organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N4,N4′-Bis(4-meth­­oxy­benzyl­­idene)-3,3′-di­methyl­benzidine

aCollege of Chemistry and Material Science, Huaibei Normal University, Xiangshan, Huaibei 235000, People's Republic of China
*Correspondence e-mail: 363019204@qq.com

(Received 16 June 2011; accepted 17 June 2011; online 22 June 2011)

The mol­ecule of the title compund, C30H28N2O2, a Schiff base synthesised via a condensation reaction between 4-meth­oxy­benzaldehyde and 3,3′-dimethyl­benzidine, a crystallographic twofold rotation axis passes through the mid-point of the C—C bond of the biphenyl unit. Thus, the asymmetric unit comprises one half-mol­ecule. In the biphenyl unit, the aromatic rings are twisted by 13.49 (7)° with respect to one another. The dihedral angles between the biphenyl and meth­oxy­benzene rings are 49.95 (12) and 50.06 (12)°. In the crystal, weak inter­molecular C—H⋯ O hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the biological properties of Schiff base ligands, see: Bedia et al. (2006[Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For related structures, see: Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]); Nesterov (2004[Nesterov, V. N. (2004). Acta Cryst. C60, o806-o809.]). For reference bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N2O2

  • Mr = 448.54

  • Monoclinic, C 2/c

  • a = 11.644 (2) Å

  • b = 16.228 (3) Å

  • c = 12.431 (3) Å

  • β = 91.75 (3)°

  • V = 2347.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.38 × 0.34 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.703, Tmax = 0.786

  • 11279 measured reflections

  • 2667 independent reflections

  • 2350 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.05

  • 2667 reflections

  • 210 parameters

  • All H-atom parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.960 (13) 2.688 (13) 3.4462 (15) 136.32 (su?)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base ligands have received considerable attention during the last decades, mainly because of their structures or their biological properties (Bedia et al., 2006). We report here the crystal structure of the title compound, (I), a novel Schiff base (Fig. 1). The bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Harada et al., 2004; Nesterov et al., 2004). In the biphenyl moiety, the aromatic rings are inclined by 13.49 (7)°. The dihedral angles between the biphenyl and methoxybenzal rings are 49.95 (12)° and 50.06 (12)°, respectively. In the crystal, weak intermolecular C—H··· O hydrogen bonds contribute to the stabilisation of the packing (Table 1).

Related literature top

For the biological properties of Schiff base ligands, see: Bedia et al. (2006). For related structures, see: Harada et al. (2004); Nesterov et al. (2004). For reference bond-length values, see: Allen et al. (1987).

Experimental top

4-Methoxybenzaldehyde (0.272 g,2 mmol), 3,3'-Dimethylbenzidine (0.212 g,1 mmol) and 20 mL toluene were placed in a round-bottom flask equipped with a magnetic stirring bar. The reaction mixture was stirred at reflux for 4 h and then cooled.The solid that precipitated was filtered off and washed with methanol. This compound (0.224 g, 0.5 mmol) was dissolved in ethylacetate and left to crystallise. Crystals obtained were suitable for data collection.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids. The molecule has the crystallographic twofold rotation axes through the mid of C12-C12A. To generate the whole molecule symmetry operation A: -x,y, 1/2-z was used.
N4,N4'-Bis(4-methoxybenzylidene)-3,3'-dimethylbenzidine top
Crystal data top
C30H28N2O2F(000) = 952
Mr = 448.54Dx = 1.269 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9010 reflections
a = 11.644 (2) Åθ = 3.0–27.5°
b = 16.228 (3) ŵ = 0.08 mm1
c = 12.431 (3) ÅT = 93 K
β = 91.75 (3)°Block, yellow
V = 2347.9 (8) Å30.38 × 0.34 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2667 independent reflections
Radiation source: fine-focus sealed tube2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR ;Higashi, 1995)
h = 1515
Tmin = 0.703, Tmax = 0.786k = 2020
11279 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.0766P]
where P = (Fo2 + 2Fc2)/3
2667 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H28N2O2V = 2347.9 (8) Å3
Mr = 448.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.644 (2) ŵ = 0.08 mm1
b = 16.228 (3) ÅT = 93 K
c = 12.431 (3) Å0.38 × 0.34 × 0.22 mm
β = 91.75 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2667 independent reflections
Absorption correction: multi-scan
(ABSCOR ;Higashi, 1995)
2350 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.786Rint = 0.033
11279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.05Δρmax = 0.40 e Å3
2667 reflectionsΔρmin = 0.19 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14801 (6)0.07986 (5)1.08572 (5)0.01981 (19)
N10.36979 (7)0.15477 (5)0.62842 (7)0.0176 (2)
C10.20415 (11)0.12644 (8)1.16991 (9)0.0262 (3)
H1A0.2839 (14)0.1056 (10)1.1839 (12)0.034 (4)*
H1C0.2050 (14)0.1847 (10)1.1522 (12)0.038 (4)*
H1B0.1570 (13)0.1177 (10)1.2330 (12)0.037 (4)*
C20.18777 (9)0.08948 (6)0.98408 (8)0.0165 (2)
C30.28693 (9)0.13363 (6)0.96025 (8)0.0183 (2)
H3A0.3342 (12)0.1589 (8)1.0165 (11)0.025 (3)*
C40.31999 (9)0.13940 (6)0.85410 (8)0.0179 (2)
H4A0.3903 (12)0.1681 (8)0.8377 (10)0.022 (3)*
C50.25488 (8)0.10280 (6)0.77062 (8)0.0163 (2)
C60.15643 (9)0.05837 (6)0.79627 (8)0.0179 (2)
H6A0.1119 (11)0.0334 (8)0.7388 (10)0.021 (3)*
C70.12313 (9)0.05104 (6)0.90185 (8)0.0179 (2)
H7A0.0561 (12)0.0194 (8)0.9196 (10)0.024 (3)*
C80.28718 (8)0.10911 (6)0.65788 (8)0.0176 (2)
H8A0.2396 (11)0.0762 (8)0.6043 (10)0.020 (3)*
C90.40025 (8)0.15379 (6)0.51899 (8)0.0162 (2)
C100.43005 (8)0.22903 (6)0.47132 (8)0.0159 (2)
C110.46879 (8)0.22851 (6)0.36602 (8)0.0165 (2)
H11A0.4919 (11)0.2820 (9)0.3346 (10)0.023 (3)*
C120.47841 (8)0.15556 (6)0.30593 (7)0.0160 (2)
C130.44641 (9)0.08169 (6)0.35559 (8)0.0180 (2)
H13A0.4501 (11)0.0292 (8)0.3175 (10)0.019 (3)*
C140.40833 (9)0.08084 (6)0.46040 (8)0.0183 (2)
H14A0.3897 (12)0.0279 (8)0.4927 (10)0.024 (3)*
C150.41802 (9)0.30788 (7)0.53365 (8)0.0199 (2)
H15C0.3378 (12)0.3186 (9)0.5538 (11)0.028 (3)*
H15B0.4624 (13)0.3043 (9)0.6036 (12)0.032 (4)*
H15A0.4450 (12)0.3550 (8)0.4925 (11)0.025 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (4)0.0261 (4)0.0126 (4)0.0009 (3)0.0023 (3)0.0020 (3)
N10.0179 (4)0.0209 (4)0.0141 (4)0.0005 (3)0.0020 (3)0.0021 (3)
C10.0341 (6)0.0295 (6)0.0151 (5)0.0047 (5)0.0020 (4)0.0012 (4)
C20.0178 (5)0.0179 (5)0.0140 (5)0.0039 (4)0.0024 (3)0.0029 (4)
C30.0184 (5)0.0198 (5)0.0166 (5)0.0003 (4)0.0011 (4)0.0006 (4)
C40.0163 (5)0.0192 (5)0.0181 (5)0.0012 (4)0.0012 (4)0.0023 (4)
C50.0166 (5)0.0171 (5)0.0153 (5)0.0021 (4)0.0018 (3)0.0019 (4)
C60.0171 (5)0.0201 (5)0.0166 (5)0.0001 (4)0.0005 (4)0.0009 (4)
C70.0160 (5)0.0195 (5)0.0185 (5)0.0010 (4)0.0032 (4)0.0010 (4)
C80.0168 (5)0.0200 (5)0.0160 (5)0.0009 (4)0.0003 (4)0.0014 (4)
C90.0130 (4)0.0224 (5)0.0132 (5)0.0003 (4)0.0003 (3)0.0011 (4)
C100.0129 (4)0.0197 (5)0.0150 (5)0.0008 (3)0.0000 (3)0.0005 (4)
C110.0161 (5)0.0184 (5)0.0152 (5)0.0007 (4)0.0008 (3)0.0015 (4)
C120.0151 (5)0.0191 (5)0.0138 (5)0.0002 (3)0.0003 (4)0.0004 (4)
C130.0195 (5)0.0179 (5)0.0167 (5)0.0003 (4)0.0009 (4)0.0012 (4)
C140.0186 (5)0.0187 (5)0.0176 (5)0.0014 (4)0.0016 (4)0.0032 (4)
C150.0223 (5)0.0203 (5)0.0172 (5)0.0017 (4)0.0040 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C21.3677 (12)C7—H7A0.965 (14)
O1—C11.4325 (14)C8—H8A1.006 (13)
N1—C81.2767 (13)C9—C141.3946 (15)
N1—C91.4164 (12)C9—C101.4054 (14)
C1—H1A0.999 (16)C10—C111.3976 (14)
C1—H1C0.972 (17)C10—C151.5046 (14)
C1—H1B0.981 (15)C11—C121.4061 (14)
C2—C71.3978 (15)C11—H11A0.992 (14)
C2—C31.3982 (14)C12—C131.4039 (14)
C3—C41.3891 (14)C12—C12i1.4930 (18)
C3—H3A0.968 (14)C13—C141.3892 (14)
C4—C51.3987 (15)C13—H13A0.975 (13)
C4—H4A0.969 (14)C14—H14A0.976 (13)
C5—C61.3993 (14)C15—H15C0.990 (14)
C5—C81.4657 (13)C15—H15B1.000 (15)
C6—C71.3851 (14)C15—H15A0.977 (14)
C6—H6A0.960 (13)
C2—O1—C1117.07 (8)N1—C8—H8A121.5 (7)
C8—N1—C9118.82 (9)C5—C8—H8A116.3 (7)
O1—C1—H1A110.5 (9)C14—C9—C10119.73 (9)
O1—C1—H1C110.8 (9)C14—C9—N1122.27 (9)
H1A—C1—H1C110.7 (13)C10—C9—N1117.87 (9)
O1—C1—H1B104.7 (9)C11—C10—C9118.72 (9)
H1A—C1—H1B110.6 (12)C11—C10—C15121.69 (9)
H1C—C1—H1B109.4 (13)C9—C10—C15119.58 (9)
O1—C2—C7115.77 (9)C10—C11—C12122.41 (9)
O1—C2—C3124.00 (9)C10—C11—H11A117.6 (7)
C7—C2—C3120.23 (9)C12—C11—H11A120.0 (7)
C4—C3—C2119.37 (10)C13—C12—C11117.30 (9)
C4—C3—H3A119.3 (8)C13—C12—C12i120.73 (6)
C2—C3—H3A121.3 (8)C11—C12—C12i121.96 (6)
C3—C4—C5121.10 (9)C14—C13—C12121.17 (9)
C3—C4—H4A119.5 (8)C14—C13—H13A117.8 (7)
C5—C4—H4A119.4 (8)C12—C13—H13A121.1 (7)
C4—C5—C6118.62 (9)C13—C14—C9120.66 (9)
C4—C5—C8122.06 (9)C13—C14—H14A118.4 (7)
C6—C5—C8119.33 (9)C9—C14—H14A120.9 (7)
C7—C6—C5121.02 (10)C10—C15—H15C112.6 (8)
C7—C6—H6A120.6 (8)C10—C15—H15B110.1 (9)
C5—C6—H6A118.4 (8)H15C—C15—H15B104.9 (11)
C6—C7—C2119.64 (9)C10—C15—H15A111.0 (8)
C6—C7—H7A120.9 (8)H15C—C15—H15A108.4 (11)
C2—C7—H7A119.4 (8)H15B—C15—H15A109.6 (12)
N1—C8—C5122.17 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1ii0.960 (13)2.688 (13)3.4462 (15)136.32
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC30H28N2O2
Mr448.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)11.644 (2), 16.228 (3), 12.431 (3)
β (°) 91.75 (3)
V3)2347.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.34 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR ;Higashi, 1995)
Tmin, Tmax0.703, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
11279, 2667, 2350
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.05
No. of reflections2667
No. of parameters210
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.960 (13)2.688 (13)3.4462 (15)136.32
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

Financial support from Huaibei Normal University is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNesterov, V. N. (2004). Acta Cryst. C60, o806–o809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds