metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m895-m896

Tricarbon­yl[N,N′,N′′-tris­­(2,6-diiso­propyl­phen­yl)guanidine]molybdenum(0)

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4, and bThe Maritime Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, NS, Canada B3H 3C3
*Correspondence e-mail: boere@uleth.ca

(Received 29 May 2011; accepted 3 June 2011; online 11 June 2011)

In the title compound, [Mo(C37H53N3)(CO)3], the Mo atom to ring-centroid distance in the η6-coordinated tricarbonyl­molybdenum group is 1.958 (1) Å. The three C≡O groups are pseudo-octa­hedrally disposed with C—Mo—C angles ranging from 80.7 (1) to 87.4 (1)°. The two uncoordinated 2,6-diisopropyl­phenyl-substituted benzene rings form dihedral angles of 75.96 (8) and 78.01 (9)° with the mean plane of the guanidine group. The coordinated benzene ring is in a slight sofa conformation with the N-substituted C atom and the bonded N atom dispaced by 0.090 (3) and 0.458 (4) Å, respectively, from the mean plane of the remaining ring atoms. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This may be because of the steric effects of the bulky diisopropyl­phenyl groups.

Related literature

For the structure of the parent guanidine ligand, see: Boeré, Boeré et al. (2000[Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613-1619.]). For a series of related guanidines with varying conformational isomers, see: Gopi et al. (2010[Gopi, K., Rathi, B. & Thirupathi, N. (2010). J. Chem. Sci. 122, 157-167.]). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman et al. (2011[Eichman, C. C., Bragdon, J. P. & Stambuli, J. P. (2011). Synlett, pp. 1109-1112.]). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau et al. (2011[Brazeau, A., Nikouline, A. S. & Ragogna, P. J. (2011). Chem. Commun. 47, 4817-4819.]). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006[Coles, M. P. (2006). Dalton Trans. pp. 985-1001.]). For related amidine complexes in which Mo(CO)3 is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998[Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147-4154.], 2000[Boeré, R. T., Klassen, V. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 583-589.]). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988[Braga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151-156.])

[Scheme 1]

Experimental

Crystal data
  • [Mo(C37H53N3)(CO)3]

  • Mr = 719.79

  • Triclinic, [P \overline 1]

  • a = 10.6525 (12) Å

  • b = 11.7642 (14) Å

  • c = 16.5482 (19) Å

  • α = 89.128 (1)°

  • β = 78.713 (1)°

  • γ = 67.240 (1)°

  • V = 1871.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.29 × 0.12 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.746

  • 27034 measured reflections

  • 8399 independent reflections

  • 6634 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.05

  • 8399 reflections

  • 442 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Comparison of inter­atomic distances and angles (Å, °) of (I)[link] with free guanidine, (II)

  C1—N1 C1—N2 C1—N3 N1—C1—N2 N2—C1—N3 N3—C1—N1
(I) 1.287 (3) 1.361 (3) 1.374 (3) 125.0 (2) 115.57 (19) 119.42 (19)
(II) 1.316 (2) 1.348 (2) 1.357 (2) 121.99 (13) 118.47 (14) 119.52 (13)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The molecular stucture of the title compound, (I), is shown in Figure 1. The X-ray crystal structure of N,N',N"-tris(2,6-diisopropylphenyl)guanidine (II) was reported by Boeré, Boeré et al. (2000) with the three aryl groups in the same syn-anti conformation (Gopi et al., 2010) as found in compound (I). Table 1 presents the selected geometric data for compounds (I) and (II). Coles (2006) has comprehensively reviewed the application of neutral amidines and guanidines as coordination ligands. Recently, a cobalt(II) complex of the title ligand has been used as a catalyst in the synthesis of polysubstituted arenes via the regioselective cyclotrimerization of alkynes (Eichman et al., 2011). Also, deprotonated N,N',N"-aryl guandines have been reported to stabilize low-coordinate As(III) cations (Brazeau et al., 2011).

The title compound has an η6–coordinated tricarbonylmolybdenum group with a Mo to ring-centroid distance of 1.958 (1)Å. The three CO groups are pseudooctahedraly disposed with C–Mo–C angles ranging from 80.7 (1) to 87.4 (1)°. The three 2,6-diisopropylphenyl rings have normals that are disposed at 79.78 (8)° (C3-C7), 75.96 (8)° (C14-C19) and 78.01 (9)° (C26-C31) to the guanidine plane defined by C1, N1-N3. The ring coordinated by Mo(CO)3 is bent back from the core such that C2 is located 0.090 (3) and N1 0.458 (4)Å from the plane defined by C3-C7. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This is possibly due to the steric effects of the bulky diisopropylphenyl groups. The orientation of the Mo(CO)3 unit and its geometric parameters are found to be very similar in compound (I) and in closely comparable tricarbonylmolybdenum complexes of structurally similar amidines (Boeré, Klassen & Wolmershäuser, 1998, 2000). The observed outward bending of the coordinated aryl ring suggests that some steric effects operate between the amidine/guanidine groups and the Mo(CO)3 units.

Related literature top

For the structure of the parent guanidine ligand, see: Boeré, Boeré et al. (2000). For a series of related guanidines with varying conformational isomers, see: Gopi et al. (2010). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman et al. (2011). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau et al. (2011). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006). For related amidine complexes in which Mo(CO)3 is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998, 2000). For thermal motion of carbonyl group oxygen atoms, see Braga & Koetzle (1988).

Experimental top

The compound was prepared by a thermal reaction between the neural guanidine ligand and Mo(CO)6 as described in Boeré, Boeré et al. (2000). Full characterization by elemental analysis, NMR, mass spectrometry and infra-red spectroscopy are provided there.

Refinement top

Hydrogen atoms attached to carbon were refined using a riding model with temperature factors of 1.2 (CH) or 1.5 (CH3) × the equivalent isotropic values of the attached atoms. H2 and H3 attached to nitrogen were positionally refined using distance restraints of 0.88 Å and temperature factors 1.2 × the equivalent isotropic values of N2 and N3. Two reflections have unusually large deviations from the weighted errors of their intensities; no obvious cause could be determined for this effect. The isopropyl methyl groups are found to librate more than other carbon atoms but this effect is commonly observed in 2,6-diisopropylphenyl compounds. A rotational disorder model for isopropyl groups was judged to be unwarranted. Similarly, the carbonyl group oxygen atoms display considerable thermal motion, but this is also a well known behaviour, see Braga & Koetzle (1988).

Structure description top

The molecular stucture of the title compound, (I), is shown in Figure 1. The X-ray crystal structure of N,N',N"-tris(2,6-diisopropylphenyl)guanidine (II) was reported by Boeré, Boeré et al. (2000) with the three aryl groups in the same syn-anti conformation (Gopi et al., 2010) as found in compound (I). Table 1 presents the selected geometric data for compounds (I) and (II). Coles (2006) has comprehensively reviewed the application of neutral amidines and guanidines as coordination ligands. Recently, a cobalt(II) complex of the title ligand has been used as a catalyst in the synthesis of polysubstituted arenes via the regioselective cyclotrimerization of alkynes (Eichman et al., 2011). Also, deprotonated N,N',N"-aryl guandines have been reported to stabilize low-coordinate As(III) cations (Brazeau et al., 2011).

The title compound has an η6–coordinated tricarbonylmolybdenum group with a Mo to ring-centroid distance of 1.958 (1)Å. The three CO groups are pseudooctahedraly disposed with C–Mo–C angles ranging from 80.7 (1) to 87.4 (1)°. The three 2,6-diisopropylphenyl rings have normals that are disposed at 79.78 (8)° (C3-C7), 75.96 (8)° (C14-C19) and 78.01 (9)° (C26-C31) to the guanidine plane defined by C1, N1-N3. The ring coordinated by Mo(CO)3 is bent back from the core such that C2 is located 0.090 (3) and N1 0.458 (4)Å from the plane defined by C3-C7. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This is possibly due to the steric effects of the bulky diisopropylphenyl groups. The orientation of the Mo(CO)3 unit and its geometric parameters are found to be very similar in compound (I) and in closely comparable tricarbonylmolybdenum complexes of structurally similar amidines (Boeré, Klassen & Wolmershäuser, 1998, 2000). The observed outward bending of the coordinated aryl ring suggests that some steric effects operate between the amidine/guanidine groups and the Mo(CO)3 units.

For the structure of the parent guanidine ligand, see: Boeré, Boeré et al. (2000). For a series of related guanidines with varying conformational isomers, see: Gopi et al. (2010). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman et al. (2011). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau et al. (2011). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006). For related amidine complexes in which Mo(CO)3 is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998, 2000). For thermal motion of carbonyl group oxygen atoms, see Braga & Koetzle (1988).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% probability ellipsoids. H atoms bonded to C atoms are not shown.
Tricarbonyl[N,N',N''-tris(2,6- diisopropylphenyl)guanidine]molybdenum(0) top
Crystal data top
[Mo(C37H53N3)(CO)3]Z = 2
Mr = 719.79F(000) = 760
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Melting point: 483 K
a = 10.6525 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7642 (14) ÅCell parameters from 8978 reflections
c = 16.5482 (19) Åθ = 2.2–26.7°
α = 89.128 (1)°µ = 0.39 mm1
β = 78.713 (1)°T = 173 K
γ = 67.240 (1)°Block, yellow
V = 1871.1 (4) Å30.29 × 0.12 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8399 independent reflections
Radiation source: X-ray6634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 0.015 pixels mm-1θmax = 27.4°, θmin = 1.9°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1515
Tmin = 0.705, Tmax = 0.746l = 2121
27034 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
8399 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 1.12 e Å3
2 restraintsΔρmin = 0.59 e Å3
0 constraints
Crystal data top
[Mo(C37H53N3)(CO)3]γ = 67.240 (1)°
Mr = 719.79V = 1871.1 (4) Å3
Triclinic, P1Z = 2
a = 10.6525 (12) ÅMo Kα radiation
b = 11.7642 (14) ŵ = 0.39 mm1
c = 16.5482 (19) ÅT = 173 K
α = 89.128 (1)°0.29 × 0.12 × 0.11 mm
β = 78.713 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
6634 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.746Rint = 0.042
27034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.12 e Å3
8399 reflectionsΔρmin = 0.59 e Å3
442 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex low temperature device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In the final cycle of LS refinement an unusually large residual peak of 1.13 e-/A3 was located about midway between carbonyl C1C and C2C. Though this might indicated positional disorder of the tripodal (CO)3 group, no similar peaks were found between the remaining C1C - C3C and C3C - C2C carbonyl groups. Finally, the model includes two NH groups that are potential H-bond donors. However H-bonding is not observed, probably due to steric constraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo0.71984 (2)0.914384 (19)0.598865 (13)0.03364 (9)
O1C0.6521 (2)1.06506 (19)0.76505 (13)0.0555 (6)
O2C0.6473 (3)1.1793 (2)0.54066 (17)0.0972 (11)
O3C0.4025 (2)0.9815 (3)0.61834 (16)0.0787 (8)
C1C0.6772 (3)1.0059 (2)0.70321 (17)0.0374 (6)
C2C0.6744 (4)1.0793 (3)0.56057 (19)0.0597 (10)
C3C0.5213 (3)0.9546 (3)0.61212 (18)0.0513 (8)
N10.91757 (19)0.62265 (16)0.68815 (11)0.0214 (4)
N20.7736 (2)0.76440 (17)0.79907 (12)0.0216 (4)
H20.743 (2)0.812 (2)0.7652 (13)0.026*
N30.9044 (2)0.56192 (16)0.82112 (11)0.0214 (4)
H30.852 (2)0.580 (2)0.8656 (12)0.026*
C10.8647 (2)0.65043 (19)0.76564 (13)0.0184 (4)
C20.8854 (2)0.7025 (2)0.62515 (13)0.0227 (5)
C30.9571 (2)0.7836 (2)0.60211 (14)0.0256 (5)
C40.9517 (3)0.8349 (2)0.52481 (15)0.0321 (6)
H41.00420.88340.50700.039*
C50.8699 (3)0.8155 (2)0.47345 (15)0.0366 (6)
H50.86860.84980.42110.044*
C60.7917 (3)0.7467 (2)0.49918 (15)0.0332 (6)
H60.73350.73740.46530.040*
C70.7965 (2)0.6890 (2)0.57589 (14)0.0259 (5)
C81.0516 (3)0.7977 (2)0.65510 (16)0.0327 (6)
H81.01550.78330.71310.039*
C91.1982 (3)0.6989 (3)0.62729 (19)0.0457 (7)
H9A1.19400.61710.62690.069*
H9B1.25630.70250.66550.069*
H9C1.23840.71350.57160.069*
C101.0555 (4)0.9255 (3)0.6556 (2)0.0520 (8)
H10A1.10010.93870.60060.078*
H10B1.10870.93210.69610.078*
H10C0.96040.98820.67030.078*
C110.7265 (3)0.5997 (2)0.59820 (16)0.0323 (6)
H110.70800.59760.65970.039*
C120.8290 (3)0.4709 (3)0.5621 (2)0.0552 (9)
H12A0.85340.47130.50190.083*
H12B0.78600.41120.57660.083*
H12C0.91330.44750.58480.083*
C130.5881 (3)0.6336 (3)0.5711 (2)0.0605 (9)
H13A0.52280.71490.59680.091*
H13B0.54970.57160.58830.091*
H13C0.60300.63620.51090.091*
C140.6968 (2)0.79018 (19)0.88280 (14)0.0233 (5)
C150.7616 (3)0.8093 (2)0.94427 (15)0.0275 (5)
C160.6854 (3)0.8331 (2)1.02566 (16)0.0375 (6)
H160.72680.84511.06890.045*
C170.5508 (3)0.8392 (3)1.04368 (17)0.0443 (7)
H170.50060.85521.09930.053*
C180.4895 (3)0.8225 (2)0.98302 (17)0.0381 (6)
H180.39620.82860.99690.046*
C190.5602 (2)0.7966 (2)0.90043 (15)0.0280 (5)
C200.9061 (3)0.8110 (2)0.92375 (16)0.0349 (6)
H200.96010.75170.87470.042*
C210.9865 (4)0.7713 (4)0.9927 (2)0.0661 (10)
H21A0.94230.83331.03950.099*
H21B1.08250.76350.97260.099*
H21C0.98650.69151.01060.099*
C220.8981 (3)0.9385 (3)0.8993 (2)0.0570 (9)
H22A0.85140.96160.85260.086*
H22B0.99230.93710.88350.086*
H22C0.84550.99900.94620.086*
C230.4864 (3)0.7839 (2)0.83388 (17)0.0339 (6)
H230.55820.74730.78230.041*
C240.4066 (3)0.6998 (3)0.8554 (2)0.0529 (8)
H24A0.46830.62100.87220.079*
H24B0.37380.68460.80690.079*
H24C0.32680.73990.90070.079*
C250.3861 (3)0.9100 (3)0.8160 (2)0.0516 (8)
H25A0.31440.94760.86580.077*
H25B0.34220.90050.77120.077*
H25C0.43720.96310.79960.077*
C260.9760 (2)0.43247 (19)0.79664 (13)0.0217 (5)
C271.1210 (2)0.3814 (2)0.77456 (14)0.0248 (5)
C281.1875 (3)0.2556 (2)0.75388 (16)0.0323 (6)
H281.28610.21920.73790.039*
C291.1121 (3)0.1821 (2)0.75617 (16)0.0357 (6)
H291.15920.09590.74210.043*
C300.9694 (3)0.2336 (2)0.77869 (16)0.0329 (6)
H300.91890.18220.78010.039*
C310.8980 (2)0.3592 (2)0.79933 (15)0.0257 (5)
C321.2042 (3)0.4605 (2)0.77695 (16)0.0323 (6)
H321.14740.54560.76310.039*
C331.3426 (3)0.4132 (3)0.7144 (2)0.0553 (9)
H33A1.40440.33360.73010.083*
H33B1.38630.47290.71360.083*
H33C1.32590.40290.65930.083*
C341.2277 (4)0.4691 (3)0.8638 (2)0.0538 (9)
H34A1.13810.49860.90300.081*
H34B1.27290.52700.86660.081*
H34C1.28740.38740.87780.081*
C350.7412 (3)0.4149 (2)0.82715 (18)0.0363 (6)
H350.70790.50300.81260.044*
C360.6700 (4)0.3517 (4)0.7839 (3)0.0876 (15)
H36A0.70770.34290.72430.131*
H36B0.56980.40150.79470.131*
H36C0.68680.26980.80470.131*
C370.7001 (3)0.4148 (4)0.9208 (2)0.0722 (12)
H37A0.73090.32950.93710.108*
H37B0.59880.45570.93820.108*
H37C0.74410.45930.94710.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo0.03955 (15)0.02627 (13)0.02197 (13)0.00019 (9)0.00416 (9)0.00151 (8)
O1C0.0845 (17)0.0362 (11)0.0350 (12)0.0190 (11)0.0031 (11)0.0101 (9)
O2C0.135 (3)0.0408 (14)0.0652 (17)0.0043 (15)0.0105 (17)0.0229 (12)
O3C0.0403 (14)0.104 (2)0.0611 (16)0.0089 (13)0.0167 (12)0.0177 (15)
C1C0.0464 (16)0.0236 (12)0.0330 (15)0.0066 (12)0.0023 (12)0.0044 (11)
C2C0.077 (2)0.0351 (16)0.0340 (17)0.0058 (15)0.0049 (16)0.0065 (13)
C3C0.0461 (19)0.0531 (19)0.0321 (16)0.0067 (15)0.0106 (13)0.0108 (13)
N10.0253 (10)0.0186 (9)0.0187 (9)0.0064 (8)0.0051 (8)0.0003 (7)
N20.0247 (10)0.0186 (9)0.0182 (10)0.0054 (8)0.0038 (8)0.0027 (7)
N30.0263 (10)0.0178 (9)0.0178 (10)0.0067 (8)0.0036 (8)0.0004 (7)
C10.0177 (10)0.0188 (10)0.0224 (11)0.0099 (9)0.0065 (9)0.0012 (8)
C20.0253 (12)0.0197 (11)0.0162 (11)0.0028 (9)0.0008 (9)0.0029 (8)
C30.0306 (13)0.0212 (11)0.0212 (12)0.0079 (10)0.0013 (10)0.0013 (9)
C40.0409 (15)0.0233 (12)0.0265 (13)0.0102 (11)0.0010 (11)0.0014 (10)
C50.0473 (16)0.0310 (13)0.0180 (12)0.0029 (12)0.0023 (11)0.0010 (10)
C60.0370 (14)0.0366 (14)0.0196 (12)0.0056 (11)0.0093 (10)0.0035 (10)
C70.0252 (12)0.0242 (11)0.0226 (12)0.0038 (10)0.0037 (9)0.0048 (9)
C80.0403 (15)0.0355 (14)0.0280 (13)0.0227 (12)0.0038 (11)0.0012 (11)
C90.0423 (17)0.0530 (18)0.0468 (18)0.0219 (14)0.0140 (14)0.0087 (14)
C100.064 (2)0.0426 (17)0.062 (2)0.0329 (16)0.0135 (17)0.0022 (15)
C110.0312 (13)0.0356 (14)0.0321 (14)0.0142 (11)0.0079 (11)0.0038 (11)
C120.0515 (19)0.0382 (16)0.074 (2)0.0225 (15)0.0038 (17)0.0221 (15)
C130.0406 (18)0.076 (2)0.076 (2)0.0293 (18)0.0241 (17)0.013 (2)
C140.0263 (12)0.0153 (10)0.0212 (11)0.0031 (9)0.0003 (9)0.0005 (8)
C150.0308 (13)0.0226 (11)0.0239 (12)0.0056 (10)0.0038 (10)0.0006 (9)
C160.0478 (17)0.0331 (14)0.0231 (13)0.0077 (12)0.0044 (12)0.0040 (10)
C170.0516 (18)0.0375 (15)0.0249 (14)0.0064 (13)0.0116 (13)0.0014 (11)
C180.0321 (14)0.0330 (14)0.0386 (16)0.0091 (11)0.0095 (12)0.0008 (11)
C190.0273 (12)0.0193 (11)0.0319 (13)0.0061 (10)0.0000 (10)0.0004 (9)
C200.0352 (14)0.0382 (14)0.0282 (14)0.0103 (12)0.0075 (11)0.0074 (11)
C210.051 (2)0.095 (3)0.049 (2)0.019 (2)0.0227 (17)0.0062 (19)
C220.0516 (19)0.0476 (19)0.077 (2)0.0270 (16)0.0093 (17)0.0006 (17)
C230.0262 (13)0.0328 (13)0.0401 (15)0.0109 (11)0.0023 (11)0.0039 (11)
C240.0420 (17)0.0404 (17)0.083 (2)0.0205 (14)0.0194 (17)0.0075 (16)
C250.059 (2)0.0410 (17)0.062 (2)0.0202 (15)0.0273 (17)0.0126 (15)
C260.0273 (12)0.0182 (10)0.0198 (11)0.0075 (9)0.0082 (9)0.0023 (8)
C270.0263 (12)0.0244 (11)0.0248 (12)0.0094 (10)0.0093 (10)0.0030 (9)
C280.0279 (13)0.0278 (13)0.0352 (14)0.0032 (10)0.0092 (11)0.0003 (10)
C290.0437 (15)0.0197 (12)0.0385 (15)0.0050 (11)0.0117 (12)0.0040 (10)
C300.0419 (15)0.0231 (12)0.0409 (15)0.0162 (11)0.0176 (12)0.0022 (11)
C310.0297 (12)0.0237 (11)0.0275 (13)0.0118 (10)0.0114 (10)0.0048 (9)
C320.0263 (13)0.0301 (13)0.0433 (16)0.0124 (11)0.0112 (11)0.0087 (11)
C330.0300 (15)0.0543 (19)0.077 (2)0.0161 (14)0.0033 (15)0.0110 (17)
C340.073 (2)0.0541 (19)0.063 (2)0.0444 (18)0.0377 (18)0.0156 (16)
C350.0300 (14)0.0335 (14)0.0526 (17)0.0170 (11)0.0158 (12)0.0135 (12)
C360.045 (2)0.071 (3)0.162 (5)0.0293 (19)0.040 (3)0.015 (3)
C370.0369 (18)0.097 (3)0.064 (2)0.0136 (18)0.0020 (16)0.038 (2)
Geometric parameters (Å, º) top
Mo—C1C1.928 (3)C19—C231.513 (4)
Mo—C2C1.938 (3)C20—C211.520 (4)
O1C—C1C1.172 (3)C20—C221.522 (4)
O2C—C2C1.156 (4)C20—H201.0000
O3C—C3C1.164 (4)C21—H21A0.9800
N1—C11.287 (3)C21—H21B0.9800
N1—C21.395 (3)C21—H21C0.9800
N2—C11.361 (3)C22—H22A0.9800
N2—C141.435 (3)C22—H22B0.9800
N2—H20.809 (16)C22—H22C0.9800
N3—C11.374 (3)C23—C251.521 (4)
N3—C261.437 (3)C23—C241.533 (4)
N3—H30.807 (16)C23—H231.0000
C2—C71.417 (3)C24—H24A0.9800
C3—C41.408 (3)C24—H24B0.9800
C4—C51.408 (4)C24—H24C0.9800
C4—H40.9500C25—H25A0.9800
C5—C61.379 (4)C25—H25B0.9800
C5—H50.9500C25—H25C0.9800
C6—C71.431 (3)C26—C271.395 (3)
C6—H60.9500C26—C311.406 (3)
C8—C101.520 (4)C27—C281.386 (3)
C8—C91.527 (4)C27—C321.518 (3)
C8—H81.0000C28—C291.385 (4)
C9—H9A0.9800C28—H280.9500
C9—H9B0.9800C29—C301.374 (4)
C9—H9C0.9800C29—H290.9500
C10—H10A0.9800C30—C311.387 (3)
C10—H10B0.9800C30—H300.9500
C10—H10C0.9800C31—C351.514 (3)
C11—C131.527 (4)C32—C341.518 (4)
C11—C121.529 (4)C32—C331.530 (4)
C11—H111.0000C32—H321.0000
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
C13—H13A0.9800C34—H34A0.9800
C13—H13B0.9800C34—H34B0.9800
C13—H13C0.9800C34—H34C0.9800
C14—C191.398 (3)C35—C361.518 (4)
C14—C151.401 (3)C35—C371.525 (4)
C15—C161.400 (3)C35—H351.0000
C15—C201.519 (4)C36—H36A0.9800
C16—C171.379 (4)C36—H36B0.9800
C16—H160.9500C36—H36C0.9800
C17—C181.355 (4)C37—H37A0.9800
C17—H170.9500C37—H37B0.9800
C18—C191.400 (3)C37—H37C0.9800
C18—H180.9500
C1C—Mo—C2C80.69 (12)C22—C20—H20107.5
O1C—C1C—Mo177.4 (2)C20—C21—H21A109.5
O2C—C2C—Mo177.4 (3)C20—C21—H21B109.5
O3C—C3C—Mo177.9 (3)H21A—C21—H21B109.5
C1—N1—C2125.51 (19)C20—C21—H21C109.5
C1—N2—C14124.59 (18)H21A—C21—H21C109.5
C1—N2—H2113.7 (18)H21B—C21—H21C109.5
C14—N2—H2117.9 (18)C20—C22—H22A109.5
C1—N3—C26122.77 (18)C20—C22—H22B109.5
C1—N3—H3112.9 (18)H22A—C22—H22B109.5
C26—N3—H3116.6 (18)C20—C22—H22C109.5
N1—C1—N2125.0 (2)H22A—C22—H22C109.5
N1—C1—N3119.41 (19)H22B—C22—H22C109.5
N2—C1—N3115.57 (19)C19—C23—C25110.5 (2)
N1—C2—C7118.4 (2)C19—C23—C24113.4 (2)
C4—C3—C2118.5 (2)C25—C23—C24108.9 (2)
C3—C4—C5121.1 (2)C19—C23—H23108.0
C3—C4—H4119.4C25—C23—H23108.0
C5—C4—H4119.4C24—C23—H23108.0
C6—C5—C4120.0 (2)C23—C24—H24A109.5
C6—C5—H5120.0C23—C24—H24B109.5
C4—C5—H5120.0H24A—C24—H24B109.5
C5—C6—C7121.4 (2)C23—C24—H24C109.5
C5—C6—H6119.3H24A—C24—H24C109.5
C7—C6—H6119.3H24B—C24—H24C109.5
C2—C7—C6118.5 (2)C23—C25—H25A109.5
C3—C8—C10113.4 (2)C23—C25—H25B109.5
C3—C8—C9109.8 (2)H25A—C25—H25B109.5
C10—C8—C9110.4 (2)C23—C25—H25C109.5
C3—C8—H8107.6H25A—C25—H25C109.5
C10—C8—H8107.6H25B—C25—H25C109.5
C9—C8—H8107.6C27—C26—C31121.6 (2)
C8—C9—H9A109.5C27—C26—N3119.6 (2)
C8—C9—H9B109.5C31—C26—N3118.8 (2)
H9A—C9—H9B109.5C28—C27—C26118.3 (2)
C8—C9—H9C109.5C28—C27—C32120.7 (2)
H9A—C9—H9C109.5C26—C27—C32120.9 (2)
H9B—C9—H9C109.5C29—C28—C27120.8 (2)
C8—C10—H10A109.5C29—C28—H28119.6
C8—C10—H10B109.5C27—C28—H28119.6
H10A—C10—H10B109.5C30—C29—C28120.2 (2)
C8—C10—H10C109.5C30—C29—H29119.9
H10A—C10—H10C109.5C28—C29—H29119.9
H10B—C10—H10C109.5C29—C30—C31121.1 (2)
C7—C11—C13114.8 (2)C29—C30—H30119.4
C7—C11—C12108.1 (2)C31—C30—H30119.4
C13—C11—C12110.8 (2)C30—C31—C26117.9 (2)
C7—C11—H11107.6C30—C31—C35121.0 (2)
C13—C11—H11107.6C26—C31—C35121.0 (2)
C12—C11—H11107.6C34—C32—C27109.5 (2)
C11—C12—H12A109.5C34—C32—C33110.7 (2)
C11—C12—H12B109.5C27—C32—C33113.0 (2)
H12A—C12—H12B109.5C34—C32—H32107.8
C11—C12—H12C109.5C27—C32—H32107.8
H12A—C12—H12C109.5C33—C32—H32107.8
H12B—C12—H12C109.5C32—C33—H33A109.5
C11—C13—H13A109.5C32—C33—H33B109.5
C11—C13—H13B109.5H33A—C33—H33B109.5
H13A—C13—H13B109.5C32—C33—H33C109.5
C11—C13—H13C109.5H33A—C33—H33C109.5
H13A—C13—H13C109.5H33B—C33—H33C109.5
H13B—C13—H13C109.5C32—C34—H34A109.5
C19—C14—C15122.2 (2)C32—C34—H34B109.5
C19—C14—N2119.4 (2)H34A—C34—H34B109.5
C15—C14—N2118.4 (2)C32—C34—H34C109.5
C16—C15—C14117.5 (2)H34A—C34—H34C109.5
C16—C15—C20120.6 (2)H34B—C34—H34C109.5
C14—C15—C20121.8 (2)C31—C35—C36112.8 (3)
C17—C16—C15120.7 (3)C31—C35—C37110.3 (2)
C17—C16—H16119.7C36—C35—C37111.2 (3)
C15—C16—H16119.7C31—C35—H35107.4
C18—C17—C16120.7 (2)C36—C35—H35107.4
C18—C17—H17119.6C37—C35—H35107.4
C16—C17—H17119.6C35—C36—H36A109.5
C17—C18—C19121.6 (3)C35—C36—H36B109.5
C17—C18—H18119.2H36A—C36—H36B109.5
C19—C18—H18119.2C35—C36—H36C109.5
C14—C19—C18117.2 (2)H36A—C36—H36C109.5
C14—C19—C23122.6 (2)H36B—C36—H36C109.5
C18—C19—C23120.1 (2)C35—C37—H37A109.5
C15—C20—C21114.0 (2)C35—C37—H37B109.5
C15—C20—C22110.4 (2)H37A—C37—H37B109.5
C21—C20—C22109.7 (3)C35—C37—H37C109.5
C15—C20—H20107.5H37A—C37—H37C109.5
C21—C20—H20107.5H37B—C37—H37C109.5
C2—N1—C1—N23.4 (4)N2—C14—C19—C233.2 (3)
C2—N1—C1—N3179.0 (2)C17—C18—C19—C140.8 (4)
C14—N2—C1—N1168.7 (2)C17—C18—C19—C23177.5 (2)
C14—N2—C1—N313.7 (3)C16—C15—C20—C2131.2 (4)
C26—N3—C1—N115.4 (3)C14—C15—C20—C21152.1 (3)
C26—N3—C1—N2166.85 (19)C16—C15—C20—C2292.9 (3)
C1—N1—C2—C7103.3 (3)C14—C15—C20—C2283.9 (3)
N1—C2—C3—C4161.8 (2)C14—C19—C23—C25101.8 (3)
C7—C2—C3—C48.6 (3)C18—C19—C23—C2574.7 (3)
C2—C3—C4—C54.8 (3)C14—C19—C23—C24135.6 (2)
C3—C4—C5—C60.9 (4)C18—C19—C23—C2447.9 (3)
C4—C5—C6—C73.0 (4)C1—N3—C26—C2788.2 (3)
N1—C2—C7—C6164.0 (2)C1—N3—C26—C3194.8 (3)
C5—C6—C7—C20.8 (3)C31—C26—C27—C280.9 (3)
C4—C3—C8—C1040.7 (3)N3—C26—C27—C28177.9 (2)
C2—C3—C8—C10148.0 (2)C31—C26—C27—C32176.3 (2)
C4—C3—C8—C983.4 (3)N3—C26—C27—C320.7 (3)
C2—C3—C8—C987.9 (3)C26—C27—C28—C290.9 (4)
C2—C7—C11—C13152.1 (2)C32—C27—C28—C29176.3 (2)
C6—C7—C11—C1337.5 (3)C27—C28—C29—C300.4 (4)
C2—C7—C11—C1283.7 (3)C28—C29—C30—C310.1 (4)
C6—C7—C11—C1286.8 (3)C29—C30—C31—C260.1 (4)
C1—N2—C14—C1996.6 (3)C29—C30—C31—C35177.7 (2)
C1—N2—C14—C1584.0 (3)C27—C26—C31—C300.5 (3)
C19—C14—C15—C161.3 (3)N3—C26—C31—C30177.4 (2)
N2—C14—C15—C16179.4 (2)C27—C26—C31—C35177.2 (2)
C19—C14—C15—C20175.6 (2)N3—C26—C31—C350.2 (3)
N2—C14—C15—C203.8 (3)C28—C27—C32—C3492.4 (3)
C14—C15—C16—C171.0 (4)C26—C27—C32—C3484.7 (3)
C20—C15—C16—C17175.9 (2)C28—C27—C32—C3331.5 (3)
C15—C16—C17—C180.1 (4)C26—C27—C32—C33151.4 (2)
C16—C17—C18—C191.1 (4)C30—C31—C35—C3634.8 (4)
C15—C14—C19—C180.4 (3)C26—C31—C35—C36147.6 (3)
N2—C14—C19—C18179.8 (2)C30—C31—C35—C3790.2 (3)
C15—C14—C19—C23176.2 (2)C26—C31—C35—C3787.3 (3)

Experimental details

Crystal data
Chemical formula[Mo(C37H53N3)(CO)3]
Mr719.79
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.6525 (12), 11.7642 (14), 16.5482 (19)
α, β, γ (°)89.128 (1), 78.713 (1), 67.240 (1)
V3)1871.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.29 × 0.12 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.705, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
27034, 8399, 6634
Rint0.042
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.05
No. of reflections8399
No. of parameters442
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.59

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Comparison of interatomic distances (Å, °) of (I) with free guanidine, (II) top
C1—N1C1—N2C1—N3N1—C1—N2N2—C1—N3N3—C1—N1
(I)1.287 (3)1.361 (3)1.374 (3)125.0 (2)115.57 (19)119.42 (19)
(II)1.316 (2)1.348 (2)1.357 (2)121.99 (13)118.47 (14)119.52 (13)
 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationBoeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613–1619.  Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147–4154.  Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 583–589.  Google Scholar
First citationBraga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151–156.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrazeau, A., Nikouline, A. S. & Ragogna, P. J. (2011). Chem. Commun. 47, 4817–4819.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, M. P. (2006). Dalton Trans. pp. 985–1001.  Web of Science CrossRef Google Scholar
First citationEichman, C. C., Bragdon, J. P. & Stambuli, J. P. (2011). Synlett, pp. 1109–1112.  Google Scholar
First citationGopi, K., Rathi, B. & Thirupathi, N. (2010). J. Chem. Sci. 122, 157–167.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m895-m896
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds