organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl 2-meth­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 May 2011; accepted 14 June 2011; online 18 June 2011)

In the title mol­ecule, C16H13BrO4, the dihedral angle between the benzene rings is 85.92 (10)°. In the crystal, mol­ecules are linked into chains along [100] via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to and applications of phenacyl benzoate derivatives, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO4

  • Mr = 349.17

  • Orthorhombic, P b c a

  • a = 7.8424 (5) Å

  • b = 14.6799 (9) Å

  • c = 25.7677 (14) Å

  • V = 2966.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 296 K

  • 0.56 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.306, Tmax = 0.733

  • 19358 measured reflections

  • 4731 independent reflections

  • 2916 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.00

  • 4731 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.45 3.360 (3) 165
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoates derivatives are very important in the identification of organic acids (Rather & Reid, 1919). They undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996), benzoxazepine (Gandhi et al., 1995). We report herein the crystal structure of 2-(4-bromophenyl)-2-oxoethyl 2-methoxybenzoate which is potentially of commercial importance.

The molecular structure of the title compound is shown in Fig. 1. The benzene rings (C1-C6 and C10-C15) form a dihedral angle of 85.92 (10) ° . Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal (Fig. 2), the molecules are linked into one-dimensional chains along [100] via weak intermolecular C2–H2A···O1i hydrogen bonds (Table 1).

Related literature top

For general background to and applications of phenacyl benzoate derivatives, see: Rather & Reid (1919); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Huang et al. (1996); Gandhi et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-methoxybenzoic acid (1.00 g, 0.0065 mol) potassium carbonate (0.98 g, 0.0071 mol) and 2-bromo-1-(4-bromophenyl)ethanone (1.80 g, 0.0065 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colorless needle shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 2-methoxybenzoate began to separate. These were collected by filtration and recrystallized from ethanol. Yield: 2.15 g, 93.8 %, m.p. : 388-389 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 – 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.79 Å and the deepest hole is located at 0.78 Å from Br1, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 20% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(4-Bromophenyl)-2-oxoethyl 2-methoxybenzoate top
Crystal data top
C16H13BrO4F(000) = 1408
Mr = 349.17Dx = 1.564 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3938 reflections
a = 7.8424 (5) Åθ = 2.8–26.5°
b = 14.6799 (9) ŵ = 2.78 mm1
c = 25.7677 (14) ÅT = 296 K
V = 2966.5 (3) Å3Needle, colourless
Z = 80.56 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4731 independent reflections
Radiation source: fine-focus sealed tube2916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 31.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.306, Tmax = 0.733k = 2114
19358 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.2401P]
where P = (Fo2 + 2Fc2)/3
4731 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H13BrO4V = 2966.5 (3) Å3
Mr = 349.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8424 (5) ŵ = 2.78 mm1
b = 14.6799 (9) ÅT = 296 K
c = 25.7677 (14) Å0.56 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2916 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.733Rint = 0.035
19358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
4731 reflectionsΔρmin = 0.54 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.19995 (4)0.063553 (17)0.603716 (11)0.07024 (11)
O10.4583 (2)0.13020 (14)0.46925 (7)0.0717 (5)
O20.4899 (2)0.19606 (9)0.37415 (6)0.0579 (4)
O30.4628 (2)0.04790 (10)0.35626 (6)0.0604 (4)
O40.19571 (19)0.00663 (10)0.29651 (6)0.0544 (4)
C10.9183 (3)0.14467 (14)0.47702 (8)0.0488 (5)
H1A0.94060.16950.44450.059*
C21.0517 (3)0.12695 (15)0.51036 (8)0.0517 (5)
H2A1.16350.13960.50070.062*
C31.0158 (3)0.09006 (13)0.55825 (8)0.0487 (5)
C40.8516 (3)0.07055 (14)0.57344 (8)0.0538 (5)
H4A0.83020.04570.60600.065*
C50.7199 (3)0.08825 (15)0.53991 (8)0.0504 (5)
H5A0.60870.07490.54980.060*
C60.7504 (3)0.12584 (13)0.49133 (7)0.0428 (4)
C70.6034 (3)0.14284 (14)0.45588 (8)0.0470 (4)
C80.6423 (3)0.17663 (14)0.40202 (8)0.0496 (5)
H8A0.71130.23130.40420.059*
H8B0.70730.13080.38350.059*
C90.4043 (3)0.12319 (13)0.35557 (7)0.0444 (4)
C100.2356 (3)0.15108 (13)0.33476 (7)0.0420 (4)
C110.1753 (3)0.23898 (15)0.34381 (8)0.0540 (5)
H11A0.24110.27900.36330.065*
C120.0207 (3)0.26793 (17)0.32457 (9)0.0654 (6)
H12A0.01760.32680.33110.078*
C130.0762 (3)0.20873 (18)0.29561 (9)0.0643 (6)
H13A0.18030.22800.28230.077*
C140.0216 (3)0.12187 (16)0.28619 (8)0.0551 (5)
H14A0.08940.08270.26680.066*
C150.1337 (3)0.09149 (13)0.30522 (7)0.0442 (4)
C160.0967 (4)0.05475 (17)0.26574 (11)0.0735 (7)
H16A0.15560.11180.26270.110*
H16B0.07990.02920.23180.110*
H16C0.01200.06440.28200.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.07526 (19)0.05554 (15)0.07991 (18)0.00639 (12)0.03345 (13)0.00558 (11)
O10.0385 (8)0.1055 (14)0.0713 (10)0.0059 (9)0.0015 (8)0.0039 (10)
O20.0574 (9)0.0434 (8)0.0729 (9)0.0015 (7)0.0214 (8)0.0012 (7)
O30.0584 (9)0.0481 (8)0.0746 (10)0.0109 (7)0.0218 (8)0.0110 (7)
O40.0577 (9)0.0459 (7)0.0595 (8)0.0012 (7)0.0141 (7)0.0071 (6)
C10.0433 (11)0.0560 (11)0.0472 (10)0.0059 (10)0.0009 (9)0.0014 (9)
C20.0372 (10)0.0562 (12)0.0617 (12)0.0049 (9)0.0018 (9)0.0084 (10)
C30.0535 (12)0.0381 (9)0.0544 (11)0.0025 (9)0.0136 (10)0.0098 (8)
C40.0634 (14)0.0506 (11)0.0474 (10)0.0032 (11)0.0006 (10)0.0014 (9)
C50.0430 (11)0.0542 (11)0.0540 (11)0.0053 (10)0.0062 (9)0.0046 (9)
C60.0381 (9)0.0421 (10)0.0481 (10)0.0023 (8)0.0013 (8)0.0093 (8)
C70.0398 (11)0.0466 (10)0.0547 (11)0.0035 (9)0.0017 (9)0.0102 (8)
C80.0444 (11)0.0434 (10)0.0608 (12)0.0064 (9)0.0111 (9)0.0010 (9)
C90.0505 (12)0.0430 (10)0.0398 (9)0.0012 (9)0.0048 (8)0.0011 (8)
C100.0453 (10)0.0437 (9)0.0371 (8)0.0042 (8)0.0024 (8)0.0010 (7)
C110.0603 (14)0.0510 (11)0.0508 (11)0.0078 (10)0.0030 (10)0.0057 (9)
C120.0679 (15)0.0613 (14)0.0671 (14)0.0228 (13)0.0041 (12)0.0009 (11)
C130.0505 (13)0.0780 (16)0.0646 (13)0.0163 (12)0.0071 (11)0.0099 (12)
C140.0486 (12)0.0654 (14)0.0513 (11)0.0005 (11)0.0093 (10)0.0052 (10)
C150.0475 (11)0.0490 (10)0.0362 (8)0.0017 (9)0.0003 (8)0.0040 (7)
C160.0819 (18)0.0597 (14)0.0788 (16)0.0071 (13)0.0264 (15)0.0160 (11)
Geometric parameters (Å, º) top
Br1—C31.900 (2)C7—C81.505 (3)
O1—C71.203 (3)C8—H8A0.9700
O2—C91.351 (2)C8—H8B0.9700
O2—C81.423 (2)C9—C101.485 (3)
O3—C91.197 (2)C10—C111.394 (3)
O4—C151.356 (2)C10—C151.408 (3)
O4—C161.430 (3)C11—C121.377 (3)
C1—C21.378 (3)C11—H11A0.9300
C1—C61.395 (3)C12—C131.375 (3)
C1—H1A0.9300C12—H12A0.9300
C2—C31.377 (3)C13—C141.367 (3)
C2—H2A0.9300C13—H13A0.9300
C3—C41.376 (3)C14—C151.386 (3)
C4—C51.371 (3)C14—H14A0.9300
C4—H4A0.9300C16—H16A0.9600
C5—C61.389 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.492 (3)
C9—O2—C8115.94 (15)H8A—C8—H8B108.0
C15—O4—C16118.42 (17)O3—C9—O2122.39 (19)
C2—C1—C6120.95 (19)O3—C9—C10126.97 (18)
C2—C1—H1A119.5O2—C9—C10110.63 (16)
C6—C1—H1A119.5C11—C10—C15118.24 (19)
C3—C2—C1118.55 (19)C11—C10—C9119.80 (18)
C3—C2—H2A120.7C15—C10—C9121.96 (17)
C1—C2—H2A120.7C12—C11—C10121.6 (2)
C4—C3—C2121.9 (2)C12—C11—H11A119.2
C4—C3—Br1119.56 (16)C10—C11—H11A119.2
C2—C3—Br1118.56 (17)C13—C12—C11119.2 (2)
C5—C4—C3119.1 (2)C13—C12—H12A120.4
C5—C4—H4A120.5C11—C12—H12A120.4
C3—C4—H4A120.5C14—C13—C12120.8 (2)
C4—C5—C6120.9 (2)C14—C13—H13A119.6
C4—C5—H5A119.5C12—C13—H13A119.6
C6—C5—H5A119.5C13—C14—C15120.8 (2)
C5—C6—C1118.64 (19)C13—C14—H14A119.6
C5—C6—C7119.04 (18)C15—C14—H14A119.6
C1—C6—C7122.30 (18)O4—C15—C14123.50 (19)
O1—C7—C6121.99 (19)O4—C15—C10117.17 (17)
O1—C7—C8120.4 (2)C14—C15—C10119.32 (19)
C6—C7—C8117.61 (18)O4—C16—H16A109.5
O2—C8—C7111.19 (18)O4—C16—H16B109.5
O2—C8—H8A109.4H16A—C16—H16B109.5
C7—C8—H8A109.4O4—C16—H16C109.5
O2—C8—H8B109.4H16A—C16—H16C109.5
C7—C8—H8B109.4H16B—C16—H16C109.5
C6—C1—C2—C30.1 (3)C8—O2—C9—C10171.08 (17)
C1—C2—C3—C40.1 (3)O3—C9—C10—C11170.4 (2)
C1—C2—C3—Br1178.86 (15)O2—C9—C10—C1110.3 (3)
C2—C3—C4—C50.1 (3)O3—C9—C10—C1510.5 (3)
Br1—C3—C4—C5178.69 (15)O2—C9—C10—C15168.90 (17)
C3—C4—C5—C60.4 (3)C15—C10—C11—C120.2 (3)
C4—C5—C6—C10.5 (3)C9—C10—C11—C12179.0 (2)
C4—C5—C6—C7179.23 (18)C10—C11—C12—C130.2 (3)
C2—C1—C6—C50.4 (3)C11—C12—C13—C140.5 (4)
C2—C1—C6—C7179.03 (19)C12—C13—C14—C150.6 (4)
C5—C6—C7—O14.6 (3)C16—O4—C15—C140.5 (3)
C1—C6—C7—O1176.7 (2)C16—O4—C15—C10178.7 (2)
C5—C6—C7—C8175.25 (18)C13—C14—C15—O4179.0 (2)
C1—C6—C7—C83.4 (3)C13—C14—C15—C100.2 (3)
C9—O2—C8—C776.7 (2)C11—C10—C15—O4179.39 (17)
O1—C7—C8—O24.4 (3)C9—C10—C15—O40.2 (3)
C6—C7—C8—O2175.70 (16)C11—C10—C15—C140.1 (3)
C8—O2—C9—O39.5 (3)C9—C10—C15—C14179.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.453.360 (3)165
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13BrO4
Mr349.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.8424 (5), 14.6799 (9), 25.7677 (14)
V3)2966.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.56 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.306, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
19358, 4731, 2916
Rint0.035
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.00
No. of reflections4731
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.453.360 (3)165
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds