organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis[(3-hy­dr­oxy­prop­yl)amino]-1,4-benzo­quinone monohydrate

aSchool of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu, People's Republic of China, and bQufu Normal University, Qufu Shandong, People's Republic of China
*Correspondence e-mail: wjsxhwhp@yahoo.cn

(Received 29 April 2011; accepted 5 June 2011; online 11 June 2011)

The title compound, C12H18N2O4·H2O, was obtained as a product of the reaction of hydro­quinone with n-propanol amine. The compound crystallizes as a monohydrate, integrating water into its hydrogen-bonded network. Each diamino­quinone moiety forms two centrosymmetric 10-membered rings through C=O⋯H—N bonds. The resulting bands along [102] are inter­linked through hy­droxy groups and water mol­ecules into three-dimensional network. The chemically equivalent bond lengths in the diamino­quinone moiety exhibit a perceptible discrepancy [e.g. C=O bond lengths differ by 0.016 (2) Å], apparently as a result of asymmetric hydrogen bonding: one O atom serves as an acceptor of one hydrogen bond, whereas the other is an acceptor of two.

Related literature

For the synthesis of the title compound see: Jian et al. (2009[Jian, W., Wei-wei, L., Wei-xing, M., Tong-wei, G., Xing-you, X., Lu-de, L. & Xu-ji, Y. (2009). J. Huaihai Institute of Technology (Natural Science Edition). 18, 34-37]). For related literature on aminoquinones, see: Der (2010[Der, P. C. (2010). Scholars Research Library. 2, 63-73]), Nisha et al. (2010[Nisha, M., Twinkle, K., Lakshmy, S. & Kalyanasundaram, M. (2010). Drug Dev. Res. 71, 188-196.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18N2O4·H2O

  • Mr = 272.30

  • Triclinic, [P \overline 1]

  • a = 4.9272 (8) Å

  • b = 11.673 (2) Å

  • c = 11.933 (2) Å

  • α = 82.104 (2)°

  • β = 87.994 (2)°

  • γ = 80.849 (2)°

  • V = 671.13 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.974, Tmax = 0.989

  • 5966 measured reflections

  • 2895 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.03

  • 2895 reflections

  • 196 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O4i 0.85 (1) 1.98 (1) 2.818 (2) 168 (2)
O5—H5A⋯O3ii 0.85 (1) 1.90 (1) 2.736 (2) 169 (2)
O3—H3⋯O2ii 0.84 (2) 1.90 (2) 2.7398 (19) 173 (3)
N1—H1⋯O2ii 0.89 (1) 2.20 (1) 2.9865 (18) 146 (2)
N2—H2⋯O1iii 0.89 (1) 2.17 (1) 2.9508 (17) 146 (2)
O4—H4⋯O5iv 0.85 (2) 1.88 (2) 2.727 (2) 173 (2)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) -x+3, -y, -z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aminoquinones are used as medicines and herbicides and have interesting redox switching properties. They are formed in the reactions of different amines with quinones or hydroquinone. For example, 1,4-benzoquinone reacts with primary amines to give 2,5-diamino-1,4-benzoquinones. Recently, by reacting hydroquinone with n-propanol amine, 2,5-di[(3-hydroxypropyl)amino]-1,4-benzoquinone has been synthesized. The product was characterized with IR, UV and mass spectrometry, as well as NMR. This and related compounds are of considerable interest since they exhibit potent antitumor and antimalarial activities. However, the single-crystal structure of 2,5-di[(3-hydroxypropyl)amino]-1,4-benzoquinone has not been reported.

Related literature top

For the synthesis of the title compound see: Jian et al. (2009). For related literature [on what subject?], see: Der (2010), Nisha et al. (2010).

Experimental top

Methanol solution (10 ml) of n-propanol amine(2.3 mmol) was added to methanol solution (10 ml) of hydroquinone (0.05 g=0.46 mmol), and was stirred for 0.5 h at room temperature. Then the reaction was refluxed at 50°C for 4 h. A deep-red ropiness crude product was formed. The product was purified by recrystallization from methanol. Long red flat prisms were obtained from methanol solution after vaporizing at room temperature for two weeks.

Refinement top

The structure of the compound was solved with direct methods and then refined anisotropically using full-matrix least-squares procedure. H atoms bonded to N and O atoms were located in a difference Fourier map and refined isotropically with distance restraints O—H = 0.850 and N—H = 0.890 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.930–0.970 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound.
2,5-Bis[(3-hydroxypropyl)amino]-1,4-benzoquinone monohydrate top
Crystal data top
C12H18N2O4·H2OZ = 2
Mr = 272.30F(000) = 292
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Melting point = 437.1–438.3 K
a = 4.9272 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.673 (2) ÅCell parameters from 1436 reflections
c = 11.933 (2) Åθ = 2.6–26.1°
α = 82.104 (2)°µ = 0.11 mm1
β = 87.994 (2)°T = 296 K
γ = 80.849 (2)°Strip, red
V = 671.13 (19) Å30.25 × 0.18 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2895 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 66
Tmin = 0.974, Tmax = 0.989k = 1414
5966 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.0971P]
where P = (Fo2 + 2Fc2)/3
2895 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.20 e Å3
7 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H18N2O4·H2Oγ = 80.849 (2)°
Mr = 272.30V = 671.13 (19) Å3
Triclinic, P1Z = 2
a = 4.9272 (8) ÅMo Kα radiation
b = 11.673 (2) ŵ = 0.11 mm1
c = 11.933 (2) ÅT = 296 K
α = 82.104 (2)°0.25 × 0.18 × 0.11 mm
β = 87.994 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2895 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1963 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.989Rint = 0.025
5966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0457 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2895 reflectionsΔρmin = 0.20 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6153 (3)0.11927 (12)0.36773 (12)0.0390 (4)
N21.3092 (3)0.13162 (11)0.10709 (11)0.0351 (3)
O11.2722 (3)0.08231 (10)0.07011 (10)0.0453 (3)
O20.6703 (3)0.09049 (10)0.41065 (10)0.0552 (4)
O30.5303 (4)0.32465 (13)0.60246 (12)0.0736 (5)
O41.0113 (3)0.41209 (12)0.14943 (12)0.0565 (4)
O50.5089 (3)0.49169 (15)0.21551 (15)0.0768 (5)
C11.1245 (3)0.04600 (13)0.14826 (13)0.0314 (4)
C20.9446 (3)0.11051 (13)0.21472 (13)0.0340 (4)
H2A0.92860.18510.19940.041*
C30.7922 (3)0.06574 (13)0.30165 (13)0.0317 (4)
C40.8147 (3)0.05513 (13)0.32951 (13)0.0351 (4)
C50.9895 (3)0.12030 (13)0.26347 (13)0.0349 (4)
H51.00420.19490.27930.042*
C61.1415 (3)0.07683 (12)0.17496 (13)0.0293 (3)
C70.5507 (4)0.23474 (14)0.35927 (14)0.0396 (4)
H7A0.54500.24410.27990.048*
H7B0.36880.23990.39150.048*
C80.7530 (4)0.33485 (14)0.41825 (14)0.0435 (4)
H8A0.69150.40840.41090.052*
H8B0.93110.33530.38090.052*
C90.7835 (5)0.32661 (18)0.54126 (16)0.0589 (6)
H9A0.91350.39300.57420.071*
H9B0.85820.25600.54860.071*
C101.3668 (4)0.24973 (13)0.10990 (14)0.0380 (4)
H10A1.55590.24580.13210.046*
H10B1.24860.28590.16620.046*
C111.3213 (3)0.32460 (13)0.00383 (13)0.0339 (4)
H11A1.39140.39740.00170.041*
H11B1.42540.28420.06120.041*
C121.0238 (3)0.35224 (14)0.03697 (14)0.0382 (4)
H12A0.94580.28060.03340.046*
H12B0.92030.40110.01420.046*
H5A0.516 (5)0.4429 (17)0.2754 (14)0.092 (8)*
H5B0.662 (3)0.516 (2)0.205 (2)0.099 (9)*
H21.405 (4)0.0890 (14)0.0584 (13)0.059 (6)*
H10.535 (4)0.0797 (15)0.4219 (13)0.063 (6)*
H40.844 (4)0.437 (2)0.167 (2)0.087 (8)*
H30.456 (5)0.2541 (16)0.601 (2)0.097 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0467 (9)0.0316 (7)0.0382 (8)0.0087 (6)0.0157 (7)0.0043 (6)
N20.0405 (8)0.0283 (7)0.0361 (8)0.0068 (6)0.0112 (6)0.0038 (6)
O10.0546 (8)0.0366 (6)0.0459 (7)0.0097 (5)0.0247 (6)0.0129 (5)
O20.0752 (9)0.0391 (7)0.0519 (8)0.0121 (6)0.0359 (7)0.0138 (6)
O30.1126 (14)0.0458 (9)0.0477 (8)0.0110 (8)0.0317 (9)0.0102 (7)
O40.0473 (9)0.0658 (9)0.0505 (8)0.0093 (7)0.0054 (7)0.0146 (7)
O50.0648 (11)0.0847 (12)0.0740 (11)0.0315 (9)0.0232 (9)0.0418 (9)
C10.0345 (9)0.0279 (8)0.0299 (8)0.0004 (6)0.0051 (7)0.0045 (6)
C20.0404 (9)0.0262 (8)0.0353 (9)0.0063 (7)0.0074 (7)0.0048 (7)
C30.0336 (9)0.0291 (8)0.0303 (8)0.0034 (6)0.0051 (7)0.0008 (6)
C40.0404 (9)0.0306 (8)0.0319 (8)0.0007 (7)0.0103 (7)0.0039 (7)
C50.0425 (10)0.0266 (8)0.0357 (9)0.0067 (7)0.0098 (7)0.0057 (7)
C60.0295 (8)0.0271 (8)0.0290 (8)0.0021 (6)0.0018 (6)0.0013 (6)
C70.0440 (10)0.0397 (9)0.0362 (9)0.0149 (7)0.0051 (8)0.0001 (7)
C80.0511 (11)0.0349 (9)0.0438 (10)0.0062 (8)0.0093 (9)0.0057 (8)
C90.0730 (15)0.0495 (12)0.0475 (12)0.0083 (10)0.0057 (11)0.0018 (9)
C100.0418 (10)0.0338 (9)0.0391 (9)0.0123 (7)0.0037 (8)0.0014 (7)
C110.0351 (9)0.0292 (8)0.0371 (9)0.0079 (7)0.0068 (7)0.0026 (7)
C120.0388 (10)0.0341 (9)0.0415 (10)0.0073 (7)0.0050 (8)0.0043 (7)
Geometric parameters (Å, º) top
N1—C31.3273 (19)C4—C51.392 (2)
N1—C71.451 (2)C5—C61.380 (2)
N1—H10.891 (9)C5—H50.9300
N2—C61.3140 (19)C7—C81.519 (2)
N2—C101.456 (2)C7—H7A0.9700
N2—H20.891 (9)C7—H7B0.9700
O1—C11.2419 (17)C8—C91.499 (3)
O2—C41.2580 (18)C8—H8A0.9700
O3—C91.422 (2)C8—H8B0.9700
O3—H30.844 (16)C9—H9A0.9700
O4—C121.424 (2)C9—H9B0.9700
O4—H40.850 (16)C10—C111.513 (2)
O5—H5A0.849 (9)C10—H10A0.9700
O5—H5B0.849 (9)C10—H10B0.9700
C1—C21.407 (2)C11—C121.504 (2)
C1—C61.526 (2)C11—H11A0.9700
C2—C31.372 (2)C11—H11B0.9700
C2—H2A0.9300C12—H12A0.9700
C3—C41.515 (2)C12—H12B0.9700
C3—N1—C7125.40 (14)H7A—C7—H7B107.6
C3—N1—H1115.3 (13)C9—C8—C7112.93 (15)
C7—N1—H1119.3 (13)C9—C8—H8A109.0
C6—N2—C10126.63 (14)C7—C8—H8A109.0
C6—N2—H2115.3 (12)C9—C8—H8B109.0
C10—N2—H2117.9 (12)C7—C8—H8B109.0
C9—O3—H3108.2 (18)H8A—C8—H8B107.8
C12—O4—H4109.4 (17)O3—C9—C8112.68 (18)
H5A—O5—H5B109.4 (18)O3—C9—H9A109.1
O1—C1—C2124.65 (14)C8—C9—H9A109.1
O1—C1—C6117.67 (13)O3—C9—H9B109.1
C2—C1—C6117.68 (13)C8—C9—H9B109.1
C3—C2—C1121.45 (14)H9A—C9—H9B107.8
C3—C2—H2A119.3N2—C10—C11111.84 (13)
C1—C2—H2A119.3N2—C10—H10A109.2
N1—C3—C2125.71 (15)C11—C10—H10A109.2
N1—C3—C4113.62 (13)N2—C10—H10B109.2
C2—C3—C4120.67 (13)C11—C10—H10B109.2
O2—C4—C5124.28 (15)H10A—C10—H10B107.9
O2—C4—C3117.34 (14)C12—C11—C10113.21 (13)
C5—C4—C3118.38 (13)C12—C11—H11A108.9
C6—C5—C4121.53 (14)C10—C11—H11A108.9
C6—C5—H5119.2C12—C11—H11B108.9
C4—C5—H5119.2C10—C11—H11B108.9
N2—C6—C5126.20 (14)H11A—C11—H11B107.7
N2—C6—C1113.53 (13)O4—C12—C11107.74 (13)
C5—C6—C1120.27 (13)O4—C12—H12A110.2
N1—C7—C8114.31 (14)C11—C12—H12A110.2
N1—C7—H7A108.7O4—C12—H12B110.2
C8—C7—H7A108.7C11—C12—H12B110.2
N1—C7—H7B108.7H12A—C12—H12B108.5
C8—C7—H7B108.7
O1—C1—C2—C3178.39 (16)C10—N2—C6—C1179.18 (14)
C6—C1—C2—C30.9 (2)C4—C5—C6—N2179.17 (16)
C7—N1—C3—C20.3 (3)C4—C5—C6—C10.9 (2)
C7—N1—C3—C4179.25 (15)O1—C1—C6—N22.2 (2)
C1—C2—C3—N1179.10 (16)C2—C1—C6—N2178.43 (15)
C1—C2—C3—C40.4 (2)O1—C1—C6—C5177.71 (15)
N1—C3—C4—O20.8 (2)C2—C1—C6—C51.7 (2)
C2—C3—C4—O2179.63 (16)C3—N1—C7—C883.0 (2)
N1—C3—C4—C5178.40 (15)N1—C7—C8—C956.7 (2)
C2—C3—C4—C51.2 (2)C7—C8—C9—O358.3 (2)
O2—C4—C5—C6179.57 (16)C6—N2—C10—C11126.19 (17)
C3—C4—C5—C60.5 (2)N2—C10—C11—C1268.29 (17)
C10—N2—C6—C50.9 (3)C10—C11—C12—O4174.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.85 (1)1.98 (1)2.818 (2)168 (2)
O5—H5A···O3ii0.85 (1)1.90 (1)2.736 (2)169 (2)
O3—H3···O2ii0.84 (2)1.90 (2)2.7398 (19)173 (3)
N1—H1···O2ii0.89 (1)2.20 (1)2.9865 (18)146 (2)
N2—H2···O1iii0.89 (1)2.17 (1)2.9508 (17)146 (2)
O4—H4···O5iv0.85 (2)1.88 (2)2.727 (2)173 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x+3, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H18N2O4·H2O
Mr272.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.9272 (8), 11.673 (2), 11.933 (2)
α, β, γ (°)82.104 (2), 87.994 (2), 80.849 (2)
V3)671.13 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.18 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.974, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5966, 2895, 1963
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.03
No. of reflections2895
No. of parameters196
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.849 (9)1.982 (10)2.818 (2)168 (2)
O5—H5A···O3ii0.849 (9)1.899 (10)2.736 (2)169 (2)
O3—H3···O2ii0.844 (16)1.900 (17)2.7398 (19)173 (3)
N1—H1···O2ii0.891 (9)2.204 (14)2.9865 (18)146.2 (17)
N2—H2···O1iii0.891 (9)2.170 (13)2.9508 (17)146.0 (17)
O4—H4···O5iv0.850 (16)1.881 (17)2.727 (2)173 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x+3, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

We acknowledge the financial support of the foundation of Jiangsu Key Laboratory of Marine Biotechnology (2010HS07), the Jiangsu Marine Resources Development Research Institute (JSIMR10E02), the Major Program of the Natural Science Foundation of Jiangsu Education Committee (10 K J A170003), the Natural Science Foundation of Jiangsu Education Committee (08KJB150002), the Six Kinds of Professional Elite Foundation of Jiangsu Province (No. 07-A-024), the Science and Technology Critical Project Foundation of Lianyungang (CG0803–2), the Doctoral Scientific Research Project (KQ09006) and the partnership of Huaihai Institute of Technology.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDer, P. C. (2010). Scholars Research Library. 2, 63–73  Google Scholar
First citationJian, W., Wei-wei, L., Wei-xing, M., Tong-wei, G., Xing-you, X., Lu-de, L. & Xu-ji, Y. (2009). J. Huaihai Institute of Technology (Natural Science Edition). 18, 34–37  Google Scholar
First citationNisha, M., Twinkle, K., Lakshmy, S. & Kalyanasundaram, M. (2010). Drug Dev. Res. 71, 188–196.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds