organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(2-Hy­dr­oxy­phen­yl)ethyl­­idene]-2-phen­­oxy­acetohydrazide–2,2′-(1,1′-azinodi­ethyl­­idyne)diphenol (2/1)

aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: yrtang62@gmail.com

(Received 2 June 2011; accepted 19 June 2011; online 25 June 2011)

The formula unit of the title mol­ecular complex, 2C16H16N2O3·C16H16N2O2, consists of two (E)-N′-[1-(2-hy­droxy­phen­yl)ethyl­idene]-2-phen­oxy­acetohydrazide mol­ecules and one mol­ecule of 2,2′-(1,1′-azinodiethyl­idyne)diphenol, with the latter located on a crystallographic inversion center. The acetohydrazide mol­ecules are linked into a supermolecular chain along the c axis by inter­molecular N—H⋯O hydrogen bonds. There are also intra­molecular O—H⋯N hydrogen bonds in both the acetohydrazide and diphenol mol­ecules.

Related literature

For chemically related applications arising from Schiff base compounds, see: Guo et al. (2010[Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.]); Yu et al. (2010[Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139-144.]). For related structures, see: Lu et al. (1993[Lu, Z., White, C., Rheingold, A.-L. & Crabtree, R.-H. (1993). Inorg. Chem. 32, 3991-3994.]); Matoga et al. (2007[Matoga, D., Szklarzewicz, J., Stadnicka, K. & Shongwe, M.-S. (2007). Inorg. Chem. 46, 9042-9044.]); Tai et al. (2008[Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.]); Tan (2009[Tan, J. (2009). Acta Cryst. E65, o1474.]); Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045-o2046.]).

[Scheme 1]

Experimental

Crystal data
  • 2C16H16N2O3·C16H16N2O2

  • Mr = 836.92

  • Monoclinic, P 21 /c

  • a = 12.416 (5) Å

  • b = 19.322 (6) Å

  • c = 9.225 (4) Å

  • β = 106.156 (16)°

  • V = 2125.8 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.988

  • 20592 measured reflections

  • 4828 independent reflections

  • 2586 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.156

  • S = 1.03

  • 4828 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.14 2.860 (3) 141
O1—H01A⋯N1 0.96 1.63 2.530 (3) 154
O4—H04A⋯N3 1.06 1.58 2.542 (3) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Among the richness of coordination chemistry, acylhydrazone ligands (Yu et al., 2010) have attracted an intense interest due to their potential for magnetochemistry (Guo et al., 2010). Recently, a large number of acylhydrazone derivatives have been prepared (Matoga et al., 2007; Tan, 2009). As a contribution to this field, the isolation and the structure of the title 2/1 co-crystal are presented here .

The molecular structure of 2C16H16N2O3.C16H16N2O2, together with the atom-numbering scheme, is illustrated in Fig.1. Selected bond lengths and angles are given in Table 1. The asymmetric unit of the title co-crystal comprises two (E)-N'-(1-(2-hydroxyphenyl)ethylidene)-2-phenoxyacetohydrazide (A) molecules and a molecule of 2,2'-(1,1'-Azinodiethylidyne)diphenol (B), with no proton transfer. The 2,2'-(1,1'-Azinodiethylidyne)diphenol molecule (B) has been reported previously (Tai et al., 2008). The N3—N3A (1.394 (4) Å) distance is similar to the corresponding distances observed for other compounds (Lu et al., 1993). In the molecule A, the N1—N2(hydrazine) bond distance of 1.375 (2) Å is shorter than the corresponding N—N value of 1.382 (2) Å in a related compound (Wen et al., 2005). The dihedral angle between both aromatic rings for molecule A is 85.76 (2)°, and the molecules A are linked into supermolecule chain along the c axis by intermolecular N2—H2A···O2I hydrogen bonds [symmetry code: (I) x, 1/2 - y, -1/2 + z] (Fig. 2). In addition, there are intramolecular O1—H01A···N1 and O4—H04A···N3 hydrogen bonds in molecules A and B respectively. Stacking interactions between A and B are within van der Waals contacts (Fig.3).

Related literature top

For chemically related applications arising from Schiff base compounds, see: Guo et al. (2010);Yu et al. (2010). For related structures, see: Lu et al. (1993); Matoga et al. (2007); Tai et al. (2008); Tan (2009); Wen et al. (2005).

Experimental top

A solution of 2,2'-(1,1'-azinodiethylidyne)diphenol (0.2 mmol) in 10 ml of EtOH was added to a solution of (E)-N'-(1-(2-hydroxyphenyl)ethylidene) -2-phenoxyacetohydrazide (0.2 mmol) in 10 ml of the same solvent, upon which the solution was refluxed for 1 h. Then the yellow solution was obtained after filtering. Two week later, yellow crystals of the title compound were isolated from the solution.

Refinement top

In the title compound, H atoms bonded to C/N atoms were positioned geometrically and refined using a riding and rotating (AFIX 137 for methyl hydrogens) model, with C—H = 0.93—0.97 Å, N—H = 0.86 Å, and Uĩso(H) = 1.2/1.5 Ueq(C), Uĩso(H) = 1.2 Ueq(N). H atoms bonded to phenolic OH groups were located from difference Fourier series and then allowed to ride on their parent O atoms (AFIX 3) with Uĩso(H) refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title organic compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain structure of molecules A. Hydrogen bonds are shown as green dashed lines [symmetry code: (I) x, 1/2 - y, -1/2 + z].
[Figure 3] Fig. 3. Packing diagram of molecules A (blue bonds) and B (orange bands).
(E)-N'-[1-(2-Hydroxyphenyl)ethylidene]-2-phenoxyacetohydrazide– 2,2'-(1,1'-azinodiethylidyne)diphenol (2/1) top
Crystal data top
C48H48N6O8F(000) = 884
Mr = 836.92Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20942 reflections
a = 12.416 (5) Åθ = 3.1–27.5°
b = 19.322 (6) ŵ = 0.09 mm1
c = 9.225 (4) ÅT = 293 K
β = 106.156 (16)°Block, yellow
V = 2125.8 (15) Å30.18 × 0.15 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4828 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1615
Tmin = 0.984, Tmax = 0.988k = 2422
20592 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.318P]
where P = (Fo2 + 2Fc2)/3
4828 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C48H48N6O8V = 2125.8 (15) Å3
Mr = 836.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.416 (5) ŵ = 0.09 mm1
b = 19.322 (6) ÅT = 293 K
c = 9.225 (4) Å0.18 × 0.15 × 0.13 mm
β = 106.156 (16)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2586 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.988Rint = 0.072
20592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4828 reflectionsΔρmin = 0.19 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6516 (2)0.45868 (12)0.6050 (3)0.0530 (6)
C20.62855 (18)0.46636 (10)0.4481 (3)0.0436 (5)
C30.6718 (2)0.52452 (12)0.3947 (3)0.0559 (6)
H3A0.65750.53080.29110.067*
C40.7351 (2)0.57283 (12)0.4910 (3)0.0676 (8)
H4A0.76400.61090.45270.081*
C50.7553 (2)0.56461 (13)0.6431 (3)0.0714 (8)
H5A0.79750.59750.70840.086*
C60.7140 (2)0.50842 (13)0.7003 (3)0.0702 (8)
H6A0.72800.50360.80420.084*
C70.56243 (18)0.41504 (11)0.3420 (2)0.0434 (5)
C80.45215 (18)0.25229 (11)0.3911 (3)0.0435 (5)
C90.3965 (2)0.19347 (11)0.2898 (3)0.0528 (6)
H9A0.34380.21220.20020.063*
H9B0.45290.16760.25810.063*
C100.24130 (19)0.17197 (11)0.3878 (2)0.0452 (6)
C110.1875 (2)0.12496 (13)0.4551 (3)0.0589 (7)
H11A0.21820.08120.48100.071*
C120.0881 (2)0.14261 (17)0.4840 (3)0.0728 (8)
H12A0.05200.11080.53000.087*
C130.0425 (2)0.20653 (18)0.4457 (4)0.0790 (9)
H13A0.02460.21850.46560.095*
C140.0958 (2)0.25275 (15)0.3778 (4)0.0799 (9)
H14A0.06460.29630.35120.096*
C150.1955 (2)0.23583 (13)0.3482 (3)0.0649 (7)
H15A0.23120.26760.30160.078*
C160.5283 (2)0.42865 (13)0.1766 (3)0.0602 (7)
H16A0.47070.39650.12730.090*
H16B0.59190.42320.13780.090*
H16C0.50010.47500.15800.090*
C170.8581 (2)0.08891 (13)0.6727 (3)0.0625 (7)
C180.86204 (19)0.11226 (12)0.8180 (3)0.0542 (6)
C190.8037 (2)0.17294 (14)0.8276 (3)0.0675 (8)
H19A0.80550.18990.92260.081*
C200.7439 (2)0.20858 (16)0.7028 (4)0.0774 (8)
H20A0.70610.24900.71330.093*
C210.7405 (2)0.18413 (16)0.5622 (4)0.0748 (8)
H21A0.69940.20780.47700.090*
C220.7968 (3)0.12537 (15)0.5465 (3)0.0729 (8)
H22A0.79430.10950.45050.088*
C230.9249 (2)0.07561 (13)0.9551 (3)0.0566 (7)
C240.9348 (3)0.10499 (16)1.1066 (3)0.0816 (9)
H24A1.01230.10581.16390.122*
H24B0.89310.07691.15780.122*
H24C0.90550.15131.09630.122*
N10.53908 (15)0.35937 (9)0.4040 (2)0.0459 (5)
N20.47974 (15)0.30681 (9)0.3170 (2)0.0471 (5)
H2A0.46110.30860.22000.057*
N30.97077 (17)0.01712 (11)0.9343 (2)0.0608 (6)
O10.61634 (17)0.40377 (9)0.67081 (19)0.0729 (6)
H01A0.58210.37560.58440.107 (11)*
O20.47137 (14)0.25029 (7)0.52807 (18)0.0522 (4)
O30.33937 (14)0.14856 (7)0.36327 (18)0.0517 (4)
O40.91241 (19)0.03129 (10)0.6491 (2)0.0892 (7)
H04A0.92610.00870.75780.175 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0671 (16)0.0455 (13)0.0432 (15)0.0023 (12)0.0097 (12)0.0008 (11)
C20.0467 (13)0.0408 (12)0.0417 (14)0.0041 (10)0.0097 (11)0.0026 (10)
C30.0655 (16)0.0484 (14)0.0511 (16)0.0014 (13)0.0115 (13)0.0074 (12)
C40.0721 (18)0.0443 (14)0.077 (2)0.0063 (13)0.0051 (15)0.0030 (14)
C50.082 (2)0.0483 (15)0.067 (2)0.0021 (14)0.0082 (16)0.0069 (13)
C60.095 (2)0.0567 (16)0.0462 (17)0.0006 (15)0.0006 (15)0.0079 (12)
C70.0485 (13)0.0463 (12)0.0365 (13)0.0032 (11)0.0135 (10)0.0031 (10)
C80.0501 (13)0.0475 (13)0.0368 (14)0.0013 (11)0.0184 (11)0.0025 (10)
C90.0664 (15)0.0532 (14)0.0450 (15)0.0109 (12)0.0257 (12)0.0062 (11)
C100.0502 (14)0.0469 (13)0.0371 (13)0.0058 (11)0.0099 (11)0.0008 (10)
C110.0601 (16)0.0634 (15)0.0513 (16)0.0061 (13)0.0122 (13)0.0148 (12)
C120.0552 (17)0.103 (2)0.061 (2)0.0151 (17)0.0167 (14)0.0130 (16)
C130.0546 (17)0.102 (2)0.081 (2)0.0014 (18)0.0205 (16)0.0114 (19)
C140.0607 (18)0.0661 (18)0.111 (3)0.0056 (15)0.0202 (18)0.0032 (17)
C150.0617 (17)0.0495 (15)0.085 (2)0.0031 (13)0.0225 (15)0.0097 (13)
C160.0799 (18)0.0588 (15)0.0392 (15)0.0051 (14)0.0122 (13)0.0047 (11)
C170.0699 (17)0.0546 (15)0.0647 (19)0.0133 (14)0.0217 (15)0.0017 (14)
C180.0477 (14)0.0530 (14)0.0611 (18)0.0111 (12)0.0138 (12)0.0037 (12)
C190.0584 (17)0.0710 (17)0.070 (2)0.0003 (14)0.0131 (15)0.0035 (15)
C200.0686 (19)0.0786 (19)0.083 (2)0.0091 (16)0.0178 (17)0.0099 (18)
C210.0653 (18)0.081 (2)0.074 (2)0.0061 (16)0.0125 (16)0.0181 (17)
C220.082 (2)0.0755 (19)0.060 (2)0.0186 (17)0.0184 (16)0.0027 (15)
C230.0489 (14)0.0579 (15)0.0606 (18)0.0113 (12)0.0111 (13)0.0047 (13)
C240.092 (2)0.085 (2)0.060 (2)0.0082 (17)0.0077 (16)0.0106 (16)
N10.0550 (12)0.0468 (11)0.0351 (11)0.0057 (9)0.0112 (9)0.0037 (9)
N20.0601 (12)0.0511 (11)0.0301 (11)0.0107 (10)0.0125 (9)0.0029 (8)
N30.0591 (13)0.0617 (14)0.0585 (15)0.0062 (11)0.0112 (11)0.0014 (10)
O10.1084 (15)0.0686 (11)0.0381 (11)0.0196 (11)0.0143 (10)0.0011 (9)
O20.0677 (11)0.0575 (10)0.0346 (10)0.0049 (8)0.0193 (8)0.0016 (7)
O30.0626 (10)0.0432 (8)0.0565 (11)0.0034 (8)0.0284 (9)0.0022 (7)
O40.1350 (19)0.0682 (12)0.0699 (15)0.0083 (13)0.0374 (13)0.0032 (11)
Geometric parameters (Å, º) top
C1—O11.354 (3)C14—C151.379 (4)
C1—C61.385 (3)C14—H14A0.9300
C1—C21.404 (3)C15—H15A0.9300
C2—C31.393 (3)C16—H16A0.9600
C2—C71.472 (3)C16—H16B0.9600
C3—C41.375 (3)C16—H16C0.9600
C3—H3A0.9300C17—O41.351 (3)
C4—C51.364 (4)C17—C221.391 (4)
C4—H4A0.9300C17—C181.402 (4)
C5—C61.368 (4)C18—C191.394 (3)
C5—H5A0.9300C18—C231.471 (3)
C6—H6A0.9300C19—C201.370 (4)
C7—N11.289 (3)C19—H19A0.9300
C7—C161.489 (3)C20—C211.369 (4)
C8—O21.219 (3)C20—H20A0.9300
C8—N21.351 (3)C21—C221.362 (4)
C8—C91.511 (3)C21—H21A0.9300
C9—O31.408 (3)C22—H22A0.9300
C9—H9A0.9700C23—N31.303 (3)
C9—H9B0.9700C23—C241.481 (4)
C10—C151.365 (3)C24—H24A0.9600
C10—C111.373 (3)C24—H24B0.9600
C10—O31.376 (3)C24—H24C0.9600
C11—C121.376 (4)N1—N21.375 (2)
C11—H11A0.9300N2—H2A0.8600
C12—C131.364 (4)N3—N3i1.394 (4)
C12—H12A0.9300O1—H01A0.9610
C13—C141.364 (4)O4—H04A1.0635
C13—H13A0.9300
O1—C1—C6117.0 (2)C10—C15—C14119.4 (3)
O1—C1—C2123.1 (2)C10—C15—H15A120.3
C6—C1—C2119.9 (2)C14—C15—H15A120.3
C3—C2—C1117.5 (2)C7—C16—H16A109.5
C3—C2—C7120.4 (2)C7—C16—H16B109.5
C1—C2—C7122.0 (2)H16A—C16—H16B109.5
C4—C3—C2121.8 (2)C7—C16—H16C109.5
C4—C3—H3A119.1H16A—C16—H16C109.5
C2—C3—H3A119.1H16B—C16—H16C109.5
C5—C4—C3119.6 (3)O4—C17—C22117.6 (3)
C5—C4—H4A120.2O4—C17—C18122.2 (3)
C3—C4—H4A120.2C22—C17—C18120.2 (3)
C4—C5—C6120.5 (2)C19—C18—C17116.8 (2)
C4—C5—H5A119.7C19—C18—C23120.7 (2)
C6—C5—H5A119.7C17—C18—C23122.5 (2)
C5—C6—C1120.7 (3)C20—C19—C18122.6 (3)
C5—C6—H6A119.7C20—C19—H19A118.7
C1—C6—H6A119.7C18—C19—H19A118.7
N1—C7—C2114.8 (2)C21—C20—C19119.3 (3)
N1—C7—C16124.6 (2)C21—C20—H20A120.3
C2—C7—C16120.62 (19)C19—C20—H20A120.3
O2—C8—N2123.0 (2)C22—C21—C20120.5 (3)
O2—C8—C9122.8 (2)C22—C21—H21A119.8
N2—C8—C9114.2 (2)C20—C21—H21A119.8
O3—C9—C8111.74 (19)C21—C22—C17120.7 (3)
O3—C9—H9A109.3C21—C22—H22A119.7
C8—C9—H9A109.3C17—C22—H22A119.7
O3—C9—H9B109.3N3—C23—C18116.1 (2)
C8—C9—H9B109.3N3—C23—C24123.1 (2)
H9A—C9—H9B107.9C18—C23—C24120.8 (2)
C15—C10—C11120.0 (2)C23—C24—H24A109.5
C15—C10—O3125.1 (2)C23—C24—H24B109.5
C11—C10—O3114.9 (2)H24A—C24—H24B109.5
C10—C11—C12119.9 (2)C23—C24—H24C109.5
C10—C11—H11A120.0H24A—C24—H24C109.5
C12—C11—H11A120.0H24B—C24—H24C109.5
C13—C12—C11120.3 (3)C7—N1—N2120.49 (19)
C13—C12—H12A119.9C8—N2—N1116.77 (19)
C11—C12—H12A119.9C8—N2—H2A121.6
C14—C13—C12119.5 (3)N1—N2—H2A121.6
C14—C13—H13A120.3C23—N3—N3i115.2 (3)
C12—C13—H13A120.3C1—O1—H01A101.2
C13—C14—C15120.9 (3)C10—O3—C9117.65 (17)
C13—C14—H14A119.6C17—O4—H04A98.1
C15—C14—H14A119.6
O1—C1—C2—C3178.5 (2)O4—C17—C18—C19179.1 (2)
C6—C1—C2—C30.8 (3)C22—C17—C18—C190.8 (4)
O1—C1—C2—C70.8 (4)O4—C17—C18—C230.4 (4)
C6—C1—C2—C7179.9 (2)C22—C17—C18—C23179.7 (2)
C1—C2—C3—C40.2 (4)C17—C18—C19—C200.6 (4)
C7—C2—C3—C4179.1 (2)C23—C18—C19—C20179.8 (2)
C2—C3—C4—C50.9 (4)C18—C19—C20—C210.1 (4)
C3—C4—C5—C60.6 (4)C19—C20—C21—C220.7 (4)
C4—C5—C6—C10.4 (4)C20—C21—C22—C170.5 (4)
O1—C1—C6—C5178.3 (3)O4—C17—C22—C21179.7 (3)
C2—C1—C6—C51.1 (4)C18—C17—C22—C210.3 (4)
C3—C2—C7—N1171.5 (2)C19—C18—C23—N3175.8 (2)
C1—C2—C7—N17.7 (3)C17—C18—C23—N34.7 (3)
C3—C2—C7—C167.9 (3)C19—C18—C23—C244.6 (4)
C1—C2—C7—C16172.8 (2)C17—C18—C23—C24174.9 (2)
O2—C8—C9—O318.8 (3)C2—C7—N1—N2178.66 (18)
N2—C8—C9—O3161.82 (19)C16—C7—N1—N20.7 (3)
C15—C10—C11—C120.8 (4)O2—C8—N2—N14.7 (3)
O3—C10—C11—C12179.5 (2)C9—C8—N2—N1174.67 (19)
C10—C11—C12—C130.3 (4)C7—N1—N2—C8175.6 (2)
C11—C12—C13—C140.2 (5)C18—C23—N3—N3i179.5 (2)
C12—C13—C14—C150.3 (5)C24—C23—N3—N3i0.9 (4)
C11—C10—C15—C140.7 (4)C15—C10—O3—C90.9 (3)
O3—C10—C15—C14179.3 (2)C11—C10—O3—C9177.8 (2)
C13—C14—C15—C100.2 (5)C8—C9—O3—C1072.5 (3)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.862.142.860 (3)141
O1—H01A···N10.961.632.530 (3)154
O4—H04A···N31.061.582.542 (3)148
Symmetry code: (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC48H48N6O8
Mr836.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.416 (5), 19.322 (6), 9.225 (4)
β (°) 106.156 (16)
V3)2125.8 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.984, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20592, 4828, 2586
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.156, 1.03
No. of reflections4828
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.142.860 (3)141
O1—H01A···N10.961.632.530 (3)154
O4—H04A···N31.061.582.542 (3)148
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The author thanks Changchun Normal University for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLu, Z., White, C., Rheingold, A.-L. & Crabtree, R.-H. (1993). Inorg. Chem. 32, 3991–3994.  CrossRef CAS Google Scholar
First citationMatoga, D., Szklarzewicz, J., Stadnicka, K. & Shongwe, M.-S. (2007). Inorg. Chem. 46, 9042–9044.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, J. (2009). Acta Cryst. E65, o1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045–o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139–144.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds