metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(di­phenyl­phosphan­yl­oxy)phenyl-κ3P,C1,P′]hydroxidonickel(II)

aDépartement de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: zargarian.davit@umontreal.ca

(Received 3 March 2011; accepted 15 April 2011; online 18 June 2011)

The mol­ecule of the title complex, [Ni(C30H23O2P2)(OH)], adopts a slightly distorted square-planar geometry around NiII defined by the coordination of the two mutually trans P atoms, the Csp2 atom of the pincer ligand and the O atom of the hydroxide ligand. The largest distortions from ideal geometry are reflected in the smaller than usual P—Ni—P [163.95 (3)°] and P—Ni—C [82.06 (6)°] angles. The OH ligand does not form intra- or inter­molecular hydrogen bonds.

Related literature

For general background to pincer complexes and their applications, see: Leis et al. (2008[Leis, W., Mayer, H. A. & Kaska, W. C. (2008). Coord. Chem. Rev. 252, 1787-1797.]); Dijkstra et al. (2001[Dijkstra, H. P., Meijer, M. D., Patel, J., Kreiter, R., van Klink, G. P. M., Lutz, M., Spek, A. L., Canty, A. J. & van Koten, G. (2001). Organometallics, 20, 3159-3168.]); Naghipour et al. (2007[Naghipour, A. J., Sabounchei, S., Morales-Morales, D., Canseco-González, D. & Jensen, C. M. (2007). Polyhedron, 26, 1445-1448.]); van der Boom & Milstein (2003[Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]); Nishiyama (2007[Nishiyama, H. (2007). Chem. Soc. Rev. 36, 1133-1141.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C30H23O2P2)(OH)]

  • Mr = 553.14

  • Monoclinic, P 21 /c

  • a = 15.0626 (7) Å

  • b = 9.8901 (5) Å

  • c = 17.3820 (8) Å

  • β = 90.150 (2)°

  • V = 2589.4 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.49 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.391, Tmax = 0.819

  • 34083 measured reflections

  • 5038 independent reflections

  • 4673 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.143

  • S = 1.07

  • 5038 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. University of Montréal, QC, Canada.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pincer-type complexes have attracted much attention recently due to their promise as functional materials and versatile catalysts (Leis et al., 2008; Dijkstra et al., 2001; Naghipour et al., 2007; van der Boom & Milstein, 2003; Nishiyama, 2007). Herein we report the crystal structure and the synthesis of κP,κC,κP-{m-(Ph2PO)2C6H3}Ni(OH). The formation of the title complex was unexpected in that the original goal of the synthesis was to prepare the corresponding methyl derivative {m-(Ph2PO)2C6H3}Ni(CH3). Reaction of the trifluoromethanesulfonate precursor with the Grignard reagent MeMgCl did result in the generation of the target methyl derivative, as ascertained by 31P and 1H NMR spectra of the reaction mixture. It appears, however, that the target methyl complex is not sufficiently stable toward hydrolysis, reacting with residual water during the work-up process to give the observed hydroxo compound. As shown in Fig. 1, the NiII ion in the title complex exists in the center of a square plane defined by the donor atoms P1 and P2, the C atom of the aromatic moiety of the pincer ligand, and the O atom of the hydroxyl ligand. A slight tetrahedral distortion is evident in the solid state of this complex despite the rigid meridional coordination of the tridentate pincer-type ligand, but such distortions are commonly found in this family of NiII pincer complexes (van der Boom et al., 2003). Perhaps the most surprising aspect of this structure is the absence of inter- or intramolecular hydrogen-bonding type interactions involving the hydroxy group: the closest O—H distance observed in this structure involved a hydrogen of one of the phenyl substituents, but the distance for this interaction is too long to represent a strong interaction (3.080 Å).

Related literature top

For general background to pincer complexes and their applications, see: Leis et al. (2008); Dijkstra et al. (2001); Naghipour et al. (2007); van der Boom & Milstein (2003); Nishiyama (2007).

Experimental top

Transfer of MeMgCl (0.12 ml of a 1.8 M solution in THF, 0.22 mmol) to a stirred solution of {m-(Ph2PO)2C6H3}Ni(OSO2CF3) (50 mg, 0.073 mmol) Br in dry and degassed toluene (1.5 ml) caused an immediate color change from deep-yellow to red. The resulting mixture was stirred under an inert atmosphere of nitrogen for 5 min and was then filtered through cellulose. Evaporation of the solvent gave an orange solid. Single crystals suitable for X-ray diffraction studies were grown by slowly diffusing hexane into a saturated toluene solution. Evaporation of the filtrate gave a red–orange solid, which was crystallized by slow diffusion of hexane into a saturated toluene solution of the crude solid.

Refinement top

All H atoms attached to C atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C). The H atom attached to the O atom was positioned geometrically and refined as riding using the AFIX 147 command in SHELXL (Sheldrick, 2008), with O—H = 0.84 Å, and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[2,6-Bis(diphenylphosphanyloxy)phenyl- κ3P,C1,P']hydroxidonickel(II) top
Crystal data top
[Ni(C30H23O2P2)(OH)]F(000) = 1144
Mr = 553.14Dx = 1.419 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 21489 reflections
a = 15.0626 (7) Åθ = 2.9–72.1°
b = 9.8901 (5) ŵ = 2.49 mm1
c = 17.3820 (8) ÅT = 150 K
β = 90.150 (2)°Block, yellow
V = 2589.4 (2) Å30.22 × 0.18 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 6000
diffractometer
5038 independent reflections
Radiation source: X-ray Sealed Tube4673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 5.5 pixels mm-1θmax = 72.5°, θmin = 2.9°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.391, Tmax = 0.819l = 2021
34083 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.1015P)2 + 1.2898P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5038 reflectionsΔρmax = 0.85 e Å3
327 parametersΔρmin = 0.91 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00117 (15)
Crystal data top
[Ni(C30H23O2P2)(OH)]V = 2589.4 (2) Å3
Mr = 553.14Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.0626 (7) ŵ = 2.49 mm1
b = 9.8901 (5) ÅT = 150 K
c = 17.3820 (8) Å0.22 × 0.18 × 0.08 mm
β = 90.150 (2)°
Data collection top
Bruker SMART 6000
diffractometer
5038 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4673 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.819Rint = 0.055
34083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.07Δρmax = 0.85 e Å3
5038 reflectionsΔρmin = 0.91 e Å3
327 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2K charge-coupled device (CCD) area detector, using the program SMART and normal focus sealed-tube source graphite monochromated Cu Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 × 512 pixel mode, utilizing 4 × 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8 Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.72577 (2)0.61980 (3)0.137780 (17)0.02246 (9)
P10.61373 (3)0.53390 (5)0.19486 (3)0.02210 (11)
P20.84918 (3)0.64790 (5)0.07885 (3)0.02573 (12)
O30.69443 (7)0.82471 (12)0.15693 (7)0.0184 (2)
H30.63950.83620.15140.028*
O10.62241 (9)0.36749 (14)0.18742 (8)0.0267 (3)
O20.88015 (9)0.49707 (15)0.04727 (9)0.0325 (3)
C60.82528 (13)0.3945 (2)0.07568 (11)0.0275 (4)
C10.75170 (13)0.43502 (19)0.11861 (10)0.0240 (4)
C250.41295 (16)0.6332 (2)0.04853 (12)0.0356 (5)
H250.40790.66350.00320.043*
C210.50399 (12)0.56683 (19)0.15661 (10)0.0245 (4)
C40.78711 (15)0.1620 (2)0.08622 (13)0.0341 (5)
H40.79910.06970.07510.041*
C20.69701 (12)0.3306 (2)0.14473 (10)0.0246 (4)
C260.49661 (14)0.6133 (2)0.08088 (11)0.0298 (4)
H260.54850.63120.05160.036*
C410.85441 (12)0.7455 (2)0.00910 (11)0.0276 (4)
C310.94444 (13)0.6995 (2)0.13583 (11)0.0302 (4)
C120.63061 (17)0.4607 (2)0.34952 (13)0.0380 (5)
H120.65360.37690.33180.046*
C220.42718 (13)0.5421 (2)0.19899 (12)0.0291 (4)
H220.43180.51050.25050.035*
C240.33733 (15)0.6092 (2)0.09109 (13)0.0350 (5)
H240.28050.62420.06890.042*
C460.80196 (17)0.7023 (3)0.07062 (14)0.0436 (6)
H460.76670.62320.06550.052*
C30.71235 (14)0.1949 (2)0.12899 (11)0.0299 (4)
H3A0.67300.12690.14690.036*
C110.60175 (13)0.5572 (2)0.29735 (11)0.0259 (4)
C230.34437 (14)0.5631 (2)0.16656 (13)0.0338 (5)
H230.29230.54610.19580.041*
C50.84496 (14)0.2614 (2)0.05923 (12)0.0333 (4)
H50.89630.23810.03050.040*
C420.90239 (16)0.8642 (2)0.01678 (13)0.0398 (5)
H420.93750.89600.02490.048*
C360.93527 (16)0.7970 (3)0.19298 (14)0.0449 (6)
H360.87960.84000.20050.054*
C140.5917 (2)0.6086 (3)0.45421 (13)0.0482 (6)
H140.58760.62550.50790.058*
C160.56812 (15)0.6804 (2)0.32355 (11)0.0337 (5)
H160.54850.74660.28780.040*
C351.00701 (19)0.8316 (4)0.23897 (15)0.0560 (7)
H351.00020.89820.27790.067*
C150.56337 (17)0.7060 (3)0.40208 (12)0.0427 (6)
H150.54080.78990.42000.051*
C440.85013 (17)0.8902 (3)0.14670 (13)0.0426 (6)
H440.85040.93820.19400.051*
C341.08770 (17)0.7703 (3)0.22867 (14)0.0530 (7)
H341.13650.79280.26100.064*
C321.02697 (16)0.6403 (3)0.12424 (16)0.0464 (6)
H321.03490.57580.08430.056*
C450.80097 (18)0.7745 (3)0.13952 (13)0.0477 (6)
H450.76610.74340.18160.057*
C430.89940 (19)0.9370 (3)0.08510 (15)0.0505 (6)
H430.93141.01940.08950.061*
C130.6256 (2)0.4875 (3)0.42836 (13)0.0495 (7)
H130.64580.42190.46430.059*
C331.09747 (17)0.6758 (4)0.17117 (18)0.0592 (8)
H331.15360.63430.16360.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02423 (17)0.02365 (18)0.01951 (17)0.00076 (11)0.00370 (13)0.00133 (11)
P10.0237 (2)0.0242 (2)0.0184 (2)0.00024 (16)0.00292 (17)0.00010 (15)
P20.0247 (2)0.0286 (2)0.0239 (2)0.00198 (18)0.00481 (19)0.00181 (18)
O30.0192 (5)0.0170 (5)0.0189 (6)0.0047 (4)0.0058 (5)0.0040 (4)
O10.0283 (7)0.0246 (7)0.0272 (7)0.0003 (5)0.0069 (5)0.0005 (5)
O20.0325 (7)0.0310 (7)0.0341 (8)0.0008 (6)0.0133 (6)0.0033 (6)
C60.0287 (9)0.0304 (10)0.0233 (9)0.0005 (8)0.0020 (7)0.0007 (7)
C10.0265 (9)0.0252 (9)0.0204 (8)0.0008 (7)0.0015 (7)0.0012 (7)
C250.0421 (12)0.0397 (12)0.0249 (10)0.0025 (9)0.0075 (9)0.0005 (8)
C210.0282 (9)0.0251 (9)0.0203 (8)0.0002 (7)0.0001 (7)0.0011 (7)
C40.0452 (12)0.0256 (10)0.0316 (10)0.0044 (9)0.0045 (9)0.0034 (8)
C20.0262 (9)0.0290 (9)0.0186 (8)0.0012 (7)0.0007 (7)0.0002 (7)
C260.0330 (10)0.0355 (11)0.0208 (9)0.0004 (8)0.0017 (8)0.0005 (7)
C410.0260 (9)0.0341 (10)0.0228 (9)0.0006 (8)0.0035 (7)0.0030 (7)
C310.0290 (9)0.0381 (11)0.0236 (9)0.0044 (8)0.0023 (7)0.0032 (8)
C120.0564 (13)0.0324 (11)0.0251 (10)0.0060 (10)0.0026 (9)0.0019 (8)
C220.0280 (9)0.0334 (10)0.0258 (10)0.0003 (8)0.0017 (8)0.0020 (7)
C240.0328 (10)0.0362 (11)0.0361 (11)0.0015 (8)0.0102 (9)0.0028 (8)
C460.0505 (13)0.0464 (13)0.0338 (11)0.0158 (11)0.0079 (10)0.0019 (9)
C30.0353 (10)0.0283 (10)0.0260 (9)0.0010 (8)0.0023 (8)0.0009 (7)
C110.0294 (9)0.0304 (9)0.0180 (8)0.0003 (7)0.0007 (7)0.0003 (7)
C230.0281 (9)0.0387 (11)0.0345 (11)0.0008 (8)0.0011 (8)0.0010 (9)
C50.0361 (10)0.0328 (10)0.0310 (10)0.0056 (8)0.0084 (8)0.0033 (8)
C420.0433 (12)0.0470 (13)0.0292 (11)0.0128 (10)0.0074 (9)0.0044 (9)
C360.0367 (11)0.0596 (15)0.0384 (12)0.0042 (11)0.0006 (9)0.0137 (11)
C140.0762 (18)0.0513 (15)0.0172 (10)0.0019 (12)0.0030 (11)0.0007 (9)
C160.0450 (11)0.0358 (11)0.0203 (9)0.0075 (9)0.0010 (8)0.0001 (8)
C350.0523 (14)0.0798 (19)0.0359 (13)0.0177 (14)0.0031 (11)0.0148 (13)
C150.0604 (14)0.0449 (13)0.0229 (10)0.0089 (11)0.0053 (10)0.0060 (9)
C440.0466 (13)0.0546 (14)0.0266 (11)0.0014 (11)0.0002 (10)0.0090 (9)
C340.0424 (12)0.084 (2)0.0327 (12)0.0168 (13)0.0119 (10)0.0118 (12)
C320.0328 (11)0.0618 (16)0.0445 (13)0.0046 (11)0.0003 (10)0.0037 (11)
C450.0559 (14)0.0569 (16)0.0301 (11)0.0076 (12)0.0127 (10)0.0009 (10)
C430.0595 (15)0.0517 (14)0.0402 (13)0.0207 (12)0.0083 (11)0.0135 (11)
C130.0806 (18)0.0448 (13)0.0231 (11)0.0010 (13)0.0074 (11)0.0077 (9)
C330.0314 (12)0.085 (2)0.0617 (17)0.0043 (13)0.0066 (12)0.0037 (16)
Geometric parameters (Å, º) top
Ni1—C11.8984 (19)C22—C231.383 (3)
Ni1—O32.1075 (12)C22—H220.9500
Ni1—P12.1361 (5)C24—C231.393 (3)
Ni1—P22.1428 (6)C24—H240.9500
P1—O11.6561 (14)C46—C451.394 (3)
P1—C111.8059 (19)C46—H460.9500
P1—C211.8095 (19)C3—H3a0.9500
P2—O21.6570 (15)C11—C161.396 (3)
P2—C411.810 (2)C23—H230.9500
P2—C311.814 (2)C5—H50.9500
O3—H30.8400C42—C431.389 (3)
O1—C21.397 (2)C42—H420.9500
O2—C61.399 (2)C36—C351.385 (3)
C6—C51.379 (3)C36—H360.9500
C6—C11.397 (3)C14—C131.378 (4)
C1—C21.398 (3)C14—C151.389 (3)
C25—C241.380 (3)C14—H140.9500
C25—C261.393 (3)C16—C151.390 (3)
C25—H250.9500C16—H160.9500
C21—C221.395 (3)C35—C341.370 (4)
C21—C261.398 (3)C35—H350.9500
C4—C31.390 (3)C15—H150.9500
C4—C51.396 (3)C44—C451.368 (4)
C4—H40.9500C44—C431.381 (4)
C2—C31.389 (3)C44—H440.9500
C26—H260.9500C34—C331.376 (5)
C41—C421.385 (3)C34—H340.9500
C41—C461.395 (3)C32—C331.383 (4)
C31—C321.389 (3)C32—H320.9500
C31—C361.392 (3)C45—H450.9500
C12—C111.386 (3)C43—H430.9500
C12—C131.398 (3)C13—H130.9500
C12—H120.9500C33—H330.9500
C1—Ni1—O3178.55 (7)C23—C24—H24120.0
C1—Ni1—P182.06 (6)C45—C46—C41120.4 (2)
O3—Ni1—P197.56 (4)C45—C46—H46119.8
C1—Ni1—P282.06 (6)C41—C46—H46119.8
O3—Ni1—P298.38 (4)C2—C3—C4117.87 (19)
P1—Ni1—P2163.95 (3)C2—C3—H3A121.1
O1—P1—C11102.24 (8)C4—C3—H3A121.1
O1—P1—C21102.85 (8)C12—C11—C16120.07 (18)
C11—P1—C21104.24 (9)C12—C11—P1121.71 (16)
O1—P1—Ni1107.24 (5)C16—C11—P1118.06 (15)
C11—P1—Ni1119.25 (7)C22—C23—C24120.0 (2)
C21—P1—Ni1118.67 (6)C22—C23—H23120.0
O2—P2—C41100.79 (9)C24—C23—H23120.0
O2—P2—C31102.18 (9)C6—C5—C4117.91 (19)
C41—P2—C31105.97 (9)C6—C5—H5121.0
O2—P2—Ni1106.67 (5)C4—C5—H5121.0
C41—P2—Ni1120.84 (6)C41—C42—C43120.4 (2)
C31—P2—Ni1117.47 (7)C41—C42—H42119.8
Ni1—O3—H3109.5C43—C42—H42119.8
C2—O1—P1111.40 (12)C35—C36—C31120.3 (2)
C6—O2—P2111.64 (12)C35—C36—H36119.9
C5—C6—C1123.77 (19)C31—C36—H36119.9
C5—C6—O2119.43 (18)C13—C14—C15120.2 (2)
C1—C6—O2116.80 (17)C13—C14—H14119.9
C6—C1—C2115.52 (17)C15—C14—H14119.9
C6—C1—Ni1122.28 (15)C15—C16—C11119.9 (2)
C2—C1—Ni1122.18 (15)C15—C16—H16120.0
C24—C25—C26120.4 (2)C11—C16—H16120.0
C24—C25—H25119.8C34—C35—C36120.4 (3)
C26—C25—H25119.8C34—C35—H35119.8
C22—C21—C26119.39 (18)C36—C35—H35119.8
C22—C21—P1122.17 (14)C14—C15—C16119.8 (2)
C26—C21—P1118.38 (15)C14—C15—H15120.1
C3—C4—C5121.5 (2)C16—C15—H15120.1
C3—C4—H4119.3C45—C44—C43120.0 (2)
C5—C4—H4119.3C45—C44—H44120.0
C3—C2—O1119.44 (17)C43—C44—H44120.0
C3—C2—C1123.46 (19)C35—C34—C33119.5 (2)
O1—C2—C1117.09 (17)C35—C34—H34120.3
C25—C26—C21119.75 (19)C33—C34—H34120.3
C25—C26—H26120.1C33—C32—C31119.6 (3)
C21—C26—H26120.1C33—C32—H32120.2
C42—C41—C46118.7 (2)C31—C32—H32120.2
C42—C41—P2123.86 (16)C44—C45—C46120.1 (2)
C46—C41—P2117.31 (16)C44—C45—H45119.9
C32—C31—C36119.1 (2)C46—C45—H45119.9
C32—C31—P2120.61 (18)C44—C43—C42120.3 (2)
C36—C31—P2120.30 (16)C44—C43—H43119.8
C11—C12—C13119.6 (2)C42—C43—H43119.8
C11—C12—H12120.2C14—C13—C12120.4 (2)
C13—C12—H12120.2C14—C13—H13119.8
C23—C22—C21120.44 (19)C12—C13—H13119.8
C23—C22—H22119.8C34—C33—C32121.2 (3)
C21—C22—H22119.8C34—C33—H33119.4
C25—C24—C23120.0 (2)C32—C33—H33119.4
C25—C24—H24120.0
C1—Ni1—P1—O11.08 (8)Ni1—P2—C41—C42117.01 (18)
O3—Ni1—P1—O1179.67 (6)O2—P2—C41—C4658.51 (19)
P2—Ni1—P1—O17.35 (11)C31—P2—C41—C46164.64 (18)
C1—Ni1—P1—C11116.43 (9)Ni1—P2—C41—C4658.5 (2)
O3—Ni1—P1—C1164.98 (8)O2—P2—C31—C3220.6 (2)
P2—Ni1—P1—C11108.00 (11)C41—P2—C31—C3284.5 (2)
C1—Ni1—P1—C21114.70 (9)Ni1—P2—C31—C32136.89 (18)
O3—Ni1—P1—C2163.88 (8)O2—P2—C31—C36158.00 (19)
P2—Ni1—P1—C21123.14 (10)C41—P2—C31—C3696.9 (2)
C1—Ni1—P2—O26.11 (8)Ni1—P2—C31—C3641.7 (2)
O3—Ni1—P2—O2172.49 (7)C26—C21—C22—C230.0 (3)
P1—Ni1—P2—O214.54 (11)P1—C21—C22—C23177.23 (16)
C1—Ni1—P2—C41120.10 (10)C26—C25—C24—C230.9 (3)
O3—Ni1—P2—C4158.50 (9)C42—C41—C46—C452.7 (4)
P1—Ni1—P2—C41128.53 (11)P2—C41—C46—C45178.4 (2)
C1—Ni1—P2—C31107.71 (10)O1—C2—C3—C4179.85 (17)
O3—Ni1—P2—C3173.69 (9)C1—C2—C3—C41.3 (3)
P1—Ni1—P2—C3199.28 (12)C5—C4—C3—C20.5 (3)
C11—P1—O1—C2128.20 (13)C13—C12—C11—C160.1 (4)
C21—P1—O1—C2123.89 (13)C13—C12—C11—P1175.5 (2)
Ni1—P1—O1—C21.99 (13)O1—P1—C11—C1222.2 (2)
C41—P2—O2—C6134.73 (14)C21—P1—C11—C12129.08 (19)
C31—P2—O2—C6116.14 (14)Ni1—P1—C11—C1295.74 (19)
Ni1—P2—O2—C67.73 (14)O1—P1—C11—C16162.33 (16)
P2—O2—C6—C5175.80 (16)C21—P1—C11—C1655.48 (18)
P2—O2—C6—C15.3 (2)Ni1—P1—C11—C1679.71 (17)
C5—C6—C1—C20.2 (3)C21—C22—C23—C240.1 (3)
O2—C6—C1—C2178.60 (16)C25—C24—C23—C220.4 (3)
C5—C6—C1—Ni1178.51 (16)C1—C6—C5—C41.0 (3)
O2—C6—C1—Ni10.3 (2)O2—C6—C5—C4177.81 (19)
P1—Ni1—C1—C6178.12 (16)C3—C4—C5—C60.6 (3)
P2—Ni1—C1—C64.23 (15)C46—C41—C42—C431.2 (4)
P1—Ni1—C1—C20.06 (15)P2—C41—C42—C43176.7 (2)
P2—Ni1—C1—C2177.59 (16)C32—C31—C36—C351.8 (4)
O1—P1—C21—C2276.98 (17)P2—C31—C36—C35176.9 (2)
C11—P1—C21—C2229.41 (19)C12—C11—C16—C150.2 (3)
Ni1—P1—C21—C22164.91 (14)P1—C11—C16—C15175.71 (18)
O1—P1—C21—C26100.31 (16)C31—C36—C35—C340.0 (4)
C11—P1—C21—C26153.30 (16)C13—C14—C15—C161.0 (4)
Ni1—P1—C21—C2617.80 (18)C11—C16—C15—C140.4 (4)
P1—O1—C2—C3176.54 (15)C36—C35—C34—C331.3 (5)
P1—O1—C2—C12.1 (2)C36—C31—C32—C332.2 (4)
C6—C1—C2—C31.0 (3)P2—C31—C32—C33176.4 (2)
Ni1—C1—C2—C3177.34 (15)C43—C44—C45—C461.3 (4)
C6—C1—C2—O1179.56 (15)C41—C46—C45—C441.4 (4)
Ni1—C1—C2—O11.3 (2)C45—C44—C43—C422.7 (4)
C24—C25—C26—C211.0 (3)C41—C42—C43—C441.5 (4)
C22—C21—C26—C250.5 (3)C15—C14—C13—C121.1 (5)
P1—C21—C26—C25176.84 (16)C11—C12—C13—C140.5 (4)
O2—P2—C41—C42125.99 (19)C35—C34—C33—C320.9 (5)
C31—P2—C41—C4219.9 (2)C31—C32—C33—C340.9 (5)

Experimental details

Crystal data
Chemical formula[Ni(C30H23O2P2)(OH)]
Mr553.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.0626 (7), 9.8901 (5), 17.3820 (8)
β (°) 90.150 (2)
V3)2589.4 (2)
Z4
Radiation typeCu Kα
µ (mm1)2.49
Crystal size (mm)0.22 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.391, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
34083, 5038, 4673
Rint0.055
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.143, 1.07
No. of reflections5038
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge financial support received from the University of Montreal and the Universities Mission of Tunisia in Montreal (MUT) (fellowships to AS), and from NSERC of Canada (Research Tools and Instruments and Discovery grants to DZ).

References

First citationBoom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDijkstra, H. P., Meijer, M. D., Patel, J., Kreiter, R., van Klink, G. P. M., Lutz, M., Spek, A. L., Canty, A. J. & van Koten, G. (2001). Organometallics, 20, 3159–3168.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeis, W., Mayer, H. A. & Kaska, W. C. (2008). Coord. Chem. Rev. 252, 1787–1797.  CrossRef CAS Google Scholar
First citationMaris, T. (2004). UdMX. University of Montréal, QC, Canada.  Google Scholar
First citationNaghipour, A. J., Sabounchei, S., Morales-Morales, D., Canseco-González, D. & Jensen, C. M. (2007). Polyhedron, 26, 1445–1448.  CrossRef CAS Google Scholar
First citationNishiyama, H. (2007). Chem. Soc. Rev. 36, 1133–1141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds