6)0.0378 (3)
H510.5869 (17)0.177 (3)0.9989 (13)0.057*
H520.5778 (18)0.236 (3)0.9301 (13)0.057*
O40.81382 (9)0.18568 (16)1.06931 (5)0.0335 (3)
C150.95823 (13)0.1348 (2)1.28881 (8)0.0373 (4)
C121.05656 (11)0.1468 (2)1.17399 (7)0.0295 (3)
C160.90570 (12)0.1100 (2)1.21690 (9)0.0401 (4)
H160.83390.09001.20860.048*
C131.10941 (12)0.1720 (2)1.24494 (8)0.0360 (4)
H131.18090.19541.25310.043*
C171.11144 (11)0.1522 (2)1.10905 (7)0.0302 (3)
N121.06118 (11)0.1639 (2)1.30230 (7)0.0402 (3)
C180.90366 (16)0.1308 (3)1.35290 (10)0.0538 (5)
H18A0.94610.06591.39280.081*
H18B0.83770.06881.33930.081*
H18C0.89220.25511.36780.081*
H420.8562 (17)0.250 (3)1.0999 (12)0.050 (5)*
H410.7640 (17)0.161 (3)1.0912 (11)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0343 (12)0.0511 (16)0.0284 (11)0.0012 (11)0.0061 (9)0.0045 (11)
Li20.0387 (13)0.0443 (15)0.0308 (12)0.0021 (11)0.0115 (10)0.0018 (11)
Li30.0405 (14)0.073 (2)0.0317 (13)0.0052 (14)0.0061 (11)0.0076 (13)
O310.0377 (6)0.0820 (9)0.0270 (5)0.0121 (6)0.0111 (4)0.0055 (5)
O320.0318 (6)0.0881 (10)0.0383 (6)0.0059 (6)0.0127 (5)0.0048 (6)
N310.0315 (6)0.0520 (8)0.0286 (6)0.0081 (6)0.0075 (5)0.0056 (5)
C320.0307 (7)0.0395 (8)0.0280 (7)0.0055 (6)0.0078 (6)0.0043 (6)
C330.0318 (8)0.0559 (10)0.0300 (7)0.0047 (7)0.0061 (6)0.0059 (7)
N320.0425 (8)0.0568 (9)0.0271 (6)0.0027 (6)0.0081 (5)0.0045 (6)
C350.0411 (8)0.0423 (9)0.0327 (7)0.0025 (7)0.0143 (6)0.0017 (6)
C360.0311 (7)0.0565 (10)0.0366 (8)0.0083 (7)0.0120 (6)0.0049 (7)
C370.0332 (8)0.0464 (9)0.0292 (7)0.0086 (6)0.0102 (6)0.0063 (6)
C380.0568 (11)0.0709 (13)0.0409 (9)0.0036 (9)0.0256 (8)0.0030 (9)
O120.0359 (6)0.0620 (8)0.0335 (5)0.0121 (5)0.0123 (4)0.0051 (5)
O110.0376 (6)0.0699 (8)0.0255 (5)0.0032 (5)0.0082 (4)0.0126 (5)
N110.0322 (6)0.0450 (8)0.0292 (6)0.0065 (5)0.0065 (5)0.0037 (5)
N10.0540 (9)0.0426 (8)0.0383 (7)0.0039 (7)0.0255 (7)0.0003 (6)
O10.0556 (7)0.0316 (6)0.0503 (7)0.0030 (5)0.0106 (6)0.0020 (5)
O20.0892 (11)0.0701 (10)0.0720 (10)0.0418 (9)0.0327 (8)0.0276 (8)
O30.0938 (12)0.0904 (12)0.0750 (11)0.0459 (10)0.0344 (9)0.0309 (9)
O50.0318 (5)0.0577 (7)0.0245 (5)0.0002 (5)0.0069 (4)0.0042 (5)
O40.0312 (5)0.0455 (6)0.0240 (5)0.0041 (5)0.0054 (4)0.0039 (4)
C150.0459 (9)0.0362 (8)0.0336 (8)0.0085 (7)0.0173 (7)0.0046 (6)
C120.0309 (7)0.0318 (7)0.0262 (7)0.0033 (6)0.0067 (6)0.0024 (5)
C160.0328 (8)0.0505 (10)0.0389 (8)0.0080 (7)0.0121 (6)0.0050 (7)
C130.0337 (8)0.0477 (9)0.0271 (7)0.0078 (7)0.0071 (6)0.0064 (6)
C170.0322 (7)0.0344 (8)0.0246 (6)0.0009 (6)0.0065 (5)0.0014 (5)
N120.0458 (8)0.0499 (8)0.0257 (6)0.0101 (6)0.0090 (5)0.0059 (5)
C180.0676 (12)0.0582 (11)0.0439 (9)0.0142 (9)0.0322 (9)0.0076 (8)
Geometric parameters (Å, º) top
Li1—O11i2.029 (3)C38—H38A0.9600
Li1—O112.039 (3)C38—H38B0.9600
Li1—O12.085 (3)C38—H38C0.9600
Li1—O42.114 (3)O12—C171.2397 (18)
Li1—N112.293 (3)O12—Li2i1.958 (3)
Li1—Li1i3.134 (5)O11—C171.2460 (18)
Li2—O12i1.958 (3)O11—Li1i2.029 (3)
Li2—O41.965 (3)N11—C161.328 (2)
Li2—O51.970 (3)N11—C121.3404 (19)
Li2—O2ii2.163 (3)N1—O21.219 (2)
Li2—O3ii2.550 (4)N1—O31.225 (2)
Li2—C17i2.677 (3)N1—O11.2516 (19)
Li2—N1ii2.715 (3)N1—Li2iii2.715 (3)
Li2—H522.34 (2)O2—Li2iii2.163 (3)
Li3—O311.978 (3)O3—Li2iii2.550 (4)
Li3—O52.025 (4)O5—H510.86 (2)
Li3—O12.039 (3)O5—H520.84 (2)
Li3—N312.117 (3)O4—H420.85 (2)
Li3—O22.637 (4)O4—H410.85 (2)
O31—C371.2573 (19)C15—N121.334 (2)
O32—C371.2351 (19)C15—C161.394 (2)
N31—C361.328 (2)C15—C181.497 (2)
N31—C321.3419 (19)C12—C131.381 (2)
C32—C331.384 (2)C12—C171.5134 (18)
C32—C371.5205 (19)C16—H160.9300
C33—N321.332 (2)C13—N121.336 (2)
C33—H330.9300C13—H130.9300
N32—C351.334 (2)C17—Li2i2.677 (3)
C35—C361.392 (2)C18—H18A0.9600
C35—C381.498 (2)C18—H18B0.9600
C36—H360.9300C18—H18C0.9600
O11i—Li1—O1179.21 (10)N31—C36—H36118.6
O11i—Li1—O199.02 (11)C35—C36—H36118.6
O11—Li1—O1132.82 (15)O32—C37—O31127.21 (13)
O11i—Li1—O495.45 (12)O32—C37—C32117.25 (13)
O11—Li1—O4137.34 (15)O31—C37—C32115.53 (13)
O1—Li1—O489.83 (11)C35—C38—H38A109.5
O11i—Li1—N11148.03 (14)C35—C38—H38B109.5
O11—Li1—N1175.84 (9)H38A—C38—H38B109.5
O1—Li1—N11112.56 (12)C35—C38—H38C109.5
O4—Li1—N1189.63 (10)H38A—C38—H38C109.5
O11i—Li1—Li1i39.72 (7)H38B—C38—H38C109.5
O11—Li1—Li1i39.50 (7)C17—O12—Li2i111.69 (12)
O1—Li1—Li1i122.93 (15)C17—O11—Li1i133.79 (12)
O4—Li1—Li1i122.68 (16)C17—O11—Li1121.84 (11)
N11—Li1—Li1i112.96 (13)Li1i—O11—Li1100.79 (10)
O12i—Li2—O4124.82 (15)C16—N11—C12116.54 (13)
O12i—Li2—O5100.73 (13)C16—N11—Li1133.87 (12)
O4—Li2—O596.72 (12)C12—N11—Li1108.90 (11)
O12i—Li2—O2ii105.34 (13)O2—N1—O3119.92 (19)
O4—Li2—O2ii123.98 (14)O2—N1—O1119.79 (17)
O5—Li2—O2ii96.79 (12)O3—N1—O1120.29 (17)
O12i—Li2—O3ii109.12 (12)O2—N1—Li2iii50.83 (12)
O4—Li2—O3ii85.96 (11)O3—N1—Li2iii69.11 (13)
O5—Li2—O3ii141.47 (14)O1—N1—Li2iii170.49 (13)
O2ii—Li2—O3ii52.56 (8)N1—O1—Li3107.95 (14)
O12i—Li2—C17i25.49 (5)N1—O1—Li1114.41 (13)
O4—Li2—C17i101.89 (11)Li3—O1—Li1137.29 (14)
O5—Li2—C17i117.81 (13)N1—O2—Li2iii103.26 (16)
O2ii—Li2—C17i118.44 (11)N1—O2—Li379.75 (13)
O3ii—Li2—C17i98.94 (10)Li2iii—O2—Li3176.60 (12)
O12i—Li2—N1ii109.68 (12)N1—O3—Li2iii84.22 (14)
O4—Li2—N1ii105.79 (12)Li2—O5—Li3109.33 (13)
O5—Li2—N1ii119.60 (13)Li2—O5—H51117.3 (14)
O2ii—Li2—N1ii25.90 (6)Li3—O5—H51109.4 (14)
O3ii—Li2—N1ii26.66 (5)Li2—O5—H52105.8 (15)
C17i—Li2—N1ii111.17 (10)Li3—O5—H52111.6 (15)
O12i—Li2—H5294.5 (6)H51—O5—H52103 (2)
O4—Li2—H52115.4 (6)Li2—O4—Li199.79 (11)
O5—Li2—H5220.1 (6)Li2—O4—H42119.7 (14)
O2ii—Li2—H5280.0 (6)Li1—O4—H42105.3 (14)
O3ii—Li2—H52130.7 (6)Li2—O4—H41109.1 (14)
C17i—Li2—H52117.2 (6)Li1—O4—H41119.0 (14)
N1ii—Li2—H52105.0 (6)H42—O4—H41104.7 (19)
O31—Li3—O597.02 (14)N12—C15—C16119.77 (13)
O31—Li3—O1141.39 (18)N12—C15—C18117.61 (15)
O5—Li3—O1100.53 (13)C16—C15—C18122.62 (15)
O31—Li3—N3181.64 (11)N11—C12—C13120.98 (13)
O5—Li3—N31110.61 (16)N11—C12—C17116.84 (12)
O1—Li3—N31122.54 (15)C13—C12—C17122.18 (13)
O31—Li3—O299.10 (14)N11—C16—C15123.00 (14)
O5—Li3—O2150.13 (14)N11—C16—H16118.5
O1—Li3—O252.51 (9)C15—C16—H16118.5
N31—Li3—O296.54 (13)N12—C13—C12122.10 (14)
C37—O31—Li3115.81 (12)N12—C13—H13119.0
C36—N31—C32116.92 (13)C12—C13—H13119.0
C36—N31—Li3135.00 (13)O12—C17—O11126.37 (13)
C32—N31—Li3108.08 (12)O12—C17—C12117.84 (12)
N31—C32—C33120.58 (13)O11—C17—C12115.79 (13)
N31—C32—C37116.98 (12)O12—C17—Li2i42.82 (9)
C33—C32—C37122.43 (13)O11—C17—Li2i85.43 (10)
N32—C33—C32122.04 (14)C12—C17—Li2i155.18 (12)
N32—C33—H33119.0C15—N12—C13117.58 (13)
C32—C33—H33119.0C15—C18—H18A109.5
C33—N32—C35117.83 (13)C15—C18—H18B109.5
N32—C35—C36119.78 (14)H18A—C18—H18B109.5
N32—C35—C38117.75 (15)C15—C18—H18C109.5
C36—C35—C38122.47 (15)H18A—C18—H18C109.5
N31—C36—C35122.80 (14)H18B—C18—H18C109.5
O5—Li3—O31—C3797.15 (15)O11i—Li1—O1—Li359.4 (2)
O1—Li3—O31—C37146.2 (2)O11—Li1—O1—Li3142.98 (18)
N31—Li3—O31—C3712.75 (18)O4—Li1—O1—Li336.13 (18)
O2—Li3—O31—C37108.09 (15)N11—Li1—O1—Li3125.66 (17)
O31—Li3—N31—C36174.23 (18)Li1i—Li1—O1—Li393.8 (2)
O5—Li3—N31—C3691.4 (2)O3—N1—O2—Li2iii1.90 (17)
O1—Li3—N31—C3626.8 (3)O1—N1—O2—Li2iii178.05 (12)
O2—Li3—N31—C3675.9 (2)O3—N1—O2—Li3179.73 (15)
O31—Li3—N31—C326.47 (16)O1—N1—O2—Li30.32 (13)
O5—Li3—N31—C3287.93 (16)Li2iii—N1—O2—Li3178.38 (12)
O1—Li3—N31—C32153.94 (18)O31—Li3—O2—N1151.21 (13)
O2—Li3—N31—C32104.75 (13)O5—Li3—O2—N129.4 (3)
C36—N31—C32—C331.3 (2)O1—Li3—O2—N10.22 (9)
Li3—N31—C32—C33179.29 (17)N31—Li3—O2—N1126.25 (13)
C36—N31—C32—C37179.90 (15)O31—Li3—O2—Li2iii1 (2)
Li3—N31—C32—C370.65 (19)O5—Li3—O2—Li2iii122.9 (18)
N31—C32—C33—N320.8 (3)O1—Li3—O2—Li2iii152.1 (19)
C37—C32—C33—N32177.77 (15)N31—Li3—O2—Li2iii81.4 (19)
C32—C33—N32—C352.2 (3)O2—N1—O3—Li2iii1.58 (14)
C33—N32—C35—C361.5 (2)O1—N1—O3—Li2iii178.38 (13)
C33—N32—C35—C38178.88 (17)O12i—Li2—O5—Li346.98 (16)
C32—N31—C36—C351.9 (3)O4—Li2—O5—Li380.43 (14)
Li3—N31—C36—C35178.82 (18)O2ii—Li2—O5—Li3154.06 (12)
N32—C35—C36—N310.5 (3)O3ii—Li2—O5—Li3172.38 (19)
C38—C35—C36—N31179.02 (17)C17i—Li2—O5—Li326.82 (17)
Li3—O31—C37—O32164.44 (18)N1ii—Li2—O5—Li3167.10 (12)
Li3—O31—C37—C3215.7 (2)O31—Li3—O5—Li2176.72 (12)
N31—C32—C37—O32170.32 (15)O1—Li3—O5—Li237.82 (15)
C33—C32—C37—O3211.1 (2)N31—Li3—O5—Li293.04 (15)
N31—C32—C37—O319.8 (2)O2—Li3—O5—Li261.0 (3)
C33—C32—C37—O31168.76 (16)O12i—Li2—O4—Li17.0 (2)
O11i—Li1—O11—C17161.36 (16)O5—Li2—O4—Li1101.06 (12)
O1—Li1—O11—C17106.3 (2)O2ii—Li2—O4—Li1156.06 (15)
O4—Li1—O11—C1775.0 (2)O3ii—Li2—O4—Li1117.56 (10)
N11—Li1—O11—C171.51 (16)C17i—Li2—O4—Li119.27 (13)
Li1i—Li1—O11—C17161.36 (16)N1ii—Li2—O4—Li1135.57 (11)
O11i—Li1—O11—Li1i0.0O11i—Li1—O4—Li232.20 (13)
O1—Li1—O11—Li1i92.35 (18)O11—Li1—O4—Li2112.19 (19)
O4—Li1—O11—Li1i86.3 (2)O1—Li1—O4—Li266.84 (12)
N11—Li1—O11—Li1i159.85 (14)N11—Li1—O4—Li2179.41 (11)
O11i—Li1—N11—C16134.3 (3)Li1i—Li1—O4—Li263.25 (18)
O11—Li1—N11—C16174.07 (17)C16—N11—C12—C131.3 (2)
O1—Li1—N11—C1655.1 (2)Li1—N11—C12—C13170.60 (14)
O4—Li1—N11—C1634.6 (2)C16—N11—C12—C17179.63 (14)
Li1i—Li1—N11—C16160.31 (17)Li1—N11—C12—C178.50 (17)
O11i—Li1—N11—C1235.6 (3)C12—N11—C16—C151.4 (2)
O11—Li1—N11—C124.18 (14)Li1—N11—C16—C15167.87 (16)
O1—Li1—N11—C12135.04 (14)N12—C15—C16—N110.1 (3)
O4—Li1—N11—C12135.30 (12)C18—C15—C16—N11179.94 (16)
Li1i—Li1—N11—C129.6 (2)N11—C12—C13—N120.3 (2)
O2—N1—O1—Li30.43 (18)C17—C12—C13—N12178.79 (14)
O3—N1—O1—Li3179.62 (14)Li2i—O12—C17—O1119.9 (2)
Li2iii—N1—O1—Li39.6 (7)Li2i—O12—C17—C12160.09 (13)
O2—N1—O1—Li1174.88 (13)Li1i—O11—C17—O1232.3 (3)
O3—N1—O1—Li15.17 (19)Li1—O11—C17—O12173.52 (16)
Li2iii—N1—O1—Li1175.9 (6)Li1i—O11—C17—C12147.73 (16)
O31—Li3—O1—N150.3 (3)Li1—O11—C17—C126.5 (2)
O5—Li3—O1—N1165.93 (12)Li1i—O11—C17—Li2i45.70 (19)
N31—Li3—O1—N171.2 (2)Li1—O11—C17—Li2i160.08 (14)
O2—Li3—O1—N10.22 (9)N11—C12—C17—O12169.59 (14)
O31—Li3—O1—Li1137.1 (2)C13—C12—C17—O1211.3 (2)
O5—Li3—O1—Li121.5 (2)N11—C12—C17—O1110.4 (2)
N31—Li3—O1—Li1101.4 (2)C13—C12—C17—O11168.67 (15)
O2—Li3—O1—Li1172.75 (16)N11—C12—C17—Li2i136.1 (2)
O11i—Li1—O1—N1112.83 (13)C13—C12—C17—Li2i44.8 (3)
O11—Li1—O1—N129.2 (2)C16—C15—N12—C131.5 (2)
O4—Li1—O1—N1151.67 (11)C18—C15—N12—C13178.41 (16)
N11—Li1—O1—N162.14 (16)C12—C13—N12—C151.7 (2)
Li1i—Li1—O1—N178.4 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O32iv0.85 (2)1.92 (2)2.7449 (15)165.3 (19)
O4—H42···N12v0.85 (2)2.03 (2)2.8414 (17)159.0 (19)
O5—H52···N32vi0.84 (2)2.05 (2)2.8550 (17)162 (2)
O5—H51···O31iv0.86 (2)1.85 (2)2.7055 (15)172 (2)
Symmetry codes: (iv) x+1, y, z+2; (v) x+2, y1/2, z+5/2; (vi) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Li3(C6H5N2O2)2(NO3)(H2O)2]
Mr393.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.0222 (1), 7.2288 (1), 18.5819 (2)
β (°) 100.760 (1)
V3)1718.45 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.10
Crystal size (mm)0.23 × 0.20 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.672, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15696, 3215, 2787
Rint0.026
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.122, 1.07
No. of reflections3215
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O11i2.029 (3)Li2—O51.970 (3)
Li1—O112.039 (3)Li2—O2ii2.163 (3)
Li1—O12.085 (3)Li3—O311.978 (3)
Li1—O42.114 (3)Li3—O52.025 (4)
Li1—N112.293 (3)Li3—O12.039 (3)
Li2—O12i1.958 (3)Li3—N312.117 (3)
Li2—O41.965 (3)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O32iii0.85 (2)1.92 (2)2.7449 (15)165.3 (19)
O4—H42···N12iv0.85 (2)2.03 (2)2.8414 (17)159.0 (19)
O5—H52···N32v0.84 (2)2.05 (2)2.8550 (17)162 (2)
O5—H51···O31iii0.86 (2)1.85 (2)2.7055 (15)172 (2)
Symmetry codes: (iii) x+1, y, z+2; (iv) x+2, y1/2, z+5/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

Thanks are due to Dr J. K. Maurin for collecting the diffraction data on the instrument at the Institute of Atomic Energy, Swierk.

References

First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744–m745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m1000-m1001
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds