organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1710-o1711

Methyl 2-acetamido-2-(4-hy­dr­oxy-2-methyl-1,3-dioxo-1,2,3,4-tetra­hydro­isoquinolin-4-yl)-4-methyl­penta­noate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 30 May 2011; accepted 14 June 2011; online 18 June 2011)

In the isoquinoline ring system of the title mol­ecule, C19H24N2O6, the N-heterocyclic ring is in a half-boat conformation. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O hydrogen bond, which generates an S(7) ring motif. In the crystal, mol­ecules are linked via inter­molecular bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For general background to and the potential biological activity of title compound, see: Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). J. Org. Chem. 9, 3629-3631.]); Rao et al. (1995[Rao, A. V. R., Gurjar, M. K., Reddy, K. L. & Rao, A. S. (1995). Chem. Rev. 95, 2135-2168.]); Nagamitsu et al. (1996[Nagamitsu, T., Sunazuka, T., Tanaka, H., Omura, S., Sprengeler, P. A. & Smith, A. B. III (1996). J. Am. Chem. Soc. 118, 3584-3590,]); Evans & Weber (1986[Evans, D. A. & Weber, A. E. (1986). J. Am. Chem. Soc. 108, 6757-6761.]); Heimgartner (1991[Heimgartner, H. (1991). Angew. Chem. Int. Ed. 30, 238-265.]); Rando (1975[Rando, R. R. (1975). Acc. Chem. Res. 8, 281-288.]); Griesbeck et al. (2003[Griesbeck, A. G., Bondock, S. & Lex, J. J. (2003). Org .Chem. 68, 9899-9906.]); Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893-4895.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271-o1272.],b[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273-o1274.],c[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311-o1312.],d[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340-o1341.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O6

  • Mr = 376.40

  • Monoclinic, C c

  • a = 17.8256 (15) Å

  • b = 8.7584 (6) Å

  • c = 11.9182 (8) Å

  • β = 100.404 (5)°

  • V = 1830.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 100 K

  • 0.50 × 0.15 × 0.15 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.678, Tmax = 0.883

  • 18268 measured reflections

  • 2713 independent reflections

  • 2673 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.05

  • 2713 reflections

  • 257 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1204 Friedel pairs

  • Flack parameter: 0.05 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.92 (2) 2.511 (19) 3.3431 (17) 150.3 (15)
N2—H1N2⋯O3i 0.92 (2) 2.44 (2) 3.1675 (18) 135.6 (16)
O3—H1O3⋯O6 0.86 (2) 1.83 (2) 2.6543 (16) 160 (2)
C5—H5A⋯O6ii 0.93 2.59 3.469 (2) 157
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Photocycloaddition of isoquinoline-1,3,4-trione combined with following transformation of the photocycloadducts has become facile method to build various scaffold containing an isoquinoline moiety (Yu et al., 2010; Huang et al., 2011). β-Hydroxy-amino acids are important building blocks to constitute more complex natural products. β-Hydroxy tyrosine and β-hydroxy phenylalanine derivatives are found in the clinically important antibiotic glycopeptides vancomycin, β-hydroxy leucine is found in (+)-lactacystin, and E-2-butenyl-4,N-dimethyl-l-threonine is an essential part of cyclosporine (Rao et al., 1995; Nagamitsu et al., 1996; Evans et al., 1986). α,α-Disubstituted amino acids represent a highly interesting class of non-proteinogenic amino acids, especially in view of their potential activity as enzyme inhibitors (Heimgartner, 1991; Rando, 1975). Many bioactive natural products contain β-hydroxy-amino acid or α,α-disubstituted amino acid and there has been intense interest to develop methodology to construct such moieties using photocycloadducts of oxazoles (Griesbeck et al., 2003; Zhang et al., 2004; Wang et al., 2010). The title compound was derived from photocycloadducts of isoquinoline-1,3,4-trione and oxazoles. Due to the importance of β-hydroxy-amino acid derivatives, we report in this paper the crystal structure of the title compound.

In the title racemic compound, Fig. 1, the isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.201 (2) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.3038 (17) Å, Θ = 70.1 (3)° and ϕ = 110.6 (3)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Fun et al., 2011a,b,c,d). The molecular structure is stabilized by an intramolecular O3–H1O3···O6 hydrogen bond (Table 1) which generates a S(7) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular N2–H1N2···O1i, N2–H1N2···O3i and weak C5–H5A···O6ii hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For general background to and the potential biological activity of title compound, see: Yu et al. (2010); Huang et al. (2011); Rao et al. (1995); Nagamitsu et al. (1996); Evans & Weber (1986); Heimgartner (1991); Rando (1975); Griesbeck et al. (2003); Zhang et al. (2004); Wang et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011a,b,c,d). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was the main product from the acid-catalyzed transformation of the photocycloadducts of isoquinoline-1,3,4-trione and 4-isobutyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:5) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:8) of the title compound, m.p. 425-427 K.

Refinement top

Atoms H1N2 and H1O3 were located in a difference Fourier map and refined freely [N2—H1N2 = 0.92 (2) Å, O3—H1O3 = 0.86 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.20 Å from H16B and the deepest hole is located at 0.78 Å from C9.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Methyl 2-acetamido-2-(4-hydroxy-2-methyl-1,3-dioxo- 1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentanoate top
Crystal data top
C19H24N2O6F(000) = 800
Mr = 376.40Dx = 1.366 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
Hall symbol: C -2ycCell parameters from 9888 reflections
a = 17.8256 (15) Åθ = 5.1–64.2°
b = 8.7584 (6) ŵ = 0.85 mm1
c = 11.9182 (8) ÅT = 100 K
β = 100.404 (5)°Needle, colourless
V = 1830.1 (2) Å30.50 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube2673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 64.7°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.678, Tmax = 0.883k = 910
18268 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.7184P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2713 reflectionsΔρmax = 0.11 e Å3
257 parametersΔρmin = 0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 1204 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (13)
Crystal data top
C19H24N2O6V = 1830.1 (2) Å3
Mr = 376.40Z = 4
Monoclinic, CcCu Kα radiation
a = 17.8256 (15) ŵ = 0.85 mm1
b = 8.7584 (6) ÅT = 100 K
c = 11.9182 (8) Å0.50 × 0.15 × 0.15 mm
β = 100.404 (5)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2673 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.883Rint = 0.033
18268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.11 e Å3
S = 1.05Δρmin = 0.14 e Å3
2713 reflectionsAbsolute structure: Flack (1983), 1204 Friedel pairs
257 parametersAbsolute structure parameter: 0.05 (13)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81985 (6)0.74615 (13)1.04040 (10)0.0229 (3)
O21.05834 (6)0.65801 (14)0.97375 (10)0.0302 (3)
O30.76692 (6)0.48621 (12)0.94001 (10)0.0204 (2)
O40.91523 (6)0.77211 (12)0.76247 (9)0.0193 (2)
O50.89019 (6)0.56633 (12)0.65074 (9)0.0204 (2)
O60.64674 (6)0.52211 (12)0.77471 (10)0.0223 (3)
N10.93918 (7)0.70763 (15)1.00450 (11)0.0206 (3)
N20.75643 (7)0.51865 (14)0.70247 (12)0.0171 (3)
C10.86194 (9)0.67556 (17)0.99008 (14)0.0188 (3)
C20.99257 (9)0.61559 (19)0.96548 (14)0.0222 (4)
C30.96586 (9)0.46387 (18)0.91865 (14)0.0200 (3)
C41.02036 (9)0.3555 (2)0.90385 (14)0.0253 (4)
H4A1.07190.38030.91940.030*
C50.99735 (10)0.2104 (2)0.86574 (15)0.0285 (4)
H5A1.03340.13760.85500.034*
C60.92023 (10)0.17437 (19)0.84364 (15)0.0259 (4)
H6A0.90490.07650.81920.031*
C70.86576 (9)0.28210 (18)0.85750 (14)0.0217 (3)
H7A0.81430.25650.84240.026*
C80.88811 (8)0.42821 (18)0.89389 (13)0.0181 (3)
C90.82982 (8)0.55120 (17)0.90207 (14)0.0174 (3)
C100.80278 (8)0.62935 (17)0.77805 (14)0.0167 (3)
C110.76008 (9)0.78137 (17)0.78789 (13)0.0180 (3)
H11A0.72600.76640.84190.022*
H11B0.79740.85740.82010.022*
C120.71318 (9)0.84730 (17)0.67768 (15)0.0217 (3)
H12A0.67340.77320.64770.026*
C130.75969 (10)0.8792 (2)0.58470 (15)0.0285 (4)
H13A0.78030.78520.56200.043*
H13B0.80060.94790.61350.043*
H13C0.72740.92460.52010.043*
C140.67409 (10)0.9933 (2)0.70714 (17)0.0306 (4)
H14A0.64141.03150.64010.046*
H14B0.71201.06860.73520.046*
H14C0.64430.97160.76470.046*
C150.87344 (8)0.65099 (17)0.72155 (14)0.0165 (3)
C160.98383 (9)0.79217 (19)0.71419 (15)0.0230 (4)
H16A1.01100.88070.74720.035*
H16B0.97010.80530.63310.035*
H16C1.01580.70370.73040.035*
C170.68252 (8)0.48575 (17)0.69911 (14)0.0179 (3)
C180.64504 (9)0.40140 (19)0.59393 (15)0.0248 (4)
H18A0.60560.33650.61240.037*
H18B0.68240.34040.56570.037*
H18C0.62320.47340.53650.037*
C190.96743 (10)0.84909 (19)1.06333 (17)0.0300 (4)
H19A0.92730.89581.09520.045*
H19B0.98390.91791.01000.045*
H19C1.00960.82611.12330.045*
H1N20.7798 (11)0.479 (2)0.6459 (18)0.025 (5)*
H1O30.7237 (13)0.510 (2)0.8986 (18)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (6)0.0248 (6)0.0184 (7)0.0040 (4)0.0040 (5)0.0020 (5)
O20.0178 (6)0.0408 (7)0.0299 (8)0.0067 (5)0.0013 (5)0.0021 (6)
O30.0173 (5)0.0267 (6)0.0173 (7)0.0020 (4)0.0036 (5)0.0027 (5)
O40.0171 (5)0.0208 (5)0.0201 (7)0.0039 (4)0.0033 (4)0.0013 (5)
O50.0191 (5)0.0237 (5)0.0188 (7)0.0013 (4)0.0046 (4)0.0021 (5)
O60.0177 (5)0.0279 (6)0.0215 (7)0.0011 (4)0.0045 (5)0.0014 (5)
N10.0220 (7)0.0223 (7)0.0162 (8)0.0040 (5)0.0003 (5)0.0005 (6)
N20.0163 (7)0.0188 (7)0.0161 (8)0.0006 (5)0.0026 (6)0.0022 (5)
C10.0221 (8)0.0190 (7)0.0143 (9)0.0005 (6)0.0004 (6)0.0044 (6)
C20.0195 (8)0.0310 (9)0.0143 (9)0.0008 (6)0.0019 (6)0.0057 (7)
C30.0206 (8)0.0281 (8)0.0112 (9)0.0010 (6)0.0024 (6)0.0038 (7)
C40.0210 (8)0.0383 (10)0.0163 (10)0.0049 (7)0.0027 (7)0.0045 (7)
C50.0322 (10)0.0339 (10)0.0193 (11)0.0139 (7)0.0042 (7)0.0002 (7)
C60.0352 (10)0.0242 (9)0.0168 (10)0.0055 (7)0.0009 (7)0.0007 (7)
C70.0248 (8)0.0246 (8)0.0151 (9)0.0009 (7)0.0021 (6)0.0002 (7)
C80.0210 (8)0.0239 (8)0.0095 (9)0.0021 (6)0.0030 (6)0.0028 (6)
C90.0167 (7)0.0204 (8)0.0149 (9)0.0010 (6)0.0025 (6)0.0017 (6)
C100.0161 (7)0.0196 (7)0.0130 (9)0.0030 (6)0.0007 (6)0.0009 (6)
C110.0159 (7)0.0216 (8)0.0163 (9)0.0001 (6)0.0025 (6)0.0005 (6)
C120.0204 (7)0.0219 (8)0.0207 (10)0.0012 (6)0.0015 (6)0.0013 (7)
C130.0318 (9)0.0316 (9)0.0212 (10)0.0051 (7)0.0022 (7)0.0070 (8)
C140.0318 (9)0.0302 (9)0.0280 (12)0.0085 (7)0.0002 (8)0.0036 (8)
C150.0156 (7)0.0191 (8)0.0134 (9)0.0003 (6)0.0010 (6)0.0030 (6)
C160.0190 (8)0.0264 (8)0.0238 (10)0.0048 (6)0.0043 (7)0.0010 (7)
C170.0165 (7)0.0178 (7)0.0191 (10)0.0003 (6)0.0018 (6)0.0013 (6)
C180.0178 (8)0.0319 (9)0.0241 (10)0.0055 (7)0.0024 (7)0.0034 (8)
C190.0364 (10)0.0282 (9)0.0235 (10)0.0103 (7)0.0004 (8)0.0038 (8)
Geometric parameters (Å, º) top
O1—C11.211 (2)C8—C91.512 (2)
O2—C21.217 (2)C9—C101.621 (2)
O3—C91.4032 (19)C10—C151.543 (2)
O3—H1O30.86 (2)C10—C111.549 (2)
O4—C151.3368 (18)C11—C121.537 (2)
O4—C161.4531 (18)C11—H11A0.9700
O5—C151.201 (2)C11—H11B0.9700
O6—C171.236 (2)C12—C131.525 (3)
N1—C11.3851 (19)C12—C141.527 (2)
N1—C21.390 (2)C12—H12A0.9800
N1—C191.467 (2)C13—H13A0.9600
N2—C171.3420 (19)C13—H13B0.9600
N2—C101.4715 (19)C13—H13C0.9600
N2—H1N20.92 (2)C14—H14A0.9600
C1—C91.548 (2)C14—H14B0.9600
C2—C31.486 (2)C14—H14C0.9600
C3—C41.392 (2)C16—H16A0.9600
C3—C81.399 (2)C16—H16B0.9600
C4—C51.386 (3)C16—H16C0.9600
C4—H4A0.9300C17—C181.504 (2)
C5—C61.389 (3)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.385 (2)C18—H18C0.9600
C6—H6A0.9300C19—H19A0.9600
C7—C81.386 (2)C19—H19B0.9600
C7—H7A0.9300C19—H19C0.9600
C9—O3—H1O3113.6 (14)C10—C11—H11A108.0
C15—O4—C16113.89 (13)C12—C11—H11B108.0
C1—N1—C2124.49 (13)C10—C11—H11B108.0
C1—N1—C19118.57 (13)H11A—C11—H11B107.2
C2—N1—C19116.93 (13)C13—C12—C14110.13 (14)
C17—N2—C10126.82 (13)C13—C12—C11114.00 (13)
C17—N2—H1N2117.8 (12)C14—C12—C11108.57 (14)
C10—N2—H1N2114.8 (12)C13—C12—H12A108.0
O1—C1—N1121.72 (14)C14—C12—H12A108.0
O1—C1—C9120.54 (14)C11—C12—H12A108.0
N1—C1—C9117.67 (13)C12—C13—H13A109.5
O2—C2—N1120.25 (15)C12—C13—H13B109.5
O2—C2—C3122.84 (15)H13A—C13—H13B109.5
N1—C2—C3116.87 (13)C12—C13—H13C109.5
C4—C3—C8120.56 (15)H13A—C13—H13C109.5
C4—C3—C2118.28 (14)H13B—C13—H13C109.5
C8—C3—C2121.12 (14)C12—C14—H14A109.5
C5—C4—C3119.65 (16)C12—C14—H14B109.5
C5—C4—H4A120.2H14A—C14—H14B109.5
C3—C4—H4A120.2C12—C14—H14C109.5
C4—C5—C6119.64 (16)H14A—C14—H14C109.5
C4—C5—H5A120.2H14B—C14—H14C109.5
C6—C5—H5A120.2O5—C15—O4123.60 (14)
C7—C6—C5120.92 (16)O5—C15—C10123.84 (13)
C7—C6—H6A119.5O4—C15—C10112.54 (13)
C5—C6—H6A119.5O4—C16—H16A109.5
C6—C7—C8119.87 (15)O4—C16—H16B109.5
C6—C7—H7A120.1H16A—C16—H16B109.5
C8—C7—H7A120.1O4—C16—H16C109.5
C7—C8—C3119.33 (14)H16A—C16—H16C109.5
C7—C8—C9121.04 (13)H16B—C16—H16C109.5
C3—C8—C9119.57 (14)O6—C17—N2123.78 (14)
O3—C9—C8109.28 (12)O6—C17—C18121.61 (13)
O3—C9—C1106.64 (13)N2—C17—C18114.60 (14)
C8—C9—C1111.74 (12)C17—C18—H18A109.5
O3—C9—C10109.99 (12)C17—C18—H18B109.5
C8—C9—C10109.67 (13)H18A—C18—H18B109.5
C1—C9—C10109.47 (12)C17—C18—H18C109.5
N2—C10—C15103.07 (12)H18A—C18—H18C109.5
N2—C10—C11112.55 (12)H18B—C18—H18C109.5
C15—C10—C11112.23 (12)N1—C19—H19A109.5
N2—C10—C9108.76 (12)N1—C19—H19B109.5
C15—C10—C9108.54 (11)H19A—C19—H19B109.5
C11—C10—C9111.30 (13)N1—C19—H19C109.5
C12—C11—C10117.22 (13)H19A—C19—H19C109.5
C12—C11—H11A108.0H19B—C19—H19C109.5
C2—N1—C1—O1168.38 (15)O1—C1—C9—C8151.28 (14)
C19—N1—C1—O112.6 (2)N1—C1—C9—C831.84 (19)
C2—N1—C1—C914.8 (2)O1—C1—C9—C1087.02 (17)
C19—N1—C1—C9164.27 (14)N1—C1—C9—C1089.86 (15)
C1—N1—C2—O2174.17 (15)C17—N2—C10—C15164.63 (14)
C19—N1—C2—O24.9 (2)C17—N2—C10—C1143.5 (2)
C1—N1—C2—C38.2 (2)C17—N2—C10—C980.31 (18)
C19—N1—C2—C3172.78 (14)O3—C9—C10—N249.92 (16)
O2—C2—C3—C412.4 (2)C8—C9—C10—N270.29 (15)
N1—C2—C3—C4165.20 (15)C1—C9—C10—N2166.77 (12)
O2—C2—C3—C8169.92 (15)O3—C9—C10—C15161.37 (12)
N1—C2—C3—C812.5 (2)C8—C9—C10—C1541.16 (16)
C8—C3—C4—C50.9 (2)C1—C9—C10—C1581.77 (14)
C2—C3—C4—C5176.79 (16)O3—C9—C10—C1174.64 (15)
C3—C4—C5—C60.5 (3)C8—C9—C10—C11165.15 (12)
C4—C5—C6—C71.0 (3)C1—C9—C10—C1142.22 (16)
C5—C6—C7—C80.0 (3)N2—C10—C11—C1242.05 (18)
C6—C7—C8—C31.4 (2)C15—C10—C11—C1273.68 (17)
C6—C7—C8—C9175.79 (15)C9—C10—C11—C12164.44 (12)
C4—C3—C8—C71.9 (2)C10—C11—C12—C1358.65 (18)
C2—C3—C8—C7175.74 (15)C10—C11—C12—C14178.18 (13)
C4—C3—C8—C9175.38 (15)C16—O4—C15—O50.5 (2)
C2—C3—C8—C97.0 (2)C16—O4—C15—C10177.71 (12)
C7—C8—C9—O337.1 (2)N2—C10—C15—O515.55 (19)
C3—C8—C9—O3145.72 (14)C11—C10—C15—O5136.90 (15)
C7—C8—C9—C1154.86 (15)C9—C10—C15—O599.66 (17)
C3—C8—C9—C127.9 (2)N2—C10—C15—O4166.23 (12)
C7—C8—C9—C1083.55 (17)C11—C10—C15—O444.89 (17)
C3—C8—C9—C1093.64 (17)C9—C10—C15—O478.55 (14)
O1—C1—C9—O331.9 (2)C10—N2—C17—O615.0 (2)
N1—C1—C9—O3151.20 (13)C10—N2—C17—C18164.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.92 (2)2.511 (19)3.3431 (17)150.3 (15)
N2—H1N2···O3i0.92 (2)2.44 (2)3.1675 (18)135.6 (16)
O3—H1O3···O60.86 (2)1.83 (2)2.6543 (16)160 (2)
C5—H5A···O6ii0.932.593.469 (2)157
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC19H24N2O6
Mr376.40
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)17.8256 (15), 8.7584 (6), 11.9182 (8)
β (°) 100.404 (5)
V3)1830.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.50 × 0.15 × 0.15
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.678, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
18268, 2713, 2673
Rint0.033
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.05
No. of reflections2713
No. of parameters257
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.14
Absolute structureFlack (1983), 1204 Friedel pairs
Absolute structure parameter0.05 (13)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.92 (2)2.511 (19)3.3431 (17)150.3 (15)
N2—H1N2···O3i0.92 (2)2.44 (2)3.1675 (18)135.6 (16)
O3—H1O3···O60.86 (2)1.83 (2)2.6543 (16)160 (2)
C5—H5A···O6ii0.932.593.469 (2)157
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A. & Weber, A. E. (1986). J. Am. Chem. Soc. 108, 6757–6761.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311–o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGriesbeck, A. G., Bondock, S. & Lex, J. J. (2003). Org .Chem. 68, 9899–9906.  CAS Google Scholar
First citationHeimgartner, H. (1991). Angew. Chem. Int. Ed. 30, 238–265.  CrossRef Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). J. Org. Chem. 9, 3629–3631.  CAS Google Scholar
First citationNagamitsu, T., Sunazuka, T., Tanaka, H., Omura, S., Sprengeler, P. A. & Smith, A. B. III (1996). J. Am. Chem. Soc. 118, 3584–3590,  CrossRef CAS Google Scholar
First citationRando, R. R. (1975). Acc. Chem. Res. 8, 281–288.  CrossRef CAS Google Scholar
First citationRao, A. V. R., Gurjar, M. K., Reddy, K. L. & Rao, A. S. (1995). Chem. Rev. 95, 2135–2168.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893-4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1710-o1711
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds