metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline)cobalt(II) bis­­(tri­chloro­acetate)

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 15 May 2011; accepted 20 June 2011; online 25 June 2011)

In the title complex, [Co(C12H8N2)3](C2Cl3O2)2, the CoII ion lies on a twofold rotation axis and is coordinated by six N atoms from three bis-chelating 1,10-phenanthroline ligands in a distorted octa­hedral environment. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to metal-organic framework coordination polymers, see: Chen et al. (2001[Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]); Fang et al. (2005[Fang, Q. R., Zhu, G. S., Xue, M., Sun, J. Y., Wei, Y., Qiu, S. & Xu, R. R. (2005). Angew. Chem. Int. Ed. 44, 3845-3848.]). For a related structure, see: Harding et al. (2008[Harding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N2)3](C2Cl3O2)2

  • Mr = 924.28

  • Monoclinic, C 2/c

  • a = 18.367 (4) Å

  • b = 10.753 (2) Å

  • c = 19.020 (4) Å

  • β = 100.94 (3)°

  • V = 3688.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.837, Tmax = 0.923

  • 17083 measured reflections

  • 4215 independent reflections

  • 3364 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 0.89

  • 4215 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.54 3.401 (3) 154
C10—H10A⋯O2ii 0.93 2.35 3.120 (3) 140
C13—H13A⋯O1iii 0.93 2.28 3.004 (3) 134
C14—H14A⋯O1iv 0.93 2.60 3.455 (3) 154
C15—H15A⋯O2iv 0.93 2.56 3.266 (3) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x, -y, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange, adsorption, catalytic and magnetic properties (Chen et al., 2001; Fang et al.,2005). As part of our search for new complexes of this type, we synthesized the title compound and report its crystal structure herein.

The molecular structure of the title complex is shown in Fig. 1. The CoII ion lies on a twofold rotation axis and is coordinated by six N atoms of three bis-chelating 1,10-phenanthroline ligands in a distorted octahedral environment. The Co—N bond lengths are in agreement with those reported for a related complex (Harding et al., 2008). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For background to metal-organic framework coordination polymers, see: Chen et al. (2001); Fang et al. (2005). For a related structure, see: Harding et al. (2008).

Experimental top

The title compound was obtained by adding 1,10-phenanthroline (3 mmol) dropwise to a solution of cobalt(II) trichloroacetic acid (1 mmol) in ethanol (20 ml). The solution was stirred for 1 h at room temperature. After a few days block-shaped crystals were formed from the yellow solution.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids (symmetry code: (A) -x, y, -z + 1/2). Only the unique anion is shown.
Tris(1,10-phenanthroline)cobalt(II) bis(trichloroacetate) top
Crystal data top
[Co(C12H8N2)3](C2Cl3O2)2F(000) = 1868
Mr = 924.28Dx = 1.665 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3364 reflections
a = 18.367 (4) Åθ = 3.3–27.5°
b = 10.753 (2) ŵ = 0.95 mm1
c = 19.020 (4) ÅT = 293 K
β = 100.94 (3)°Block, yellow
V = 3688.2 (13) Å30.26 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4215 independent reflections
Radiation source: fine-focus sealed tube3364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.837, Tmax = 0.923l = 2224
17083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4215 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(C12H8N2)3](C2Cl3O2)2V = 3688.2 (13) Å3
Mr = 924.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.367 (4) ŵ = 0.95 mm1
b = 10.753 (2) ÅT = 293 K
c = 19.020 (4) Å0.26 × 0.20 × 0.12 mm
β = 100.94 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3364 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.923Rint = 0.092
17083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.89Δρmax = 0.81 e Å3
4215 reflectionsΔρmin = 0.45 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.08051 (4)0.25000.01371 (15)
N10.08711 (11)0.05924 (18)0.19106 (10)0.0166 (4)
N20.04713 (11)0.05011 (17)0.16840 (10)0.0171 (4)
N30.05538 (10)0.23619 (17)0.30672 (9)0.0139 (4)
C10.15367 (13)0.1115 (2)0.20262 (13)0.0219 (5)
H1A0.16710.16140.24290.026*
C20.20463 (14)0.0959 (2)0.15766 (14)0.0244 (5)
H2A0.25110.13300.16860.029*
C30.18537 (14)0.0252 (2)0.09727 (13)0.0230 (5)
H3A0.21740.01750.06510.028*
C40.11654 (13)0.0354 (2)0.08449 (12)0.0199 (5)
C50.06900 (12)0.0155 (2)0.13273 (11)0.0163 (4)
C60.00237 (13)0.0750 (2)0.12096 (12)0.0158 (4)
C70.02363 (13)0.1525 (2)0.06160 (12)0.0209 (5)
C80.02684 (15)0.1718 (2)0.01384 (13)0.0264 (5)
H8A0.01340.22430.02530.032*
C90.09337 (15)0.1153 (3)0.02451 (13)0.0260 (5)
H9A0.12480.12860.00770.031*
C100.09434 (13)0.2060 (2)0.05130 (13)0.0234 (5)
H10A0.11010.25930.01290.028*
C110.13996 (13)0.1790 (2)0.09837 (14)0.0239 (5)
H11A0.18760.21200.09180.029*
C120.11401 (13)0.1013 (2)0.15618 (13)0.0209 (5)
H12A0.14530.08430.18810.025*
C130.11155 (12)0.2351 (2)0.36144 (12)0.0179 (5)
H13A0.13080.15860.37860.022*
C140.14369 (13)0.3426 (2)0.39495 (12)0.0208 (5)
H14A0.18320.33710.43350.025*
C150.11645 (13)0.4560 (2)0.37044 (12)0.0217 (5)
H15A0.13600.52850.39310.026*
C160.05858 (12)0.4615 (2)0.31049 (12)0.0173 (5)
C170.02949 (12)0.3489 (2)0.28041 (11)0.0149 (4)
C180.02748 (14)0.5754 (2)0.27896 (14)0.0225 (5)
H18A0.04570.65080.29890.027*
Cl10.18800 (5)0.41813 (7)0.18548 (4)0.0414 (2)
Cl20.06670 (4)0.51120 (9)0.07856 (5)0.0454 (2)
Cl30.17181 (4)0.67933 (6)0.15928 (4)0.0368 (2)
O10.25779 (11)0.59450 (19)0.05738 (11)0.0341 (5)
O20.19590 (11)0.41976 (17)0.02240 (10)0.0292 (4)
C200.16126 (14)0.5325 (2)0.11741 (13)0.0245 (5)
C190.21116 (12)0.5134 (2)0.05881 (12)0.0215 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0146 (2)0.0140 (2)0.0126 (2)0.0000.00274 (17)0.000
N10.0169 (9)0.0178 (9)0.0155 (9)0.0009 (7)0.0041 (8)0.0021 (7)
N20.0195 (9)0.0134 (9)0.0174 (9)0.0003 (7)0.0010 (8)0.0002 (7)
N30.0144 (8)0.0157 (9)0.0111 (8)0.0005 (7)0.0013 (7)0.0017 (6)
C10.0217 (12)0.0256 (12)0.0189 (12)0.0045 (10)0.0054 (10)0.0047 (9)
C20.0184 (11)0.0283 (13)0.0276 (13)0.0051 (10)0.0071 (10)0.0035 (10)
C30.0237 (12)0.0279 (13)0.0198 (12)0.0033 (10)0.0101 (10)0.0014 (9)
C40.0246 (12)0.0207 (11)0.0153 (11)0.0041 (9)0.0060 (9)0.0025 (8)
C50.0186 (10)0.0160 (10)0.0140 (10)0.0028 (9)0.0025 (9)0.0009 (8)
C60.0180 (10)0.0154 (10)0.0132 (10)0.0015 (8)0.0009 (9)0.0018 (8)
C70.0260 (12)0.0181 (11)0.0164 (11)0.0019 (9)0.0018 (10)0.0018 (8)
C80.0363 (14)0.0254 (13)0.0174 (12)0.0043 (11)0.0047 (11)0.0051 (9)
C90.0323 (13)0.0300 (13)0.0179 (12)0.0043 (11)0.0104 (11)0.0027 (10)
C100.0255 (11)0.0203 (11)0.0204 (12)0.0014 (10)0.0059 (10)0.0024 (9)
C110.0206 (11)0.0164 (12)0.0318 (14)0.0016 (9)0.0022 (10)0.0017 (9)
C120.0176 (11)0.0179 (11)0.0264 (13)0.0005 (9)0.0023 (10)0.0006 (9)
C130.0184 (10)0.0208 (11)0.0138 (11)0.0038 (9)0.0009 (9)0.0003 (8)
C140.0160 (10)0.0305 (13)0.0135 (10)0.0014 (9)0.0033 (9)0.0025 (9)
C150.0248 (12)0.0210 (12)0.0191 (11)0.0033 (10)0.0041 (10)0.0047 (9)
C160.0149 (10)0.0187 (11)0.0184 (11)0.0006 (9)0.0037 (9)0.0009 (8)
C170.0147 (10)0.0169 (11)0.0140 (10)0.0009 (8)0.0053 (9)0.0002 (8)
C180.0270 (12)0.0141 (11)0.0247 (12)0.0015 (9)0.0007 (10)0.0019 (9)
Cl10.0599 (5)0.0325 (4)0.0382 (4)0.0076 (3)0.0255 (4)0.0144 (3)
Cl20.0190 (3)0.0604 (5)0.0581 (5)0.0049 (3)0.0110 (3)0.0155 (4)
Cl30.0469 (4)0.0273 (4)0.0337 (4)0.0072 (3)0.0007 (3)0.0071 (3)
O10.0268 (10)0.0393 (12)0.0367 (11)0.0156 (8)0.0074 (9)0.0009 (8)
O20.0271 (10)0.0328 (10)0.0277 (10)0.0036 (8)0.0049 (8)0.0083 (7)
C200.0221 (11)0.0250 (13)0.0258 (13)0.0022 (10)0.0033 (10)0.0008 (9)
C190.0148 (10)0.0309 (13)0.0176 (11)0.0020 (9)0.0001 (9)0.0034 (9)
Geometric parameters (Å, º) top
Co1—N1i2.1330 (19)C8—H8A0.9300
Co1—N12.1330 (19)C9—H9A0.9300
Co1—N32.1411 (18)C10—C111.368 (4)
Co1—N3i2.1411 (18)C10—H10A0.9300
Co1—N22.1497 (19)C11—C121.391 (3)
Co1—N2i2.1497 (19)C11—H11A0.9300
N1—C11.325 (3)C12—H12A0.9300
N1—C51.359 (3)C13—C141.396 (3)
N2—C121.326 (3)C13—H13A0.9300
N2—C61.358 (3)C14—C151.366 (3)
N3—C131.319 (3)C14—H14A0.9300
N3—C171.362 (3)C15—C161.405 (3)
C1—C21.393 (3)C15—H15A0.9300
C1—H1A0.9300C16—C171.401 (3)
C2—C31.366 (4)C16—C181.434 (3)
C2—H2A0.9300C17—C17i1.427 (4)
C3—C41.402 (3)C18—C18i1.345 (5)
C3—H3A0.9300C18—H18A0.9300
C4—C51.398 (3)Cl1—C201.786 (3)
C4—C91.428 (3)Cl2—C201.769 (3)
C5—C61.438 (3)Cl3—C201.762 (3)
C6—C71.398 (3)O1—C191.226 (3)
C7—C101.400 (3)O2—C191.224 (3)
C7—C81.431 (3)C20—C191.585 (3)
C8—C91.345 (4)
N1i—Co1—N1167.69 (10)C10—C7—C8123.2 (2)
N1i—Co1—N398.69 (7)C9—C8—C7121.2 (2)
N1—Co1—N390.95 (7)C9—C8—H8A119.4
N1i—Co1—N3i90.95 (7)C7—C8—H8A119.4
N1—Co1—N3i98.69 (7)C8—C9—C4121.1 (2)
N3—Co1—N3i77.14 (10)C8—C9—H9A119.4
N1i—Co1—N294.01 (8)C4—C9—H9A119.4
N1—Co1—N277.87 (7)C11—C10—C7119.2 (2)
N3—Co1—N2164.22 (7)C11—C10—H10A120.4
N3i—Co1—N293.40 (7)C7—C10—H10A120.4
N1i—Co1—N2i77.87 (7)C10—C11—C12119.0 (2)
N1—Co1—N2i94.01 (8)C10—C11—H11A120.5
N3—Co1—N2i93.40 (7)C12—C11—H11A120.5
N3i—Co1—N2i164.22 (7)N2—C12—C11123.7 (2)
N2—Co1—N2i98.40 (10)N2—C12—H12A118.1
C1—N1—C5117.5 (2)C11—C12—H12A118.1
C1—N1—Co1128.87 (16)N3—C13—C14123.5 (2)
C5—N1—Co1113.61 (15)N3—C13—H13A118.2
C12—N2—C6117.3 (2)C14—C13—H13A118.2
C12—N2—Co1129.10 (17)C15—C14—C13119.2 (2)
C6—N2—Co1113.39 (15)C15—C14—H14A120.4
C13—N3—C17117.65 (19)C13—C14—H14A120.4
C13—N3—Co1128.03 (16)C14—C15—C16119.1 (2)
C17—N3—Co1114.28 (14)C14—C15—H15A120.4
N1—C1—C2123.6 (2)C16—C15—H15A120.4
N1—C1—H1A118.2C17—C16—C15117.8 (2)
C2—C1—H1A118.2C17—C16—C18118.5 (2)
C3—C2—C1119.1 (2)C15—C16—C18123.8 (2)
C3—C2—H2A120.4N3—C17—C16122.7 (2)
C1—C2—H2A120.4N3—C17—C17i117.15 (12)
C2—C3—C4119.0 (2)C16—C17—C17i120.20 (13)
C2—C3—H3A120.5C18i—C18—C16121.32 (14)
C4—C3—H3A120.5C18i—C18—H18A119.3
C5—C4—C3118.0 (2)C16—C18—H18A119.3
C5—C4—C9119.2 (2)C19—C20—Cl3113.91 (17)
C3—C4—C9122.7 (2)C19—C20—Cl2110.03 (16)
N1—C5—C4122.6 (2)Cl3—C20—Cl2108.66 (14)
N1—C5—C6117.7 (2)C19—C20—Cl1107.71 (17)
C4—C5—C6119.6 (2)Cl3—C20—Cl1107.33 (13)
N2—C6—C7122.9 (2)Cl2—C20—Cl1109.08 (14)
N2—C6—C5117.3 (2)O2—C19—O1131.2 (2)
C7—C6—C5119.9 (2)O2—C19—C20113.8 (2)
C6—C7—C10117.9 (2)O1—C19—C20115.0 (2)
C6—C7—C8118.9 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1ii0.932.543.401 (3)154
C10—H10A···O2iii0.932.353.120 (3)140
C13—H13A···O1iv0.932.283.004 (3)134
C14—H14A···O1v0.932.603.455 (3)154
C15—H15A···O2v0.932.563.266 (3)133
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y, z; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C12H8N2)3](C2Cl3O2)2
Mr924.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.367 (4), 10.753 (2), 19.020 (4)
β (°) 100.94 (3)
V3)3688.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.26 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.837, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
17083, 4215, 3364
Rint0.092
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 0.89
No. of reflections4215
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.543.401 (3)154
C10—H10A···O2ii0.932.353.120 (3)140
C13—H13A···O1iii0.932.283.004 (3)134
C14—H14A···O1iv0.932.603.455 (3)154
C15—H15A···O2iv0.932.563.266 (3)133
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z+1/2.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2008B30).

References

First citationBruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFang, Q. R., Zhu, G. S., Xue, M., Sun, J. Y., Wei, Y., Qiu, S. & Xu, R. R. (2005). Angew. Chem. Int. Ed. 44, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds