organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′-Methyl-4′-oxo-7′-phenyl-3′,4′-di­hydro-1′H-spiro­[cyclo­hexane-1,2′-quinazoline]-8′-carbo­nitrile

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bCollege of Chemical Engineering, Huaqiao University, Xiamen Fujian 362021, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 17 May 2011; accepted 7 June 2011; online 18 June 2011)

The title compound, C21H21N3O, was obtained by cyclo­condensation of 3-amino-5-methyl-[1,1′-biphen­yl]-2,4-di­car­bo­nitrile with cyclo­hexa­none. The six-membered 1,3-diaza ring assumes an envelope conformation [with the flap atom displaced by 0.511 (7) Å from the plane through the other ring atoms] and the cyclo­hexane ring displays a chair conformation. The dihedral angle between the aromatic rings is 42.61 (7)°.In the crystal, the mol­ecules form hydrogen-bonded bands along [011].

Related literature

For the medicinal and biological properities of dihydro­quinazolin-4(3H)-one derivatives, see: Deng et al. (2000[Deng, Y. H., Yang, R. S. & Yang, Y. (2000). Chin. Pharm. Sci. 9, 116-118.]); Chenard et al. (2000[Chenard, B. L., Menniti, F. S., Pagnozzi, M. J., Shenk, K. D., Ewing, F. E. & Welch, W. M. (2000). Bioorg. Med. Chem. Lett. 10, 1203-1205.]); Bertrand et al. (2001[Bertrand, L. C., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. J. (2001). J. Med. Chem. 44, 1710-1717.]); Welch et al. (2001[Welch, W. M., Ewing, F. E., Huang, J., Menniti, F. S., Pagnozzi, M. J., Kelly, K., Seymour, P. A., Guanowsky, V., Guhan, S., Guinn, M. R., Critchett, D., Lazzaro, J., Ganong, A. H., Devries, K. M., Staigers, T. L. & Chenard, B. L. (2001). Bioorg. Med. Chem. Lett. 11, 177-181.]). For a related structure, see Zhang et al. (2008[Zhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.])

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O

  • Mr = 331.41

  • Triclinic, [P \overline 1]

  • a = 7.1824 (15) Å

  • b = 11.233 (3) Å

  • c = 11.430 (3) Å

  • α = 101.858 (8)°

  • β = 93.794 (9)°

  • γ = 104.606 (9)°

  • V = 866.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.35 × 0.27 × 0.27 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 9387 measured reflections

  • 4521 independent reflections

  • 3511 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.00

  • 4521 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Oli 0.920 (17) 1.998 (14) 2.9010 (17) 171.68 (14)
N1—H1N⋯N3ii 0.875 (18) 2.281 (14) 3.1188 (19) 160.24 (15)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of (I) is represented on Fig. 1. The 1,3-diaza ring exists in an envelope conformation with its C6 atom displaced by 0.511 (7)Å from the rest of the atoms of the ring (planar within 0.025 (1) Å). The geometry of the fused rings compares well with the related spiro[cyclopentane-1,2'(1'H)-quinazolin]-4'(3')-one] (Zhang et al., 2008). The crystal packing is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds forming alternating 8- and 12-membered centrosymmetric rings along [0 1 1] direction.

Related literature top

For the medicinal and biological properities of dihydroquinazolin-4(3H)-one derivatives, see: Deng et al. (2000); Chenard et al. (2000); Bertrand et al. (2001); Welch et al. (2001). For a related structure, see Zhang et al. (2008)

Experimental top

3-Amino-5-methyl-biphenyl-2,4-dicarbonitrile (0.1 mmol) was added to a mixture of cyclohexanone (3 ml) and sodium hydroxide (0.03 mmol). The reagents were heated at 373 K for 1.5 h. The reaction mixture was cooled to room temperature with water (15 ml) and then filtered to give the title compound. The product was recrystallizated from a mixed solvent (ethanol:petroleum ether 1:3) to give pale-yellow crystals.

M.p. 572–573 K. Spectra data: IR (KBr): 3329, 3067, 2934, 2221,1660, 1560, 1403, 697 cm-1; 1H-NMR(DMSO, p.p.m.):1.34–1.85 (10H, m, C5H10), 2.64 (3H, d, J = 1.4 Hz, CH3), 6.42(1H, s, NH), 6.71 (1H, s, ArH), 7.49–7.53 (5H, m, ArH), 8.26 (1H, s, NH); ESI-MS m/z: [M+H]+ 332.1; C21H21N3O:calcd. C 76.11, H 6.39, N 12.68; found C 76.12, H 6.55, N 12.06.

Refinement top

C—H bonds were refined within a riding/rotating model approximation with C—H distances 0.95–0.99 Å, and with Uiso(H)=1.2Ueq(C) or 1.5Ueq(C)(methyl). H atoms of NH group were located in difference Fourrier syntheses and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn with 50% probability ellipsoids
[Figure 2] Fig. 2. The crystal structure of (I) viewed along x axis
5'-Methyl-4'-oxo-7'-phenyl-3',4'-dihydro-1'H-spiro[cyclohexane-1,2'- quinazoline]-8'-carbonitrile top
Crystal data top
C21H21N3OZ = 2
Mr = 331.41F(000) = 352
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1824 (15) ÅCell parameters from 3260 reflections
b = 11.233 (3) Åθ = 3.0–29.1°
c = 11.430 (3) ŵ = 0.08 mm1
α = 101.858 (8)°T = 153 K
β = 93.794 (9)°Block, colorless
γ = 104.606 (9)°0.35 × 0.27 × 0.27 mm
V = 866.6 (4) Å3
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3511 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.024
Graphite monochromatorθmax = 29.1°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1h = 97
phi and ω scansk = 1515
9387 measured reflectionsl = 1515
4521 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
4521 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H21N3Oγ = 104.606 (9)°
Mr = 331.41V = 866.6 (4) Å3
Triclinic, P1Z = 2
a = 7.1824 (15) ÅMo Kα radiation
b = 11.233 (3) ŵ = 0.08 mm1
c = 11.430 (3) ÅT = 153 K
α = 101.858 (8)°0.35 × 0.27 × 0.27 mm
β = 93.794 (9)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3511 reflections with I > 2σ(I)
9387 measured reflectionsRint = 0.024
4521 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
4521 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79935 (15)0.44593 (8)0.06825 (9)0.0303 (2)
N10.97094 (15)0.77778 (10)0.30982 (9)0.0212 (2)
N21.00920 (15)0.63845 (9)0.13608 (9)0.0201 (2)
N30.84792 (18)0.93552 (12)0.57411 (11)0.0336 (3)
C11.26985 (18)0.83252 (12)0.22053 (11)0.0212 (3)
H1A1.32920.78060.26370.025*
H1B1.29550.91770.27420.025*
C21.36630 (19)0.84416 (12)0.10637 (12)0.0250 (3)
H2A1.50440.89200.12930.030*
H2B1.36120.75870.05930.030*
C31.2676 (2)0.91080 (13)0.02799 (13)0.0290 (3)
H3A1.32600.90950.04820.035*
H3B1.28831.00020.07040.035*
C41.0504 (2)0.84591 (13)0.00007 (12)0.0255 (3)
H4A1.02960.75850.04790.031*
H4B0.98810.89200.04880.031*
C50.95716 (18)0.84267 (11)0.11605 (11)0.0214 (3)
H5A0.81680.79980.09580.026*
H5B0.97190.93020.16170.026*
C61.05070 (17)0.77279 (11)0.19470 (10)0.0179 (2)
C70.78933 (17)0.70442 (11)0.31283 (10)0.0185 (2)
C80.68158 (18)0.73621 (11)0.40828 (11)0.0193 (2)
C90.49368 (18)0.66095 (12)0.41115 (11)0.0203 (2)
C100.41853 (19)0.55284 (12)0.31972 (12)0.0242 (3)
H100.29110.50210.32050.029*
C110.52333 (19)0.51594 (12)0.22663 (12)0.0234 (3)
C120.71034 (18)0.59166 (11)0.22332 (10)0.0190 (2)
C130.83918 (18)0.55304 (11)0.13493 (11)0.0203 (2)
C140.77055 (18)0.84636 (12)0.50192 (11)0.0224 (3)
C150.4289 (2)0.39423 (14)0.13529 (14)0.0364 (4)
H15A0.49010.32880.14910.044*
H15B0.44460.40740.05400.044*
H15C0.29050.36740.14340.044*
C160.37353 (18)0.69620 (13)0.50673 (11)0.0228 (3)
C170.3629 (2)0.82022 (14)0.54351 (12)0.0281 (3)
H170.43640.88410.50900.034*
C180.2455 (2)0.85120 (17)0.63036 (13)0.0377 (4)
H180.23940.93610.65530.045*
C190.1375 (2)0.75827 (19)0.68029 (14)0.0431 (4)
H190.05720.77930.73960.052*
C200.1462 (2)0.63526 (18)0.64427 (14)0.0413 (4)
H200.07180.57170.67890.050*
C210.2633 (2)0.60356 (15)0.55756 (13)0.0314 (3)
H210.26810.51840.53290.038*
H2N1.081 (2)0.6152 (15)0.0762 (15)0.034 (4)*
H1N1.012 (3)0.8526 (17)0.3587 (16)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (6)0.0169 (4)0.0291 (5)0.0006 (4)0.0161 (4)0.0058 (4)
N10.0228 (5)0.0177 (5)0.0172 (5)0.0004 (4)0.0073 (4)0.0041 (4)
N20.0229 (5)0.0151 (5)0.0203 (5)0.0039 (4)0.0092 (4)0.0010 (4)
N30.0293 (6)0.0297 (6)0.0331 (6)0.0038 (5)0.0098 (5)0.0087 (5)
C10.0185 (6)0.0199 (6)0.0211 (6)0.0024 (5)0.0036 (5)0.0010 (5)
C20.0197 (6)0.0228 (6)0.0266 (6)0.0001 (5)0.0080 (5)0.0024 (5)
C30.0287 (7)0.0260 (7)0.0285 (7)0.0013 (5)0.0099 (5)0.0064 (5)
C40.0276 (7)0.0241 (6)0.0227 (6)0.0030 (5)0.0041 (5)0.0057 (5)
C50.0204 (6)0.0178 (6)0.0239 (6)0.0038 (5)0.0047 (5)0.0014 (5)
C60.0193 (6)0.0145 (5)0.0170 (5)0.0024 (4)0.0060 (4)0.0012 (4)
C70.0210 (6)0.0158 (5)0.0173 (5)0.0041 (4)0.0050 (4)0.0012 (4)
C80.0218 (6)0.0174 (5)0.0176 (5)0.0055 (5)0.0060 (4)0.0000 (4)
C90.0210 (6)0.0206 (6)0.0204 (6)0.0068 (5)0.0066 (5)0.0046 (5)
C100.0187 (6)0.0232 (6)0.0270 (6)0.0015 (5)0.0062 (5)0.0015 (5)
C110.0230 (6)0.0201 (6)0.0230 (6)0.0029 (5)0.0052 (5)0.0009 (5)
C120.0218 (6)0.0158 (5)0.0172 (5)0.0034 (5)0.0050 (4)0.0000 (4)
C130.0250 (6)0.0167 (5)0.0169 (5)0.0036 (5)0.0059 (5)0.0001 (4)
C140.0220 (6)0.0233 (6)0.0212 (6)0.0067 (5)0.0091 (5)0.0009 (5)
C150.0278 (7)0.0291 (7)0.0365 (8)0.0064 (6)0.0093 (6)0.0113 (6)
C160.0190 (6)0.0307 (7)0.0190 (6)0.0080 (5)0.0051 (5)0.0039 (5)
C170.0264 (7)0.0339 (7)0.0236 (6)0.0112 (6)0.0058 (5)0.0013 (5)
C180.0364 (8)0.0506 (9)0.0276 (7)0.0229 (7)0.0071 (6)0.0024 (7)
C190.0370 (9)0.0760 (13)0.0255 (7)0.0292 (9)0.0149 (6)0.0114 (8)
C200.0318 (8)0.0683 (12)0.0357 (8)0.0184 (8)0.0173 (7)0.0278 (8)
C210.0271 (7)0.0408 (8)0.0325 (7)0.0123 (6)0.0112 (6)0.0158 (6)
Geometric parameters (Å, º) top
O1—C131.2374 (14)C7—C81.4169 (15)
N1—C71.3628 (16)C8—C91.4068 (17)
N1—C61.4658 (15)C8—C141.4323 (17)
N1—H1N0.875 (18)C9—C101.3898 (17)
N2—C131.3468 (16)C9—C161.4881 (16)
N2—C61.4650 (15)C10—C111.3974 (17)
N2—H2N0.920 (17)C10—H100.9500
N3—C141.1453 (17)C11—C121.4045 (17)
C1—C61.5295 (17)C11—C151.5071 (18)
C1—C21.5310 (17)C12—C131.4870 (16)
C1—H1A0.9900C15—H15A0.9800
C1—H1B0.9900C15—H15B0.9800
C2—C31.525 (2)C15—H15C0.9800
C2—H2A0.9900C16—C171.3931 (19)
C2—H2B0.9900C16—C211.3933 (19)
C3—C41.5268 (19)C17—C181.3909 (18)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C18—C191.383 (3)
C4—C51.5288 (17)C18—H180.9500
C4—H4A0.9900C19—C201.377 (3)
C4—H4B0.9900C19—H190.9500
C5—C61.5335 (18)C20—C211.3901 (19)
C5—H5A0.9900C20—H200.9500
C5—H5B0.9900C21—H210.9500
C7—C121.4147 (16)
C7—N1—C6119.48 (10)C12—C7—C8119.21 (11)
C7—N1—H1N119.5 (11)C9—C8—C7120.81 (11)
C6—N1—H1N112.5 (11)C9—C8—C14121.21 (10)
C13—N2—C6123.65 (10)C7—C8—C14117.97 (11)
C13—N2—H2N114.8 (10)C10—C9—C8118.30 (11)
C6—N2—H2N118.2 (10)C10—C9—C16119.88 (11)
C6—C1—C2113.08 (10)C8—C9—C16121.80 (11)
C6—C1—H1A109.0C9—C10—C11122.48 (12)
C2—C1—H1A109.0C9—C10—H10118.8
C6—C1—H1B109.0C11—C10—H10118.8
C2—C1—H1B109.0C10—C11—C12119.18 (11)
H1A—C1—H1B107.8C10—C11—C15117.49 (12)
C3—C2—C1111.97 (11)C12—C11—C15123.33 (11)
C3—C2—H2A109.2C11—C12—C7119.93 (10)
C1—C2—H2A109.2C11—C12—C13122.62 (10)
C3—C2—H2B109.2C7—C12—C13117.22 (11)
C1—C2—H2B109.2O1—C13—N2121.02 (11)
H2A—C2—H2B107.9O1—C13—C12122.42 (11)
C2—C3—C4110.60 (11)N2—C13—C12116.43 (10)
C2—C3—H3A109.5N3—C14—C8177.19 (13)
C4—C3—H3A109.5C11—C15—H15A109.5
C2—C3—H3B109.5C11—C15—H15B109.5
C4—C3—H3B109.5H15A—C15—H15B109.5
H3A—C3—H3B108.1C11—C15—H15C109.5
C3—C4—C5110.76 (11)H15A—C15—H15C109.5
C3—C4—H4A109.5H15B—C15—H15C109.5
C5—C4—H4A109.5C17—C16—C21118.90 (12)
C3—C4—H4B109.5C17—C16—C9121.09 (12)
C5—C4—H4B109.5C21—C16—C9119.96 (12)
H4A—C4—H4B108.1C18—C17—C16120.52 (14)
C4—C5—C6111.17 (10)C18—C17—H17119.7
C4—C5—H5A109.4C16—C17—H17119.7
C6—C5—H5A109.4C19—C18—C17119.88 (15)
C4—C5—H5B109.4C19—C18—H18120.1
C6—C5—H5B109.4C17—C18—H18120.1
H5A—C5—H5B108.0C20—C19—C18120.13 (13)
N2—C6—N1106.03 (9)C20—C19—H19119.9
N2—C6—C1110.11 (9)C18—C19—H19119.9
N1—C6—C1108.50 (10)C19—C20—C21120.33 (15)
N2—C6—C5110.77 (10)C19—C20—H20119.8
N1—C6—C5111.09 (10)C21—C20—H20119.8
C1—C6—C5110.24 (10)C20—C21—C16120.24 (15)
N1—C7—C12119.96 (10)C20—C21—H21119.9
N1—C7—C8120.76 (10)C16—C21—H21119.9
C6—C1—C2—C352.46 (14)C9—C10—C11—C15177.78 (13)
C1—C2—C3—C453.99 (14)C10—C11—C12—C70.69 (19)
C2—C3—C4—C557.35 (14)C15—C11—C12—C7179.68 (13)
C3—C4—C5—C658.74 (14)C10—C11—C12—C13173.71 (12)
C13—N2—C6—N141.95 (15)C15—C11—C12—C135.3 (2)
C13—N2—C6—C1159.13 (11)N1—C7—C12—C11179.85 (12)
C13—N2—C6—C578.67 (14)C8—C7—C12—C113.05 (18)
C7—N1—C6—N245.90 (14)N1—C7—C12—C135.16 (17)
C7—N1—C6—C1164.16 (10)C8—C7—C12—C13171.65 (11)
C7—N1—C6—C574.51 (14)C6—N2—C13—O1168.01 (12)
C2—C1—C6—N269.94 (13)C6—N2—C13—C1216.04 (17)
C2—C1—C6—N1174.42 (10)C11—C12—C13—O18.7 (2)
C2—C1—C6—C552.57 (13)C7—C12—C13—O1165.83 (12)
C4—C5—C6—N266.58 (13)C11—C12—C13—N2175.40 (12)
C4—C5—C6—N1175.86 (10)C7—C12—C13—N210.05 (17)
C4—C5—C6—C155.55 (13)C9—C8—C14—N3174 (3)
C6—N1—C7—C1225.46 (17)C7—C8—C14—N36 (3)
C6—N1—C7—C8157.79 (11)C10—C9—C16—C17134.73 (14)
N1—C7—C8—C9179.65 (11)C8—C9—C16—C1743.49 (19)
C12—C7—C8—C93.57 (18)C10—C9—C16—C2142.70 (18)
N1—C7—C8—C140.92 (18)C8—C9—C16—C21139.07 (14)
C12—C7—C8—C14175.86 (11)C21—C16—C17—C180.6 (2)
C7—C8—C9—C101.68 (18)C9—C16—C17—C18178.05 (13)
C14—C8—C9—C10177.73 (12)C16—C17—C18—C190.3 (2)
C7—C8—C9—C16176.57 (12)C17—C18—C19—C200.1 (2)
C14—C8—C9—C164.01 (19)C18—C19—C20—C210.0 (3)
C8—C9—C10—C110.8 (2)C19—C20—C21—C160.3 (2)
C16—C9—C10—C11179.05 (12)C17—C16—C21—C200.6 (2)
C9—C10—C11—C121.3 (2)C9—C16—C21—C20178.06 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Oli0.920 (17)1.998 (14)2.9010 (17)171.68 (14)
N1—H1N···N3ii0.875 (18)2.281 (14)3.1188 (19)160.24 (15)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H21N3O
Mr331.41
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.1824 (15), 11.233 (3), 11.430 (3)
α, β, γ (°)101.858 (8), 93.794 (9), 104.606 (9)
V3)866.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.27 × 0.27
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9387, 4521, 3511
Rint0.024
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.00
No. of reflections4521
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Oli0.920 (17)1.998 (14)2.9010 (17)171.68 (14)
N1—H1N···N3ii0.875 (18)2.281 (14)3.1188 (19)160.24 (15)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1.
 

Acknowledgements

The authors thank Beijing Institute of Technology for the X-ray diffraction analysis.

References

First citationBertrand, L. C., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. J. (2001). J. Med. Chem. 44, 1710–1717.  Web of Science PubMed Google Scholar
First citationChenard, B. L., Menniti, F. S., Pagnozzi, M. J., Shenk, K. D., Ewing, F. E. & Welch, W. M. (2000). Bioorg. Med. Chem. Lett. 10, 1203–1205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, Y. H., Yang, R. S. & Yang, Y. (2000). Chin. Pharm. Sci. 9, 116–118.  CAS Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelch, W. M., Ewing, F. E., Huang, J., Menniti, F. S., Pagnozzi, M. J., Kelly, K., Seymour, P. A., Guanowsky, V., Guhan, S., Guinn, M. R., Critchett, D., Lazzaro, J., Ganong, A. H., Devries, K. M., Staigers, T. L. & Chenard, B. L. (2001). Bioorg. Med. Chem. Lett. 11, 177–181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L., Li, J., Shi, D. & Chen, J. (2008). Acta Cryst. E64, o449.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds