organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(1H-indol-3-yl)meth­yl]benzo­nitrile

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Sichuan Key Laboratory of Characteristic Plant Development Research, Sichuan Dazhou 635000, People's Republic of China
*Correspondence e-mail: qwj616@swu.edu.cn

(Received 9 May 2011; accepted 28 May 2011; online 11 June 2011)

In the title mol­ecule, C24H17N3, the didhedral angles formed by the mean planes of the indole ring systems and the benzene ring are 86.44 (7) and 86.96 (7)°. The dihedral angle between the two indole ring systems is 72.08 (6)°. In the crystal, inter­molecular bifurcated (N—H)2⋯N hydrogen bonds link mol­ecules into sheets lying parallel to (010).

Related literature

For background and the biological activity of bis­indolylalkanes and their derivatives, see: Bell et al. (1994[Bell, R., Carmeli, S., Sar, N. & Vibrindole, A. (1994). J. Nat. Prod. 57, 1587-1590.]). For related structures, see: Govindasamy et al. (1998[Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635-637.]); Krishna, Velmurugan, Babu & Perumal (1999[Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75-78.]); Krishna, Velmurugan & Shanmuga Sundara (1999[Krishna, R., Velmurugan, D. & Shanmuga Sundara, S. (1999). Acta Cryst. C55, IUC9900084.]); Seetharaman & Rajan (1995[Seetharaman, J. & Rajan, S. S. (1995). Acta Cryst. C51, 78-80.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H17N3

  • Mr = 347.41

  • Monoclinic, P 21 /c

  • a = 9.5882 (12) Å

  • b = 19.155 (3) Å

  • c = 10.3801 (13) Å

  • β = 100.562 (3)°

  • V = 1874.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 14081 measured reflections

  • 3292 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.05

  • 3292 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 (2) 2.22 (2) 3.084 (2) 178.6 (18)
N2—H2A⋯N1ii 0.91 (2) 2.34 (2) 3.206 (2) 160.3 (19)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Bisindolylalkanes and their derivatives constitute an important group of bioactive metabolites of terrestrial and marine origin (Bell et al., 1994). We report here the crystal structure of the title compound (I). In the molecular structure, (Fig. 1) the bond lengths (Allen et al., 1987) and and angles are within normal ranges and those in the indole group are in agreement with related structures (Govindasamy et al., 1998; Krishna, Velmurugan, Babu & Perumal, 1999; Krishna, Velmurugan & Shanmuga Sundara, 1999; Seetharaman & Rajan, 1995). The didhedral angles formed by the mean planes of the indole ring systems and the benzene ring are 86.44 (7) and 86.96 (7)°. The dihedral angle between the two indole ring systems is 72.08 (6)°. In the crystal, intermolecular bifurcated (N—H)x2···N hydrogen bonds link molecules into two-dimensional sheets parallel to (010) (Fig. 2).

Related literature top

For background and the biological activity of bisindolylalkanes and their derivatives, see: Bell et al. (1994). For related structures, see: Govindasamy et al. (1998); Krishna, Velmurugan, Babu & Perumal (1999); Krishna, Velmurugan & Shanmuga Sundara (1999); Seetharaman & Rajan (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixuture of 4-cyanobenzaldehyde (1 mmol), indole (2 mmol) and I2 (0.2 mmol) in acetonitrile (10 ml) was stirred at room temperature for a few s. After completion of the reaction, the mixture treated with aq. Na2S2O3 solution (5%, 10 ml) and the product was extracted with ethyl acetate (3×5 ml). The combined organic layer was dried with anhydrous sodium sulfate, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether=1:9) to afford the pure product. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C). The H atoms bonded to N atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in the hydrogen bonds are shown.
4-[Bis(1H-indol-3-yl)methyl]benzonitrile top
Crystal data top
C24H17N3F(000) = 728
Mr = 347.41Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3543 reflections
a = 9.5882 (12) Åθ = 2.9–24.6°
b = 19.155 (3) ŵ = 0.07 mm1
c = 10.3801 (13) ÅT = 296 K
β = 100.562 (3)°Block, colourless
V = 1874.1 (4) Å30.20 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2613 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 1111
14081 measured reflectionsk = 2222
3292 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3483P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3292 reflectionsΔρmax = 0.15 e Å3
253 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)
Crystal data top
C24H17N3V = 1874.1 (4) Å3
Mr = 347.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5882 (12) ŵ = 0.07 mm1
b = 19.155 (3) ÅT = 296 K
c = 10.3801 (13) Å0.20 × 0.15 × 0.09 mm
β = 100.562 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2613 reflections with I > 2σ(I)
14081 measured reflectionsRint = 0.036
3292 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
3292 reflectionsΔρmin = 0.13 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58636 (15)0.10803 (8)0.05439 (14)0.0403 (4)
H10.56370.05810.05420.048*
C20.62867 (15)0.12277 (7)0.07541 (15)0.0403 (4)
C30.54762 (15)0.10350 (8)0.20061 (15)0.0421 (4)
C40.41722 (17)0.06995 (9)0.23996 (16)0.0520 (4)
H40.36330.05660.17820.062*
C50.3700 (2)0.05705 (10)0.37001 (18)0.0652 (5)
H50.28390.03420.39630.078*
C60.4482 (2)0.07750 (11)0.46368 (19)0.0690 (5)
H60.41320.06850.55170.083*
C70.5762 (2)0.11079 (10)0.42865 (17)0.0627 (5)
H70.62860.12420.49150.075*
C80.62532 (16)0.12383 (8)0.29631 (16)0.0467 (4)
C90.74842 (16)0.15361 (8)0.10002 (17)0.0477 (4)
H90.82080.17140.03650.057*
C100.70384 (15)0.11951 (8)0.16965 (15)0.0419 (4)
C110.82977 (15)0.07764 (8)0.20221 (15)0.0425 (4)
C120.88333 (17)0.02088 (9)0.14286 (17)0.0526 (4)
H120.83660.00420.06230.063*
C131.00687 (19)0.01001 (10)0.2058 (2)0.0657 (5)
H131.04320.04810.16740.079*
C141.0784 (2)0.01494 (11)0.3263 (2)0.0686 (5)
H141.16100.00730.36710.082*
C151.02992 (19)0.07111 (11)0.38510 (18)0.0624 (5)
H151.07830.08780.46500.075*
C160.90608 (16)0.10251 (9)0.32187 (15)0.0496 (4)
C170.71121 (17)0.16730 (9)0.26731 (16)0.0517 (4)
H170.64340.20150.27150.062*
C180.45208 (15)0.14628 (8)0.07105 (15)0.0422 (4)
C190.42852 (19)0.21445 (10)0.0326 (2)0.0742 (6)
H190.49490.23730.00720.089*
C200.3091 (2)0.24975 (10)0.0516 (2)0.0786 (7)
H200.29610.29620.02620.094*
C210.20928 (16)0.21613 (9)0.10831 (17)0.0528 (4)
C220.23052 (18)0.14779 (10)0.14648 (19)0.0647 (5)
H220.16310.12460.18460.078*
C230.35136 (17)0.11352 (9)0.12836 (17)0.0569 (5)
H230.36530.06730.15540.068*
C240.08275 (18)0.25223 (10)0.12602 (18)0.0602 (5)
N10.01856 (16)0.28075 (10)0.13748 (17)0.0757 (5)
N20.83216 (15)0.15817 (8)0.35857 (15)0.0585 (4)
H2A0.856 (2)0.1831 (12)0.434 (2)0.088 (7)*
N30.74724 (15)0.15470 (7)0.23225 (15)0.0539 (4)
H3A0.814 (2)0.1722 (10)0.2680 (19)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (8)0.0372 (8)0.0485 (9)0.0003 (6)0.0109 (7)0.0017 (7)
C20.0330 (7)0.0403 (8)0.0488 (9)0.0030 (6)0.0102 (7)0.0026 (7)
C30.0387 (8)0.0405 (8)0.0478 (9)0.0061 (7)0.0101 (7)0.0065 (7)
C40.0448 (9)0.0555 (10)0.0540 (10)0.0033 (8)0.0051 (8)0.0092 (8)
C50.0619 (11)0.0678 (12)0.0594 (12)0.0042 (9)0.0057 (9)0.0031 (9)
C60.0797 (14)0.0726 (13)0.0498 (11)0.0064 (11)0.0007 (10)0.0013 (9)
C70.0752 (13)0.0673 (12)0.0496 (11)0.0144 (10)0.0219 (9)0.0124 (9)
C80.0446 (9)0.0450 (9)0.0530 (10)0.0077 (7)0.0152 (7)0.0085 (7)
C90.0383 (8)0.0484 (9)0.0574 (10)0.0027 (7)0.0118 (7)0.0019 (7)
C100.0369 (8)0.0449 (9)0.0455 (9)0.0026 (6)0.0119 (7)0.0005 (7)
C110.0366 (8)0.0479 (9)0.0443 (9)0.0022 (7)0.0110 (7)0.0054 (7)
C120.0470 (9)0.0536 (10)0.0576 (10)0.0024 (8)0.0109 (8)0.0013 (8)
C130.0561 (11)0.0599 (11)0.0824 (14)0.0144 (9)0.0163 (10)0.0089 (10)
C140.0497 (10)0.0788 (14)0.0744 (13)0.0089 (10)0.0035 (10)0.0259 (11)
C150.0503 (10)0.0829 (14)0.0511 (10)0.0064 (10)0.0017 (8)0.0153 (10)
C160.0430 (9)0.0604 (10)0.0465 (9)0.0070 (8)0.0110 (7)0.0066 (8)
C170.0434 (9)0.0565 (10)0.0567 (10)0.0002 (8)0.0131 (8)0.0054 (8)
C180.0351 (8)0.0442 (9)0.0483 (9)0.0013 (6)0.0108 (7)0.0011 (7)
C190.0574 (11)0.0509 (11)0.1275 (18)0.0076 (9)0.0519 (12)0.0222 (11)
C200.0654 (12)0.0509 (11)0.1321 (19)0.0138 (9)0.0516 (13)0.0227 (11)
C210.0400 (9)0.0618 (11)0.0593 (10)0.0086 (8)0.0163 (8)0.0024 (8)
C220.0508 (10)0.0704 (12)0.0821 (13)0.0072 (9)0.0362 (9)0.0218 (10)
C230.0503 (10)0.0539 (10)0.0723 (12)0.0079 (8)0.0264 (9)0.0198 (9)
C240.0460 (10)0.0738 (12)0.0634 (12)0.0099 (9)0.0171 (8)0.0044 (9)
N10.0533 (9)0.0929 (13)0.0860 (12)0.0226 (9)0.0265 (8)0.0099 (9)
N20.0539 (9)0.0728 (10)0.0486 (9)0.0063 (8)0.0088 (7)0.0127 (8)
N30.0445 (8)0.0587 (9)0.0643 (10)0.0013 (7)0.0253 (7)0.0109 (7)
Geometric parameters (Å, º) top
C1—C101.502 (2)C12—H120.9300
C1—C21.503 (2)C13—C141.396 (3)
C1—C181.519 (2)C13—H130.9300
C1—H10.9800C14—C151.361 (3)
C2—C91.356 (2)C14—H140.9300
C2—C31.435 (2)C15—C161.384 (2)
C3—C41.399 (2)C15—H150.9300
C3—C81.402 (2)C16—N21.372 (2)
C4—C51.366 (2)C17—N21.368 (2)
C4—H40.9300C17—H170.9300
C5—C61.389 (3)C18—C191.372 (2)
C5—H50.9300C18—C231.375 (2)
C6—C71.371 (3)C19—C201.375 (2)
C6—H60.9300C19—H190.9300
C7—C81.391 (2)C20—C211.373 (2)
C7—H70.9300C20—H200.9300
C8—N31.369 (2)C21—C221.372 (2)
C9—N31.371 (2)C21—C241.437 (2)
C9—H90.9300C22—C231.374 (2)
C10—C171.358 (2)C22—H220.9300
C10—C111.437 (2)C23—H230.9300
C11—C121.393 (2)C24—N11.140 (2)
C11—C161.404 (2)N2—H2A0.91 (2)
C12—C131.377 (2)N3—H3A0.86 (2)
C10—C1—C2113.60 (12)C12—C13—H13119.4
C10—C1—C18111.50 (12)C14—C13—H13119.4
C2—C1—C18112.65 (12)C15—C14—C13121.38 (17)
C10—C1—H1106.1C15—C14—H14119.3
C2—C1—H1106.1C13—C14—H14119.3
C18—C1—H1106.1C14—C15—C16117.70 (17)
C9—C2—C3106.14 (13)C14—C15—H15121.2
C9—C2—C1128.86 (14)C16—C15—H15121.2
C3—C2—C1124.97 (13)N2—C16—C15130.37 (17)
C4—C3—C8118.91 (15)N2—C16—C11107.29 (14)
C4—C3—C2133.59 (14)C15—C16—C11122.30 (17)
C8—C3—C2107.49 (13)C10—C17—N2110.63 (15)
C5—C4—C3119.26 (16)C10—C17—H17124.7
C5—C4—H4120.4N2—C17—H17124.7
C3—C4—H4120.4C19—C18—C23117.96 (14)
C4—C5—C6121.14 (18)C19—C18—C1121.60 (13)
C4—C5—H5119.4C23—C18—C1120.43 (14)
C6—C5—H5119.4C18—C19—C20121.58 (16)
C7—C6—C5121.16 (18)C18—C19—H19119.2
C7—C6—H6119.4C20—C19—H19119.2
C5—C6—H6119.4C21—C20—C19119.69 (17)
C6—C7—C8118.03 (17)C21—C20—H20120.2
C6—C7—H7121.0C19—C20—H20120.2
C8—C7—H7121.0C22—C21—C20119.55 (15)
N3—C8—C7131.44 (16)C22—C21—C24120.41 (16)
N3—C8—C3107.05 (14)C20—C21—C24120.04 (16)
C7—C8—C3121.50 (16)C21—C22—C23120.03 (15)
C2—C9—N3110.08 (15)C21—C22—H22120.0
C2—C9—H9125.0C23—C22—H22120.0
N3—C9—H9125.0C22—C23—C18121.19 (16)
C17—C10—C11105.91 (14)C22—C23—H23119.4
C17—C10—C1128.49 (14)C18—C23—H23119.4
C11—C10—C1125.50 (13)N1—C24—C21178.7 (2)
C12—C11—C16118.77 (14)C17—N2—C16108.82 (14)
C12—C11—C10133.90 (15)C17—N2—H2A125.3 (14)
C16—C11—C10107.31 (14)C16—N2—H2A125.7 (14)
C13—C12—C11118.70 (17)C8—N3—C9109.24 (13)
C13—C12—H12120.7C8—N3—H3A126.3 (13)
C11—C12—H12120.7C9—N3—H3A124.4 (13)
C12—C13—C14121.11 (18)
C10—C1—C2—C910.3 (2)C11—C12—C13—C140.5 (3)
C18—C1—C2—C9117.73 (17)C12—C13—C14—C150.8 (3)
C10—C1—C2—C3167.30 (13)C13—C14—C15—C160.5 (3)
C18—C1—C2—C364.69 (18)C14—C15—C16—N2178.63 (17)
C9—C2—C3—C4179.30 (17)C14—C15—C16—C111.1 (2)
C1—C2—C3—C41.3 (3)C12—C11—C16—N2179.62 (14)
C9—C2—C3—C80.43 (16)C10—C11—C16—N21.61 (17)
C1—C2—C3—C8177.61 (13)C12—C11—C16—C152.3 (2)
C8—C3—C4—C50.9 (2)C10—C11—C16—C15176.45 (14)
C2—C3—C4—C5177.91 (16)C11—C10—C17—N20.21 (18)
C3—C4—C5—C60.9 (3)C1—C10—C17—N2176.26 (14)
C4—C5—C6—C70.6 (3)C10—C1—C18—C1987.1 (2)
C5—C6—C7—C80.3 (3)C2—C1—C18—C1942.0 (2)
C6—C7—C8—N3179.15 (17)C10—C1—C18—C2391.44 (18)
C6—C7—C8—C30.3 (3)C2—C1—C18—C23139.46 (16)
C4—C3—C8—N3179.68 (14)C23—C18—C19—C200.7 (3)
C2—C3—C8—N30.62 (17)C1—C18—C19—C20177.84 (19)
C4—C3—C8—C70.6 (2)C18—C19—C20—C211.1 (4)
C2—C3—C8—C7178.47 (14)C19—C20—C21—C220.6 (3)
C3—C2—C9—N30.08 (17)C19—C20—C21—C24178.70 (19)
C1—C2—C9—N3177.86 (14)C20—C21—C22—C230.2 (3)
C2—C1—C10—C17115.39 (17)C24—C21—C22—C23179.56 (18)
C18—C1—C10—C1713.2 (2)C21—C22—C23—C180.6 (3)
C2—C1—C10—C1168.78 (18)C19—C18—C23—C220.2 (3)
C18—C1—C10—C11162.63 (13)C1—C18—C23—C22178.74 (16)
C17—C10—C11—C12179.63 (17)C10—C17—N2—C160.81 (19)
C1—C10—C11—C123.0 (3)C15—C16—N2—C17176.35 (17)
C17—C10—C11—C161.12 (17)C11—C16—N2—C171.50 (18)
C1—C10—C11—C16175.49 (14)C7—C8—N3—C9178.39 (17)
C16—C11—C12—C132.0 (2)C3—C8—N3—C90.58 (17)
C10—C11—C12—C13176.41 (16)C2—C9—N3—C80.32 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.86 (2)2.22 (2)3.084 (2)178.6 (18)
N2—H2A···N1ii0.91 (2)2.34 (2)3.206 (2)160.3 (19)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H17N3
Mr347.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5882 (12), 19.155 (3), 10.3801 (13)
β (°) 100.562 (3)
V3)1874.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14081, 3292, 2613
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.05
No. of reflections3292
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.86 (2)2.22 (2)3.084 (2)178.6 (18)
N2—H2A···N1ii0.91 (2)2.34 (2)3.206 (2)160.3 (19)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Key Program of the Education Department of Sichuan Province (grant No. 10ZA143) and Youth Foundation of the Education Department of Sichuan Province (grant No.10ZB105) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBell, R., Carmeli, S., Sar, N. & Vibrindole, A. (1994). J. Nat. Prod. 57, 1587–1590.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGovindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635–637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75–78.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrishna, R., Velmurugan, D. & Shanmuga Sundara, S. (1999). Acta Cryst. C55, IUC9900084.  CrossRef IUCr Journals Google Scholar
First citationSeetharaman, J. & Rajan, S. S. (1995). Acta Cryst. C51, 78–80.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds