metal-organic compounds
Tricarbonyl[N,N′,N′′-tris(2,6-diisopropylphenyl)guanidine]molybdenum(0)
aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4, and bThe Maritime Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, NS, Canada B3H 3C3
*Correspondence e-mail: boere@uleth.ca
In the title compound, [Mo(C37H53N3)(CO)3], the Mo atom to ring-centroid distance in the η6-coordinated tricarbonylmolybdenum group is 1.958 (1) Å. The three C≡O groups are pseudo-octahedrally disposed with C—Mo—C angles ranging from 80.7 (1) to 87.4 (1)°. The two uncoordinated 2,6-diisopropylphenyl-substituted benzene rings form dihedral angles of 75.96 (8) and 78.01 (9)° with the mean plane of the guanidine group. The coordinated benzene ring is in a slight sofa conformation with the N-substituted C atom and the bonded N atom dispaced by 0.090 (3) and 0.458 (4) Å, respectively, from the mean plane of the remaining ring atoms. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This may be because of the steric effects of the bulky diisopropylphenyl groups.
Related literature
For the structure of the parent guanidine ligand, see: Boeré, Boeré et al. (2000). For a series of related guanidines with varying conformational isomers, see: Gopi et al. (2010). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman et al. (2011). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau et al. (2011). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006). For related amidine complexes in which Mo(CO)3 is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998, 2000). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988)
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811021441/lh5261sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021441/lh5261Isup2.hkl
The compound was prepared by a thermal reaction between the neural guanidine ligand and Mo(CO)6 as described in Boeré, Boeré et al. (2000). Full characterization by elemental analysis, NMR,
and infra-red spectroscopy are provided there.Hydrogen atoms attached to carbon were refined using a riding model with temperature factors of 1.2 (CH) or 1.5 (CH3) × the equivalent isotropic values of the attached atoms. H2 and H3 attached to nitrogen were positionally refined using distance restraints of 0.88 Å and temperature factors 1.2 × the equivalent isotropic values of N2 and N3. Two reflections have unusually large deviations from the weighted errors of their intensities; no obvious cause could be determined for this effect. The isopropyl methyl groups are found to librate more than other carbon atoms but this effect is commonly observed in 2,6-diisopropylphenyl compounds. A rotational disorder model for isopropyl groups was judged to be unwarranted. Similarly, the carbonyl group oxygen atoms display considerable thermal motion, but this is also a well known behaviour, see Braga & Koetzle (1988).
The molecular stucture of the title compound, (I), is shown in Figure 1. The X-ray
of N,N',N"-tris(2,6-diisopropylphenyl)guanidine (II) was reported by Boeré, Boeré et al. (2000) with the three in the same syn-anti conformation (Gopi et al., 2010) as found in compound (I). Table 1 presents the selected geometric data for compounds (I) and (II). Coles (2006) has comprehensively reviewed the application of neutral and guanidines as coordination ligands. Recently, a cobalt(II) complex of the title ligand has been used as a catalyst in the synthesis of polysubstituted via the regioselective cyclotrimerization of (Eichman et al., 2011). Also, deprotonated N,N',N"-aryl guandines have been reported to stabilize low-coordinate As(III) cations (Brazeau et al., 2011).The title compound has an η6–coordinated tricarbonylmolybdenum group with a Mo to ring-centroid distance of 1.958 (1)Å. The three C≡O groups are pseudooctahedraly disposed with C–Mo–C angles ranging from 80.7 (1) to 87.4 (1)°. The three 2,6-diisopropylphenyl rings have normals that are disposed at 79.78 (8)° (C3-C7), 75.96 (8)° (C14-C19) and 78.01 (9)° (C26-C31) to the guanidine plane defined by C1, N1-N3. The ring coordinated by Mo(CO)3 is bent back from the core such that C2 is located 0.090 (3) and N1 0.458 (4)Å from the plane defined by C3-C7. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This is possibly due to the steric effects of the bulky diisopropylphenyl groups. The orientation of the Mo(CO)3 unit and its geometric parameters are found to be very similar in compound (I) and in closely comparable tricarbonylmolybdenum complexes of structurally similar (Boeré, Klassen & Wolmershäuser, 1998, 2000). The observed outward bending of the coordinated aryl ring suggests that some steric effects operate between the amidine/guanidine groups and the Mo(CO)3 units.
For the structure of the parent guanidine ligand, see: Boeré, Boeré et al. (2000). For a series of related guanidines with varying conformational isomers, see: Gopi et al. (2010). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman et al. (2011). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau et al. (2011). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006). For related amidine complexes in which Mo(CO)3 is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998, 2000). For thermal motion of carbonyl group oxygen atoms, see Braga & Koetzle (1988).
Data collection: APEX2 (Bruker, 2006); cell
SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) shown with 30% probability ellipsoids. H atoms bonded to C atoms are not shown. |
[Mo(C37H53N3)(CO)3] | Z = 2 |
Mr = 719.79 | F(000) = 760 |
Triclinic, P1 | Dx = 1.278 Mg m−3 |
Hall symbol: -P 1 | Melting point: 483 K |
a = 10.6525 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7642 (14) Å | Cell parameters from 8978 reflections |
c = 16.5482 (19) Å | θ = 2.2–26.7° |
α = 89.128 (1)° | µ = 0.39 mm−1 |
β = 78.713 (1)° | T = 173 K |
γ = 67.240 (1)° | Block, yellow |
V = 1871.1 (4) Å3 | 0.29 × 0.12 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 8399 independent reflections |
Radiation source: X-ray | 6634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 0.015 pixels mm-1 | θmax = 27.4°, θmin = 1.9° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | k = −15→15 |
Tmin = 0.705, Tmax = 0.746 | l = −21→21 |
27034 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0637P)2] where P = (Fo2 + 2Fc2)/3 |
8399 reflections | (Δ/σ)max = 0.001 |
442 parameters | Δρmax = 1.12 e Å−3 |
2 restraints | Δρmin = −0.59 e Å−3 |
0 constraints |
[Mo(C37H53N3)(CO)3] | γ = 67.240 (1)° |
Mr = 719.79 | V = 1871.1 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.6525 (12) Å | Mo Kα radiation |
b = 11.7642 (14) Å | µ = 0.39 mm−1 |
c = 16.5482 (19) Å | T = 173 K |
α = 89.128 (1)° | 0.29 × 0.12 × 0.11 mm |
β = 78.713 (1)° |
Bruker APEXII CCD area-detector diffractometer | 8399 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 6634 reflections with I > 2σ(I) |
Tmin = 0.705, Tmax = 0.746 | Rint = 0.042 |
27034 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 2 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.12 e Å−3 |
8399 reflections | Δρmin = −0.59 e Å−3 |
442 parameters |
Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex low temperature device. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In the final cycle of LS refinement an unusually large residual peak of 1.13 e-/A3 was located about midway between carbonyl C1C and C2C. Though this might indicated positional disorder of the tripodal (CO)3 group, no similar peaks were found between the remaining C1C - C3C and C3C - C2C carbonyl groups. Finally, the model includes two NH groups that are potential H-bond donors. However H-bonding is not observed, probably due to steric constraints. |
x | y | z | Uiso*/Ueq | ||
Mo | 0.71984 (2) | 0.914384 (19) | 0.598865 (13) | 0.03364 (9) | |
O1C | 0.6521 (2) | 1.06506 (19) | 0.76505 (13) | 0.0555 (6) | |
O2C | 0.6473 (3) | 1.1793 (2) | 0.54066 (17) | 0.0972 (11) | |
O3C | 0.4025 (2) | 0.9815 (3) | 0.61834 (16) | 0.0787 (8) | |
C1C | 0.6772 (3) | 1.0059 (2) | 0.70321 (17) | 0.0374 (6) | |
C2C | 0.6744 (4) | 1.0793 (3) | 0.56057 (19) | 0.0597 (10) | |
C3C | 0.5213 (3) | 0.9546 (3) | 0.61212 (18) | 0.0513 (8) | |
N1 | 0.91757 (19) | 0.62265 (16) | 0.68815 (11) | 0.0214 (4) | |
N2 | 0.7736 (2) | 0.76440 (17) | 0.79907 (12) | 0.0216 (4) | |
H2 | 0.743 (2) | 0.812 (2) | 0.7652 (13) | 0.026* | |
N3 | 0.9044 (2) | 0.56192 (16) | 0.82112 (11) | 0.0214 (4) | |
H3 | 0.852 (2) | 0.580 (2) | 0.8656 (12) | 0.026* | |
C1 | 0.8647 (2) | 0.65043 (19) | 0.76564 (13) | 0.0184 (4) | |
C2 | 0.8854 (2) | 0.7025 (2) | 0.62515 (13) | 0.0227 (5) | |
C3 | 0.9571 (2) | 0.7836 (2) | 0.60211 (14) | 0.0256 (5) | |
C4 | 0.9517 (3) | 0.8349 (2) | 0.52481 (15) | 0.0321 (6) | |
H4 | 1.0042 | 0.8834 | 0.5070 | 0.039* | |
C5 | 0.8699 (3) | 0.8155 (2) | 0.47345 (15) | 0.0366 (6) | |
H5 | 0.8686 | 0.8498 | 0.4211 | 0.044* | |
C6 | 0.7917 (3) | 0.7467 (2) | 0.49918 (15) | 0.0332 (6) | |
H6 | 0.7335 | 0.7374 | 0.4653 | 0.040* | |
C7 | 0.7965 (2) | 0.6890 (2) | 0.57589 (14) | 0.0259 (5) | |
C8 | 1.0516 (3) | 0.7977 (2) | 0.65510 (16) | 0.0327 (6) | |
H8 | 1.0155 | 0.7833 | 0.7131 | 0.039* | |
C9 | 1.1982 (3) | 0.6989 (3) | 0.62729 (19) | 0.0457 (7) | |
H9A | 1.1940 | 0.6171 | 0.6269 | 0.069* | |
H9B | 1.2563 | 0.7025 | 0.6655 | 0.069* | |
H9C | 1.2384 | 0.7135 | 0.5716 | 0.069* | |
C10 | 1.0555 (4) | 0.9255 (3) | 0.6556 (2) | 0.0520 (8) | |
H10A | 1.1001 | 0.9387 | 0.6006 | 0.078* | |
H10B | 1.1087 | 0.9321 | 0.6961 | 0.078* | |
H10C | 0.9604 | 0.9882 | 0.6703 | 0.078* | |
C11 | 0.7265 (3) | 0.5997 (2) | 0.59820 (16) | 0.0323 (6) | |
H11 | 0.7080 | 0.5976 | 0.6597 | 0.039* | |
C12 | 0.8290 (3) | 0.4709 (3) | 0.5621 (2) | 0.0552 (9) | |
H12A | 0.8534 | 0.4713 | 0.5019 | 0.083* | |
H12B | 0.7860 | 0.4112 | 0.5766 | 0.083* | |
H12C | 0.9133 | 0.4475 | 0.5848 | 0.083* | |
C13 | 0.5881 (3) | 0.6336 (3) | 0.5711 (2) | 0.0605 (9) | |
H13A | 0.5228 | 0.7149 | 0.5968 | 0.091* | |
H13B | 0.5497 | 0.5716 | 0.5883 | 0.091* | |
H13C | 0.6030 | 0.6362 | 0.5109 | 0.091* | |
C14 | 0.6968 (2) | 0.79018 (19) | 0.88280 (14) | 0.0233 (5) | |
C15 | 0.7616 (3) | 0.8093 (2) | 0.94427 (15) | 0.0275 (5) | |
C16 | 0.6854 (3) | 0.8331 (2) | 1.02566 (16) | 0.0375 (6) | |
H16 | 0.7268 | 0.8451 | 1.0689 | 0.045* | |
C17 | 0.5508 (3) | 0.8392 (3) | 1.04368 (17) | 0.0443 (7) | |
H17 | 0.5006 | 0.8552 | 1.0993 | 0.053* | |
C18 | 0.4895 (3) | 0.8225 (2) | 0.98302 (17) | 0.0381 (6) | |
H18 | 0.3962 | 0.8286 | 0.9969 | 0.046* | |
C19 | 0.5602 (2) | 0.7966 (2) | 0.90043 (15) | 0.0280 (5) | |
C20 | 0.9061 (3) | 0.8110 (2) | 0.92375 (16) | 0.0349 (6) | |
H20 | 0.9601 | 0.7517 | 0.8747 | 0.042* | |
C21 | 0.9865 (4) | 0.7713 (4) | 0.9927 (2) | 0.0661 (10) | |
H21A | 0.9423 | 0.8333 | 1.0395 | 0.099* | |
H21B | 1.0825 | 0.7635 | 0.9726 | 0.099* | |
H21C | 0.9865 | 0.6915 | 1.0106 | 0.099* | |
C22 | 0.8981 (3) | 0.9385 (3) | 0.8993 (2) | 0.0570 (9) | |
H22A | 0.8514 | 0.9616 | 0.8526 | 0.086* | |
H22B | 0.9923 | 0.9371 | 0.8835 | 0.086* | |
H22C | 0.8455 | 0.9990 | 0.9462 | 0.086* | |
C23 | 0.4864 (3) | 0.7839 (2) | 0.83388 (17) | 0.0339 (6) | |
H23 | 0.5582 | 0.7473 | 0.7823 | 0.041* | |
C24 | 0.4066 (3) | 0.6998 (3) | 0.8554 (2) | 0.0529 (8) | |
H24A | 0.4683 | 0.6210 | 0.8722 | 0.079* | |
H24B | 0.3738 | 0.6846 | 0.8069 | 0.079* | |
H24C | 0.3268 | 0.7399 | 0.9007 | 0.079* | |
C25 | 0.3861 (3) | 0.9100 (3) | 0.8160 (2) | 0.0516 (8) | |
H25A | 0.3144 | 0.9476 | 0.8658 | 0.077* | |
H25B | 0.3422 | 0.9005 | 0.7712 | 0.077* | |
H25C | 0.4372 | 0.9631 | 0.7996 | 0.077* | |
C26 | 0.9760 (2) | 0.43247 (19) | 0.79664 (13) | 0.0217 (5) | |
C27 | 1.1210 (2) | 0.3814 (2) | 0.77456 (14) | 0.0248 (5) | |
C28 | 1.1875 (3) | 0.2556 (2) | 0.75388 (16) | 0.0323 (6) | |
H28 | 1.2861 | 0.2192 | 0.7379 | 0.039* | |
C29 | 1.1121 (3) | 0.1821 (2) | 0.75617 (16) | 0.0357 (6) | |
H29 | 1.1592 | 0.0959 | 0.7421 | 0.043* | |
C30 | 0.9694 (3) | 0.2336 (2) | 0.77869 (16) | 0.0329 (6) | |
H30 | 0.9189 | 0.1822 | 0.7801 | 0.039* | |
C31 | 0.8980 (2) | 0.3592 (2) | 0.79933 (15) | 0.0257 (5) | |
C32 | 1.2042 (3) | 0.4605 (2) | 0.77695 (16) | 0.0323 (6) | |
H32 | 1.1474 | 0.5456 | 0.7631 | 0.039* | |
C33 | 1.3426 (3) | 0.4132 (3) | 0.7144 (2) | 0.0553 (9) | |
H33A | 1.4044 | 0.3336 | 0.7301 | 0.083* | |
H33B | 1.3863 | 0.4729 | 0.7136 | 0.083* | |
H33C | 1.3259 | 0.4029 | 0.6593 | 0.083* | |
C34 | 1.2277 (4) | 0.4691 (3) | 0.8638 (2) | 0.0538 (9) | |
H34A | 1.1381 | 0.4986 | 0.9030 | 0.081* | |
H34B | 1.2729 | 0.5270 | 0.8666 | 0.081* | |
H34C | 1.2874 | 0.3874 | 0.8778 | 0.081* | |
C35 | 0.7412 (3) | 0.4149 (2) | 0.82715 (18) | 0.0363 (6) | |
H35 | 0.7079 | 0.5030 | 0.8126 | 0.044* | |
C36 | 0.6700 (4) | 0.3517 (4) | 0.7839 (3) | 0.0876 (15) | |
H36A | 0.7077 | 0.3429 | 0.7243 | 0.131* | |
H36B | 0.5698 | 0.4015 | 0.7947 | 0.131* | |
H36C | 0.6868 | 0.2698 | 0.8047 | 0.131* | |
C37 | 0.7001 (3) | 0.4148 (4) | 0.9208 (2) | 0.0722 (12) | |
H37A | 0.7309 | 0.3295 | 0.9371 | 0.108* | |
H37B | 0.5988 | 0.4557 | 0.9382 | 0.108* | |
H37C | 0.7441 | 0.4593 | 0.9471 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo | 0.03955 (15) | 0.02627 (13) | 0.02197 (13) | 0.00019 (9) | −0.00416 (9) | 0.00151 (8) |
O1C | 0.0845 (17) | 0.0362 (11) | 0.0350 (12) | −0.0190 (11) | 0.0031 (11) | −0.0101 (9) |
O2C | 0.135 (3) | 0.0408 (14) | 0.0652 (17) | 0.0043 (15) | 0.0105 (17) | 0.0229 (12) |
O3C | 0.0403 (14) | 0.104 (2) | 0.0611 (16) | 0.0089 (13) | −0.0167 (12) | −0.0177 (15) |
C1C | 0.0464 (16) | 0.0236 (12) | 0.0330 (15) | −0.0066 (12) | −0.0023 (12) | 0.0044 (11) |
C2C | 0.077 (2) | 0.0351 (16) | 0.0340 (17) | 0.0058 (15) | 0.0049 (16) | 0.0065 (13) |
C3C | 0.0461 (19) | 0.0531 (19) | 0.0321 (16) | 0.0067 (15) | −0.0106 (13) | −0.0108 (13) |
N1 | 0.0253 (10) | 0.0186 (9) | 0.0187 (9) | −0.0064 (8) | −0.0051 (8) | −0.0003 (7) |
N2 | 0.0247 (10) | 0.0186 (9) | 0.0182 (10) | −0.0054 (8) | −0.0038 (8) | 0.0027 (7) |
N3 | 0.0263 (10) | 0.0178 (9) | 0.0178 (10) | −0.0067 (8) | −0.0036 (8) | 0.0004 (7) |
C1 | 0.0177 (10) | 0.0188 (10) | 0.0224 (11) | −0.0099 (9) | −0.0065 (9) | 0.0012 (8) |
C2 | 0.0253 (12) | 0.0197 (11) | 0.0162 (11) | −0.0028 (9) | −0.0008 (9) | −0.0029 (8) |
C3 | 0.0306 (13) | 0.0212 (11) | 0.0212 (12) | −0.0079 (10) | −0.0013 (10) | −0.0013 (9) |
C4 | 0.0409 (15) | 0.0233 (12) | 0.0265 (13) | −0.0102 (11) | 0.0010 (11) | 0.0014 (10) |
C5 | 0.0473 (16) | 0.0310 (13) | 0.0180 (12) | −0.0029 (12) | −0.0023 (11) | 0.0010 (10) |
C6 | 0.0370 (14) | 0.0366 (14) | 0.0196 (12) | −0.0056 (11) | −0.0093 (10) | −0.0035 (10) |
C7 | 0.0252 (12) | 0.0242 (11) | 0.0226 (12) | −0.0038 (10) | −0.0037 (9) | −0.0048 (9) |
C8 | 0.0403 (15) | 0.0355 (14) | 0.0280 (13) | −0.0227 (12) | −0.0038 (11) | 0.0012 (11) |
C9 | 0.0423 (17) | 0.0530 (18) | 0.0468 (18) | −0.0219 (14) | −0.0140 (14) | 0.0087 (14) |
C10 | 0.064 (2) | 0.0426 (17) | 0.062 (2) | −0.0329 (16) | −0.0135 (17) | −0.0022 (15) |
C11 | 0.0312 (13) | 0.0356 (14) | 0.0321 (14) | −0.0142 (11) | −0.0079 (11) | −0.0038 (11) |
C12 | 0.0515 (19) | 0.0382 (16) | 0.074 (2) | −0.0225 (15) | 0.0038 (17) | −0.0221 (15) |
C13 | 0.0406 (18) | 0.076 (2) | 0.076 (2) | −0.0293 (18) | −0.0241 (17) | 0.013 (2) |
C14 | 0.0263 (12) | 0.0153 (10) | 0.0212 (11) | −0.0031 (9) | 0.0003 (9) | 0.0005 (8) |
C15 | 0.0308 (13) | 0.0226 (11) | 0.0239 (12) | −0.0056 (10) | −0.0038 (10) | −0.0006 (9) |
C16 | 0.0478 (17) | 0.0331 (14) | 0.0231 (13) | −0.0077 (12) | −0.0044 (12) | −0.0040 (10) |
C17 | 0.0516 (18) | 0.0375 (15) | 0.0249 (14) | −0.0064 (13) | 0.0116 (13) | −0.0014 (11) |
C18 | 0.0321 (14) | 0.0330 (14) | 0.0386 (16) | −0.0091 (11) | 0.0095 (12) | −0.0008 (11) |
C19 | 0.0273 (12) | 0.0193 (11) | 0.0319 (13) | −0.0061 (10) | 0.0000 (10) | 0.0004 (9) |
C20 | 0.0352 (14) | 0.0382 (14) | 0.0282 (14) | −0.0103 (12) | −0.0075 (11) | −0.0074 (11) |
C21 | 0.051 (2) | 0.095 (3) | 0.049 (2) | −0.019 (2) | −0.0227 (17) | 0.0062 (19) |
C22 | 0.0516 (19) | 0.0476 (19) | 0.077 (2) | −0.0270 (16) | −0.0093 (17) | 0.0006 (17) |
C23 | 0.0262 (13) | 0.0328 (13) | 0.0401 (15) | −0.0109 (11) | −0.0023 (11) | −0.0039 (11) |
C24 | 0.0420 (17) | 0.0404 (17) | 0.083 (2) | −0.0205 (14) | −0.0194 (17) | 0.0075 (16) |
C25 | 0.059 (2) | 0.0410 (17) | 0.062 (2) | −0.0202 (15) | −0.0273 (17) | 0.0126 (15) |
C26 | 0.0273 (12) | 0.0182 (10) | 0.0198 (11) | −0.0075 (9) | −0.0082 (9) | 0.0023 (8) |
C27 | 0.0263 (12) | 0.0244 (11) | 0.0248 (12) | −0.0094 (10) | −0.0093 (10) | 0.0030 (9) |
C28 | 0.0279 (13) | 0.0278 (13) | 0.0352 (14) | −0.0032 (10) | −0.0092 (11) | 0.0003 (10) |
C29 | 0.0437 (15) | 0.0197 (12) | 0.0385 (15) | −0.0050 (11) | −0.0117 (12) | −0.0040 (10) |
C30 | 0.0419 (15) | 0.0231 (12) | 0.0409 (15) | −0.0162 (11) | −0.0176 (12) | 0.0022 (11) |
C31 | 0.0297 (12) | 0.0237 (11) | 0.0275 (13) | −0.0118 (10) | −0.0114 (10) | 0.0048 (9) |
C32 | 0.0263 (13) | 0.0301 (13) | 0.0433 (16) | −0.0124 (11) | −0.0112 (11) | 0.0087 (11) |
C33 | 0.0300 (15) | 0.0543 (19) | 0.077 (2) | −0.0161 (14) | −0.0033 (15) | 0.0110 (17) |
C34 | 0.073 (2) | 0.0541 (19) | 0.063 (2) | −0.0444 (18) | −0.0377 (18) | 0.0156 (16) |
C35 | 0.0300 (14) | 0.0335 (14) | 0.0526 (17) | −0.0170 (11) | −0.0158 (12) | 0.0135 (12) |
C36 | 0.045 (2) | 0.071 (3) | 0.162 (5) | −0.0293 (19) | −0.040 (3) | −0.015 (3) |
C37 | 0.0369 (18) | 0.097 (3) | 0.064 (2) | −0.0136 (18) | 0.0020 (16) | 0.038 (2) |
Mo—C1C | 1.928 (3) | C19—C23 | 1.513 (4) |
Mo—C2C | 1.938 (3) | C20—C21 | 1.520 (4) |
O1C—C1C | 1.172 (3) | C20—C22 | 1.522 (4) |
O2C—C2C | 1.156 (4) | C20—H20 | 1.0000 |
O3C—C3C | 1.164 (4) | C21—H21A | 0.9800 |
N1—C1 | 1.287 (3) | C21—H21B | 0.9800 |
N1—C2 | 1.395 (3) | C21—H21C | 0.9800 |
N2—C1 | 1.361 (3) | C22—H22A | 0.9800 |
N2—C14 | 1.435 (3) | C22—H22B | 0.9800 |
N2—H2 | 0.809 (16) | C22—H22C | 0.9800 |
N3—C1 | 1.374 (3) | C23—C25 | 1.521 (4) |
N3—C26 | 1.437 (3) | C23—C24 | 1.533 (4) |
N3—H3 | 0.807 (16) | C23—H23 | 1.0000 |
C2—C7 | 1.417 (3) | C24—H24A | 0.9800 |
C3—C4 | 1.408 (3) | C24—H24B | 0.9800 |
C4—C5 | 1.408 (4) | C24—H24C | 0.9800 |
C4—H4 | 0.9500 | C25—H25A | 0.9800 |
C5—C6 | 1.379 (4) | C25—H25B | 0.9800 |
C5—H5 | 0.9500 | C25—H25C | 0.9800 |
C6—C7 | 1.431 (3) | C26—C27 | 1.395 (3) |
C6—H6 | 0.9500 | C26—C31 | 1.406 (3) |
C8—C10 | 1.520 (4) | C27—C28 | 1.386 (3) |
C8—C9 | 1.527 (4) | C27—C32 | 1.518 (3) |
C8—H8 | 1.0000 | C28—C29 | 1.385 (4) |
C9—H9A | 0.9800 | C28—H28 | 0.9500 |
C9—H9B | 0.9800 | C29—C30 | 1.374 (4) |
C9—H9C | 0.9800 | C29—H29 | 0.9500 |
C10—H10A | 0.9800 | C30—C31 | 1.387 (3) |
C10—H10B | 0.9800 | C30—H30 | 0.9500 |
C10—H10C | 0.9800 | C31—C35 | 1.514 (3) |
C11—C13 | 1.527 (4) | C32—C34 | 1.518 (4) |
C11—C12 | 1.529 (4) | C32—C33 | 1.530 (4) |
C11—H11 | 1.0000 | C32—H32 | 1.0000 |
C12—H12A | 0.9800 | C33—H33A | 0.9800 |
C12—H12B | 0.9800 | C33—H33B | 0.9800 |
C12—H12C | 0.9800 | C33—H33C | 0.9800 |
C13—H13A | 0.9800 | C34—H34A | 0.9800 |
C13—H13B | 0.9800 | C34—H34B | 0.9800 |
C13—H13C | 0.9800 | C34—H34C | 0.9800 |
C14—C19 | 1.398 (3) | C35—C36 | 1.518 (4) |
C14—C15 | 1.401 (3) | C35—C37 | 1.525 (4) |
C15—C16 | 1.400 (3) | C35—H35 | 1.0000 |
C15—C20 | 1.519 (4) | C36—H36A | 0.9800 |
C16—C17 | 1.379 (4) | C36—H36B | 0.9800 |
C16—H16 | 0.9500 | C36—H36C | 0.9800 |
C17—C18 | 1.355 (4) | C37—H37A | 0.9800 |
C17—H17 | 0.9500 | C37—H37B | 0.9800 |
C18—C19 | 1.400 (3) | C37—H37C | 0.9800 |
C18—H18 | 0.9500 | ||
C1C—Mo—C2C | 80.69 (12) | C22—C20—H20 | 107.5 |
O1C—C1C—Mo | 177.4 (2) | C20—C21—H21A | 109.5 |
O2C—C2C—Mo | 177.4 (3) | C20—C21—H21B | 109.5 |
O3C—C3C—Mo | 177.9 (3) | H21A—C21—H21B | 109.5 |
C1—N1—C2 | 125.51 (19) | C20—C21—H21C | 109.5 |
C1—N2—C14 | 124.59 (18) | H21A—C21—H21C | 109.5 |
C1—N2—H2 | 113.7 (18) | H21B—C21—H21C | 109.5 |
C14—N2—H2 | 117.9 (18) | C20—C22—H22A | 109.5 |
C1—N3—C26 | 122.77 (18) | C20—C22—H22B | 109.5 |
C1—N3—H3 | 112.9 (18) | H22A—C22—H22B | 109.5 |
C26—N3—H3 | 116.6 (18) | C20—C22—H22C | 109.5 |
N1—C1—N2 | 125.0 (2) | H22A—C22—H22C | 109.5 |
N1—C1—N3 | 119.41 (19) | H22B—C22—H22C | 109.5 |
N2—C1—N3 | 115.57 (19) | C19—C23—C25 | 110.5 (2) |
N1—C2—C7 | 118.4 (2) | C19—C23—C24 | 113.4 (2) |
C4—C3—C2 | 118.5 (2) | C25—C23—C24 | 108.9 (2) |
C3—C4—C5 | 121.1 (2) | C19—C23—H23 | 108.0 |
C3—C4—H4 | 119.4 | C25—C23—H23 | 108.0 |
C5—C4—H4 | 119.4 | C24—C23—H23 | 108.0 |
C6—C5—C4 | 120.0 (2) | C23—C24—H24A | 109.5 |
C6—C5—H5 | 120.0 | C23—C24—H24B | 109.5 |
C4—C5—H5 | 120.0 | H24A—C24—H24B | 109.5 |
C5—C6—C7 | 121.4 (2) | C23—C24—H24C | 109.5 |
C5—C6—H6 | 119.3 | H24A—C24—H24C | 109.5 |
C7—C6—H6 | 119.3 | H24B—C24—H24C | 109.5 |
C2—C7—C6 | 118.5 (2) | C23—C25—H25A | 109.5 |
C3—C8—C10 | 113.4 (2) | C23—C25—H25B | 109.5 |
C3—C8—C9 | 109.8 (2) | H25A—C25—H25B | 109.5 |
C10—C8—C9 | 110.4 (2) | C23—C25—H25C | 109.5 |
C3—C8—H8 | 107.6 | H25A—C25—H25C | 109.5 |
C10—C8—H8 | 107.6 | H25B—C25—H25C | 109.5 |
C9—C8—H8 | 107.6 | C27—C26—C31 | 121.6 (2) |
C8—C9—H9A | 109.5 | C27—C26—N3 | 119.6 (2) |
C8—C9—H9B | 109.5 | C31—C26—N3 | 118.8 (2) |
H9A—C9—H9B | 109.5 | C28—C27—C26 | 118.3 (2) |
C8—C9—H9C | 109.5 | C28—C27—C32 | 120.7 (2) |
H9A—C9—H9C | 109.5 | C26—C27—C32 | 120.9 (2) |
H9B—C9—H9C | 109.5 | C29—C28—C27 | 120.8 (2) |
C8—C10—H10A | 109.5 | C29—C28—H28 | 119.6 |
C8—C10—H10B | 109.5 | C27—C28—H28 | 119.6 |
H10A—C10—H10B | 109.5 | C30—C29—C28 | 120.2 (2) |
C8—C10—H10C | 109.5 | C30—C29—H29 | 119.9 |
H10A—C10—H10C | 109.5 | C28—C29—H29 | 119.9 |
H10B—C10—H10C | 109.5 | C29—C30—C31 | 121.1 (2) |
C7—C11—C13 | 114.8 (2) | C29—C30—H30 | 119.4 |
C7—C11—C12 | 108.1 (2) | C31—C30—H30 | 119.4 |
C13—C11—C12 | 110.8 (2) | C30—C31—C26 | 117.9 (2) |
C7—C11—H11 | 107.6 | C30—C31—C35 | 121.0 (2) |
C13—C11—H11 | 107.6 | C26—C31—C35 | 121.0 (2) |
C12—C11—H11 | 107.6 | C34—C32—C27 | 109.5 (2) |
C11—C12—H12A | 109.5 | C34—C32—C33 | 110.7 (2) |
C11—C12—H12B | 109.5 | C27—C32—C33 | 113.0 (2) |
H12A—C12—H12B | 109.5 | C34—C32—H32 | 107.8 |
C11—C12—H12C | 109.5 | C27—C32—H32 | 107.8 |
H12A—C12—H12C | 109.5 | C33—C32—H32 | 107.8 |
H12B—C12—H12C | 109.5 | C32—C33—H33A | 109.5 |
C11—C13—H13A | 109.5 | C32—C33—H33B | 109.5 |
C11—C13—H13B | 109.5 | H33A—C33—H33B | 109.5 |
H13A—C13—H13B | 109.5 | C32—C33—H33C | 109.5 |
C11—C13—H13C | 109.5 | H33A—C33—H33C | 109.5 |
H13A—C13—H13C | 109.5 | H33B—C33—H33C | 109.5 |
H13B—C13—H13C | 109.5 | C32—C34—H34A | 109.5 |
C19—C14—C15 | 122.2 (2) | C32—C34—H34B | 109.5 |
C19—C14—N2 | 119.4 (2) | H34A—C34—H34B | 109.5 |
C15—C14—N2 | 118.4 (2) | C32—C34—H34C | 109.5 |
C16—C15—C14 | 117.5 (2) | H34A—C34—H34C | 109.5 |
C16—C15—C20 | 120.6 (2) | H34B—C34—H34C | 109.5 |
C14—C15—C20 | 121.8 (2) | C31—C35—C36 | 112.8 (3) |
C17—C16—C15 | 120.7 (3) | C31—C35—C37 | 110.3 (2) |
C17—C16—H16 | 119.7 | C36—C35—C37 | 111.2 (3) |
C15—C16—H16 | 119.7 | C31—C35—H35 | 107.4 |
C18—C17—C16 | 120.7 (2) | C36—C35—H35 | 107.4 |
C18—C17—H17 | 119.6 | C37—C35—H35 | 107.4 |
C16—C17—H17 | 119.6 | C35—C36—H36A | 109.5 |
C17—C18—C19 | 121.6 (3) | C35—C36—H36B | 109.5 |
C17—C18—H18 | 119.2 | H36A—C36—H36B | 109.5 |
C19—C18—H18 | 119.2 | C35—C36—H36C | 109.5 |
C14—C19—C18 | 117.2 (2) | H36A—C36—H36C | 109.5 |
C14—C19—C23 | 122.6 (2) | H36B—C36—H36C | 109.5 |
C18—C19—C23 | 120.1 (2) | C35—C37—H37A | 109.5 |
C15—C20—C21 | 114.0 (2) | C35—C37—H37B | 109.5 |
C15—C20—C22 | 110.4 (2) | H37A—C37—H37B | 109.5 |
C21—C20—C22 | 109.7 (3) | C35—C37—H37C | 109.5 |
C15—C20—H20 | 107.5 | H37A—C37—H37C | 109.5 |
C21—C20—H20 | 107.5 | H37B—C37—H37C | 109.5 |
C2—N1—C1—N2 | −3.4 (4) | N2—C14—C19—C23 | −3.2 (3) |
C2—N1—C1—N3 | 179.0 (2) | C17—C18—C19—C14 | −0.8 (4) |
C14—N2—C1—N1 | 168.7 (2) | C17—C18—C19—C23 | −177.5 (2) |
C14—N2—C1—N3 | −13.7 (3) | C16—C15—C20—C21 | 31.2 (4) |
C26—N3—C1—N1 | −15.4 (3) | C14—C15—C20—C21 | −152.1 (3) |
C26—N3—C1—N2 | 166.85 (19) | C16—C15—C20—C22 | −92.9 (3) |
C1—N1—C2—C7 | −103.3 (3) | C14—C15—C20—C22 | 83.9 (3) |
N1—C2—C3—C4 | 161.8 (2) | C14—C19—C23—C25 | −101.8 (3) |
C7—C2—C3—C4 | −8.6 (3) | C18—C19—C23—C25 | 74.7 (3) |
C2—C3—C4—C5 | 4.8 (3) | C14—C19—C23—C24 | 135.6 (2) |
C3—C4—C5—C6 | 0.9 (4) | C18—C19—C23—C24 | −47.9 (3) |
C4—C5—C6—C7 | −3.0 (4) | C1—N3—C26—C27 | 88.2 (3) |
N1—C2—C7—C6 | −164.0 (2) | C1—N3—C26—C31 | −94.8 (3) |
C5—C6—C7—C2 | −0.8 (3) | C31—C26—C27—C28 | 0.9 (3) |
C4—C3—C8—C10 | 40.7 (3) | N3—C26—C27—C28 | 177.9 (2) |
C2—C3—C8—C10 | −148.0 (2) | C31—C26—C27—C32 | −176.3 (2) |
C4—C3—C8—C9 | −83.4 (3) | N3—C26—C27—C32 | 0.7 (3) |
C2—C3—C8—C9 | 87.9 (3) | C26—C27—C28—C29 | −0.9 (4) |
C2—C7—C11—C13 | 152.1 (2) | C32—C27—C28—C29 | 176.3 (2) |
C6—C7—C11—C13 | −37.5 (3) | C27—C28—C29—C30 | 0.4 (4) |
C2—C7—C11—C12 | −83.7 (3) | C28—C29—C30—C31 | 0.1 (4) |
C6—C7—C11—C12 | 86.8 (3) | C29—C30—C31—C26 | −0.1 (4) |
C1—N2—C14—C19 | −96.6 (3) | C29—C30—C31—C35 | −177.7 (2) |
C1—N2—C14—C15 | 84.0 (3) | C27—C26—C31—C30 | −0.5 (3) |
C19—C14—C15—C16 | 1.3 (3) | N3—C26—C31—C30 | −177.4 (2) |
N2—C14—C15—C16 | −179.4 (2) | C27—C26—C31—C35 | 177.2 (2) |
C19—C14—C15—C20 | −175.6 (2) | N3—C26—C31—C35 | 0.2 (3) |
N2—C14—C15—C20 | 3.8 (3) | C28—C27—C32—C34 | −92.4 (3) |
C14—C15—C16—C17 | −1.0 (4) | C26—C27—C32—C34 | 84.7 (3) |
C20—C15—C16—C17 | 175.9 (2) | C28—C27—C32—C33 | 31.5 (3) |
C15—C16—C17—C18 | −0.1 (4) | C26—C27—C32—C33 | −151.4 (2) |
C16—C17—C18—C19 | 1.1 (4) | C30—C31—C35—C36 | −34.8 (4) |
C15—C14—C19—C18 | −0.4 (3) | C26—C31—C35—C36 | 147.6 (3) |
N2—C14—C19—C18 | −179.8 (2) | C30—C31—C35—C37 | 90.2 (3) |
C15—C14—C19—C23 | 176.2 (2) | C26—C31—C35—C37 | −87.3 (3) |
Experimental details
Crystal data | |
Chemical formula | [Mo(C37H53N3)(CO)3] |
Mr | 719.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 10.6525 (12), 11.7642 (14), 16.5482 (19) |
α, β, γ (°) | 89.128 (1), 78.713 (1), 67.240 (1) |
V (Å3) | 1871.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.29 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.705, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27034, 8399, 6634 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.115, 1.05 |
No. of reflections | 8399 |
No. of parameters | 442 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.12, −0.59 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
C1—N1 | C1—N2 | C1—N3 | N1—C1—N2 | N2—C1—N3 | N3—C1—N1 | |
(I) | 1.287 (3) | 1.361 (3) | 1.374 (3) | 125.0 (2) | 115.57 (19) | 119.42 (19) |
(II) | 1.316 (2) | 1.348 (2) | 1.357 (2) | 121.99 (13) | 118.47 (14) | 119.52 (13) |
Acknowledgements
The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.
References
Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613–1619. Google Scholar
Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147–4154. Google Scholar
Boeré, R. T., Klassen, V. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 583–589. Google Scholar
Braga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151–156. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brazeau, A., Nikouline, A. S. & Ragogna, P. J. (2011). Chem. Commun. 47, 4817–4819. CrossRef CAS Google Scholar
Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coles, M. P. (2006). Dalton Trans. pp. 985–1001. Web of Science CrossRef Google Scholar
Eichman, C. C., Bragdon, J. P. & Stambuli, J. P. (2011). Synlett, pp. 1109–1112. Google Scholar
Gopi, K., Rathi, B. & Thirupathi, N. (2010). J. Chem. Sci. 122, 157–167. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular stucture of the title compound, (I), is shown in Figure 1. The X-ray crystal structure of N,N',N"-tris(2,6-diisopropylphenyl)guanidine (II) was reported by Boeré, Boeré et al. (2000) with the three aryl groups in the same syn-anti conformation (Gopi et al., 2010) as found in compound (I). Table 1 presents the selected geometric data for compounds (I) and (II). Coles (2006) has comprehensively reviewed the application of neutral amidines and guanidines as coordination ligands. Recently, a cobalt(II) complex of the title ligand has been used as a catalyst in the synthesis of polysubstituted arenes via the regioselective cyclotrimerization of alkynes (Eichman et al., 2011). Also, deprotonated N,N',N"-aryl guandines have been reported to stabilize low-coordinate As(III) cations (Brazeau et al., 2011).
The title compound has an η6–coordinated tricarbonylmolybdenum group with a Mo to ring-centroid distance of 1.958 (1)Å. The three C≡O groups are pseudooctahedraly disposed with C–Mo–C angles ranging from 80.7 (1) to 87.4 (1)°. The three 2,6-diisopropylphenyl rings have normals that are disposed at 79.78 (8)° (C3-C7), 75.96 (8)° (C14-C19) and 78.01 (9)° (C26-C31) to the guanidine plane defined by C1, N1-N3. The ring coordinated by Mo(CO)3 is bent back from the core such that C2 is located 0.090 (3) and N1 0.458 (4)Å from the plane defined by C3-C7. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This is possibly due to the steric effects of the bulky diisopropylphenyl groups. The orientation of the Mo(CO)3 unit and its geometric parameters are found to be very similar in compound (I) and in closely comparable tricarbonylmolybdenum complexes of structurally similar amidines (Boeré, Klassen & Wolmershäuser, 1998, 2000). The observed outward bending of the coordinated aryl ring suggests that some steric effects operate between the amidine/guanidine groups and the Mo(CO)3 units.