metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl sulfoxide-κO)trimeth­yl(2-methyl-3,5-di­nitro­benzoato-κO1)tin(IV)

aDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and cInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 23 May 2011; accepted 8 June 2011; online 18 June 2011)

In the title mononuclear complex, [Sn(CH3)3(C7H5N2O6)(C2H6OS)], the SnIV ion is coordinated by three methyl groups in the equatorial plane, and by an O atom from a 2-methyl-3,5-dinitrobenzoate ligand and a dimethyl sulfoxide ligand in the axial sites, to form a slightly distorted trigonal–bipyramidal environment. The O atoms of one of the nitro groups are disordered over two sets of sites, with refined occupancies of 0.55 (4) and 0.45 (4). The closest inter­molecular inter­action is a weak C—H⋯O hydrogen bond.

Related literature

For the applications of trimethytin complexes, see: Gielen et al. (2005[Gielen, M., Biesemans, M. & Wielem, M. (2005). J. Organomet. Chem. 19, 440-449.]); Gielen (2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-486.]); Hameed et al. (2009[Hameed, A., Mohamad, T., Elbay Saad, E., Farina, Y., Graisa, A. & Yousif, E. (2009). Eur. J. Sci. Res. pp. 212-217.]); Ashhad et al. (2005[Ashhad, A. M. S., Islam, N. & Saeed, M. (2005). Malasiyan J. Pharm. Sci. 3, 11-18.]). For the structure of a trimethyl­tin complex with a 2-methyl­benzene-3-carboxyl­ate ligand, see: Danish et al. (2010[Danish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m4.]). For the structure of a triphenyl­tin complex with 2-methyl-3,5-dinitro­benzene carboxyl­ate and methanol ligands, see: Danish et al. (2011[Danish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m519.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C7H5N2O6)(C2H6OS)]

  • Mr = 467.06

  • Monoclinic, P 21 /c

  • a = 9.6180 (19) Å

  • b = 12.971 (3) Å

  • c = 15.612 (3) Å

  • β = 102.98 (3)°

  • V = 1897.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 293 K

  • 0.42 × 0.24 × 0.08 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.753, Tmax = 0.890

  • 4755 measured reflections

  • 4500 independent reflections

  • 2464 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 200 reflections intensity decay: 0.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.01

  • 4500 reflections

  • 242 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.55 e Å−3

  • Δρmin = −1.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O3i 0.96 2.59 3.509 (15) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin carboxylates are extensively studied bexcause of their potential diversified biological applications. Trimethyltin carboxylates find use as antifungal (Gielen et al., 2005; Gielen, 2002) and antibacterial agents (Hameed et al., 2009; Ashhad et al., 2005). The title compound is part of our continued effort in this area (Danish et al., 2010, 2011). The structure of the title compound is composed of mononuclear molecules in which an Sn atom is coordinated by three methyl C atoms, one carboxylato O atom donated by a 2-methyl-3,5-dinitrobenzenecarboxylate ligand and an O atom from a DMSO ligand forming slightly distorted trigonal bipyramidal environment. The methyl C atoms form the equatorial plane. The Sn atom is displaced by 0.1082 (2) Å from the plane towards the carboxylate O atom. The latter and the DMSO O atom are in the axial sites. The Sn—C bond lengths range from 2.097 (3) to 2.121 (3) Å and are close to those reported earlier in the structures of other trimethyltin complexes (e.g. Danish et al., 2010). The 2-methyl-3,5-dintro-benzenecarboxylate ligand molecule is essentially planar with an r.m.s. deviation of 0.0041 (1) Å. The O atoms of one of the nitro groups show positional disorder with a major component occupancy of 0.55 (4). The other nitro group forms a dihedral angle of 5.9 (2)° with the methylbenzene ring. The carboxylate group donates a single O atom to the Sn atom. The observed Sn—O bond length of 2.106 (3) Å is typical (e.g. Danish et al., 2010, 2011). The closest intermolecular interaction is a weak C—H···O hydrogen bond.

Related literature top

For the applications of trimethytin complexes, see: Gielen et al. (2005); Gielen (2002); Hameed et al. (2009); Ashhad et al. (2005). For the structure of a trimethyltin complex with a 2-methylbenzene-3-carboxylate ligand, see: Danish et al. (2010). For the structure of a triphenyltin complex with 2-methyl-3,5-dinitrobenzene carboxylate and methanol ligands, see: Danish et al. (2011).

Experimental top

The sodium salt of 3,5-dinitro-o-toluic acid (2.48 g, 0.01 mol) was suspended in 25 ml of dry chloroform contained in a 100 ml round-bottom flask; trimethyltin chloride (2.00 g, 0.01 mol) was dissolved in 25 ml of dry chloroform was then added dropwise with constant stirring at room temperature. The reaction mixture was then refluxed in chloroform for 6 h and then brought to room temperature. Filtration was carried out to remove sodium chloride formed during the reaction. After evaporation, the solid mass was recrystallized from DMSO. m.p. 395 K; yield 88%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 for the benzene H atoms and 0.96 Å for methyl groups and treated as riding on the parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with 50% probability displacement ellipsoids. Atoms labeled O3A and O4A are the minor components of disorder.
(Dimethyl sulfoxide-κO)trimethyl(2-methyl- 3,5-dinitrobenzoato-κO1)tin(IV) top
Crystal data top
[Sn(CH3)3(C7H5N2O6)(C2H6OS)]F(000) = 936
Mr = 467.06Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.6180 (19) Åθ = 6–15°
b = 12.971 (3) ŵ = 1.49 mm1
c = 15.612 (3) ÅT = 293 K
β = 102.98 (3)°Plate, pale yellow
V = 1897.9 (7) Å30.42 × 0.24 × 0.08 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
2464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
Profile data from ω/2θ scansh = 012
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 017
Tmin = 0.753, Tmax = 0.890l = 1919
4755 measured reflections3 standard reflections every 200 reflections
4500 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0947P)2]
where P = (Fo2 + 2Fc2)/3
4500 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 1.55 e Å3
4 restraintsΔρmin = 1.86 e Å3
Crystal data top
[Sn(CH3)3(C7H5N2O6)(C2H6OS)]V = 1897.9 (7) Å3
Mr = 467.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6180 (19) ŵ = 1.49 mm1
b = 12.971 (3) ÅT = 293 K
c = 15.612 (3) Å0.42 × 0.24 × 0.08 mm
β = 102.98 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
2464 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.030
Tmin = 0.753, Tmax = 0.8903 standard reflections every 200 reflections
4755 measured reflections intensity decay: 0.2%
4500 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 1.55 e Å3
4500 reflectionsΔρmin = 1.86 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.78174 (3)0.49914 (2)0.21581 (2)0.04452 (13)
S11.10224 (14)0.53273 (12)0.15598 (9)0.0519 (3)
O10.6418 (4)0.4762 (3)0.3068 (3)0.0605 (10)
C40.2430 (5)0.4664 (4)0.4708 (3)0.0520 (11)
H40.18320.45730.50940.062*
C20.4266 (5)0.3988 (4)0.3974 (3)0.0468 (11)
C50.2474 (5)0.5571 (4)0.4271 (3)0.0464 (11)
C10.4264 (4)0.4929 (3)0.3564 (3)0.0433 (9)
O50.0655 (5)0.6244 (4)0.4846 (3)0.0929 (15)
N20.1513 (5)0.6424 (4)0.4406 (3)0.0634 (11)
O20.4719 (4)0.5782 (3)0.2313 (3)0.0696 (11)
C30.3313 (5)0.3894 (4)0.4546 (3)0.0507 (11)
C60.3363 (5)0.5725 (4)0.3706 (3)0.0460 (10)
H60.33640.63530.34200.055*
C80.5152 (7)0.3080 (4)0.3837 (4)0.0719 (16)
H8A0.48540.28440.32410.108*
H8B0.50320.25350.42300.108*
H8C0.61380.32780.39510.108*
O70.9437 (4)0.5132 (3)0.1204 (3)0.0582 (9)
C110.8247 (6)0.6531 (4)0.2547 (4)0.0705 (16)
H11A0.77250.69820.21020.106*
H11B0.92510.66620.26280.106*
H11C0.79630.66510.30900.106*
C141.1886 (6)0.4276 (5)0.1203 (5)0.080 (2)
H14A1.28730.44420.12490.121*
H14B1.14430.41230.06020.121*
H14C1.18160.36860.15620.121*
C130.9183 (7)0.3843 (5)0.2860 (4)0.0768 (18)
H13A0.86220.33300.30700.115*
H13B0.98310.41540.33500.115*
H13C0.97140.35270.24780.115*
C151.1490 (7)0.6276 (5)0.0867 (5)0.0784 (18)
H15A1.14060.59950.02890.118*
H15B1.24560.64920.10980.118*
H15C1.08620.68570.08380.118*
C120.6354 (6)0.4555 (6)0.1006 (4)0.0708 (15)
H12A0.62110.51180.05970.106*
H12B0.54610.43760.11460.106*
H12C0.67190.39710.07490.106*
O60.1644 (5)0.7246 (4)0.4073 (4)0.0974 (16)
C70.5190 (5)0.5193 (4)0.2909 (4)0.0508 (12)
N10.3216 (6)0.2921 (4)0.5005 (3)0.0681 (13)
O4A0.2078 (17)0.2483 (18)0.4785 (18)0.104 (8)0.45 (4)
O3A0.414 (3)0.258 (2)0.555 (3)0.175 (15)0.45 (4)
O40.287 (4)0.2135 (11)0.4607 (9)0.128 (9)0.55 (4)
O30.3585 (19)0.2947 (11)0.5794 (5)0.084 (5)0.55 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03448 (18)0.0566 (2)0.0461 (2)0.00010 (14)0.01663 (12)0.00159 (15)
S10.0403 (6)0.0702 (7)0.0495 (7)0.0029 (6)0.0192 (5)0.0052 (6)
O10.048 (2)0.077 (2)0.065 (2)0.0068 (17)0.0314 (17)0.0058 (18)
C40.046 (3)0.063 (3)0.051 (3)0.011 (2)0.020 (2)0.007 (2)
C20.035 (2)0.054 (3)0.053 (3)0.009 (2)0.0140 (19)0.011 (2)
C50.031 (2)0.057 (3)0.054 (3)0.004 (2)0.0159 (19)0.005 (2)
C10.0305 (19)0.059 (3)0.043 (2)0.0075 (19)0.0135 (16)0.004 (2)
O50.076 (3)0.111 (4)0.114 (4)0.020 (3)0.067 (3)0.008 (3)
N20.051 (3)0.075 (3)0.069 (3)0.008 (2)0.024 (2)0.008 (2)
O20.056 (2)0.093 (3)0.067 (3)0.011 (2)0.0278 (19)0.022 (2)
C30.044 (3)0.058 (3)0.054 (3)0.014 (2)0.019 (2)0.004 (2)
C60.039 (2)0.056 (3)0.046 (3)0.004 (2)0.018 (2)0.000 (2)
C80.068 (4)0.062 (3)0.096 (4)0.001 (3)0.040 (3)0.002 (3)
O70.0427 (18)0.085 (3)0.053 (2)0.0081 (16)0.0236 (15)0.0030 (17)
C110.063 (4)0.070 (4)0.085 (4)0.011 (3)0.029 (3)0.014 (3)
C140.049 (3)0.074 (4)0.123 (6)0.010 (3)0.029 (4)0.003 (4)
C130.070 (4)0.094 (4)0.072 (4)0.023 (3)0.030 (3)0.023 (3)
C150.064 (4)0.069 (4)0.111 (5)0.011 (3)0.039 (3)0.003 (4)
C120.048 (3)0.105 (4)0.062 (3)0.014 (3)0.019 (3)0.018 (3)
O60.096 (4)0.070 (3)0.144 (5)0.024 (3)0.065 (3)0.014 (3)
C70.041 (2)0.063 (3)0.056 (3)0.005 (2)0.026 (2)0.001 (2)
N10.074 (4)0.065 (3)0.074 (4)0.020 (3)0.035 (3)0.001 (3)
O4A0.104 (11)0.084 (11)0.126 (15)0.031 (9)0.030 (9)0.033 (9)
O3A0.099 (15)0.084 (15)0.29 (3)0.014 (10)0.067 (17)0.097 (17)
O40.22 (2)0.076 (7)0.109 (8)0.068 (10)0.075 (11)0.036 (6)
O30.116 (10)0.063 (7)0.073 (8)0.003 (6)0.018 (6)0.019 (4)
Geometric parameters (Å, º) top
Sn1—C122.097 (5)C8—H8B0.9600
Sn1—C112.101 (5)C8—H8C0.9600
Sn1—C132.121 (6)C11—H11A0.9600
Sn1—O12.186 (4)C11—H11B0.9600
Sn1—O72.391 (4)C11—H11C0.9600
S1—O71.523 (4)C14—H14A0.9600
S1—C141.752 (6)C14—H14B0.9600
S1—C151.761 (6)C14—H14C0.9600
O1—C71.280 (6)C13—H13A0.9600
C4—C51.366 (7)C13—H13B0.9600
C4—C31.371 (7)C13—H13C0.9600
C4—H40.9300C15—H15A0.9600
C2—C11.379 (6)C15—H15B0.9600
C2—C31.420 (7)C15—H15C0.9600
C2—C81.497 (7)C12—H12A0.9600
C5—C61.374 (6)C12—H12B0.9600
C5—N21.486 (6)C12—H12C0.9600
C1—C61.398 (6)N1—O3A1.174 (9)
C1—C71.537 (6)N1—O31.205 (8)
O5—N21.210 (6)N1—O41.201 (8)
N2—O61.205 (6)N1—O4A1.213 (8)
O2—C71.210 (6)O4A—O40.981 (17)
C3—N11.464 (7)O3A—O30.87 (4)
C6—H60.9300O3A—O41.78 (2)
C8—H8A0.9600
C12—Sn1—C11123.7 (3)H11B—C11—H11C109.5
C12—Sn1—C13118.2 (3)S1—C14—H14A109.5
C11—Sn1—C13117.3 (3)S1—C14—H14B109.5
C12—Sn1—O197.35 (19)H14A—C14—H14B109.5
C11—Sn1—O192.95 (19)S1—C14—H14C109.5
C13—Sn1—O188.19 (19)H14A—C14—H14C109.5
C12—Sn1—O783.81 (18)H14B—C14—H14C109.5
C11—Sn1—O789.68 (18)Sn1—C13—H13A109.5
C13—Sn1—O787.77 (19)Sn1—C13—H13B109.5
O1—Sn1—O7175.87 (12)H13A—C13—H13B109.5
O7—S1—C14105.2 (3)Sn1—C13—H13C109.5
O7—S1—C15105.4 (3)H13A—C13—H13C109.5
C14—S1—C1598.3 (3)H13B—C13—H13C109.5
C7—O1—Sn1119.4 (3)S1—C15—H15A109.5
C5—C4—C3116.5 (5)S1—C15—H15B109.5
C5—C4—H4121.7H15A—C15—H15B109.5
C3—C4—H4121.7S1—C15—H15C109.5
C1—C2—C3115.8 (4)H15A—C15—H15C109.5
C1—C2—C8124.8 (4)H15B—C15—H15C109.5
C3—C2—C8119.4 (5)Sn1—C12—H12A109.5
C4—C5—C6122.6 (5)Sn1—C12—H12B109.5
C4—C5—N2118.8 (4)H12A—C12—H12B109.5
C6—C5—N2118.7 (4)Sn1—C12—H12C109.5
C2—C1—C6121.1 (4)H12A—C12—H12C109.5
C2—C1—C7124.5 (4)H12B—C12—H12C109.5
C6—C1—C7114.4 (4)O2—C7—O1126.5 (5)
O6—N2—O5124.6 (5)O2—C7—C1118.6 (4)
O6—N2—C5117.9 (4)O1—C7—C1114.9 (5)
O5—N2—C5117.5 (5)O3A—N1—O343 (2)
C4—C3—C2124.5 (5)O3A—N1—O497.4 (14)
C4—C3—N1115.3 (5)O3—N1—O4122.4 (10)
C2—C3—N1120.2 (5)O3A—N1—O4A121.3 (13)
C5—C6—C1119.5 (4)O3—N1—O4A110.0 (13)
C5—C6—H6120.2O4—N1—O4A48.0 (8)
C1—C6—H6120.2O3A—N1—C3124.0 (11)
C2—C8—H8A109.5O3—N1—C3116.1 (7)
C2—C8—H8B109.5O4—N1—C3121.3 (8)
H8A—C8—H8B109.5O4A—N1—C3114.8 (8)
C2—C8—H8C109.5O4—O4A—N165.4 (8)
H8A—C8—H8C109.5O3—O3A—N170.4 (12)
H8B—C8—H8C109.5O3—O3A—O499.4 (19)
S1—O7—Sn1121.6 (2)N1—O3A—O441.9 (8)
Sn1—C11—H11A109.5O4A—O4—N166.6 (8)
Sn1—C11—H11B109.5O4A—O4—O3A92.9 (14)
H11A—C11—H11B109.5N1—O4—O3A40.7 (7)
Sn1—C11—H11C109.5O3A—O3—N166.6 (14)
H11A—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.962.593.509 (15)162
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C7H5N2O6)(C2H6OS)]
Mr467.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6180 (19), 12.971 (3), 15.612 (3)
β (°) 102.98 (3)
V3)1897.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.42 × 0.24 × 0.08
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.753, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
4755, 4500, 2464
Rint0.030
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.01
No. of reflections4500
No. of parameters242
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.86

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.962.593.509 (15)161.6
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAshhad, A. M. S., Islam, N. & Saeed, M. (2005). Malasiyan J. Pharm. Sci. 3, 11-18.  Google Scholar
First citationDanish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–486.  CrossRef CAS Google Scholar
First citationGielen, M., Biesemans, M. & Wielem, M. (2005). J. Organomet. Chem. 19, 440–449.  CrossRef CAS Google Scholar
First citationHameed, A., Mohamad, T., Elbay Saad, E., Farina, Y., Graisa, A. & Yousif, E. (2009). Eur. J. Sci. Res. pp. 212–217.  Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds