organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(4-hy­dr­oxy-3-nitro­benzyl­­idene)benzohydrazide methanol disolvate

aExperimental Center, Linyi University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: zhangzhen_lynu@126.com

(Received 30 May 2011; accepted 4 June 2011; online 11 June 2011)

In the title compound, C14H10ClN3O4·2CH4O, the main mol­ecule is in an E configuration with respect to the methyl­idene unit. The dihedral angle between the mean planes of the two benzene rings is 1.9 (3)°. In the crystal, inter­molecular N—H⋯O, O—H⋯O and bifurcated O—H⋯(O, O) hydrogen bonds link the components into sheets parallel to (100). An intra­molecular O—H⋯O hydrogen bond is also present.

Related literature

For the biological applications of hydrazone compounds, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Fan et al. (2010[Fan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]); Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]). For related hydrazone structures, see: Zhang (2011a[Zhang, Z. (2011a). Acta Cryst. E67, o300.],b[Zhang, Z. (2011b). Acta Cryst. E67, o301.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O4·2CH4O

  • Mr = 383.78

  • Monoclinic, P 21 /c

  • a = 7.626 (2) Å

  • b = 18.846 (5) Å

  • c = 12.739 (3) Å

  • β = 94.689 (4)°

  • V = 1824.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.950

  • 7726 measured reflections

  • 3695 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.208

  • S = 1.06

  • 3695 reflections

  • 243 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.82 1.96 2.618 (4) 137
O3—H3A⋯O5 0.82 2.26 2.896 (4) 135
O6—H6⋯O5 0.82 1.88 2.700 (5) 179
N3—H3⋯O6i 0.89 (1) 1.99 (2) 2.834 (4) 158 (4)
O5—H5⋯O4ii 0.82 1.96 2.779 (4) 173
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have received much attention due to their potential applications in biological chemistry (Ajani et al., 2010; Avaji et al., 2009; Fan et al., 2010; Rasras et al., 2010). As a continuation of this work on hydrazone compounds the structure of the title compound is reported herein.

The asymmetric unit of title compound, Fig. 1, contains a hydrazone molecule and two methanol molecules. The hydrazone molecule assumes an E configuration with respect to the methylidene unit. The dihedral angle between the mean planes of the two benzene rings is 1.9 (3)°. The bond lengths are comparable to those observed in similar hydrazone compounds (Zhang, 2011a,b; Ahmad et al., 2010; Ban, 2010; Ji & Lu, 2010; Shalash et al., 2010). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the components into two dimensional sheets parallel to (100). An intramolecular O-H···O hydrogen bond is also present (Table 1, Fig. 2).

Related literature top

For the biological applications of hydrazone compounds, see: Ajani et al. (2010); Avaji et al. (2009); Fan et al. (2010); Rasras et al. (2010). For related hydrazone structures, see: Zhang (2011a,b); Ahmad et al. (2010); Ban (2010); Ji & Lu (2010); Shalash et al. (2010).

Experimental top

A methanol solution (50 ml) of 3-chlorobenzohydrazide (0.01 mol) and 4-hydroxy-3-nitrobenzaldehyde (0.01 mol) was stirred at room temperature for 30 min to give a yellow solution. Yellow block-shaped single crystals suitable for X-ray diffraction were formed by slow evaporation of the solution in air.

Refinement top

The amino atom, H3, was in from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing of the title compound. Hydrogen bonds are shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
3-Chloro-N'-(4-hydroxy-3-nitrobenzylidene)benzohydrazide methanol disolvate top
Crystal data top
C14H10ClN3O4·2CH4OF(000) = 800
Mr = 383.78Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 954 reflections
a = 7.626 (2) Åθ = 2.5–24.5°
b = 18.846 (5) ŵ = 0.25 mm1
c = 12.739 (3) ÅT = 298 K
β = 94.689 (4)°Block, yellow
V = 1824.6 (8) Å30.23 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.945, Tmax = 0.950k = 2223
7726 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.76 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C14H10ClN3O4·2CH4OV = 1824.6 (8) Å3
Mr = 383.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.626 (2) ŵ = 0.25 mm1
b = 18.846 (5) ÅT = 298 K
c = 12.739 (3) Å0.23 × 0.23 × 0.21 mm
β = 94.689 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1842 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.950Rint = 0.048
7726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.76 e Å3
3695 reflectionsΔρmin = 0.26 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06078 (17)0.35391 (5)0.03312 (9)0.0708 (4)
N10.4832 (5)0.32118 (17)0.0141 (3)0.0546 (9)
N20.7478 (4)0.02147 (15)0.0491 (2)0.0526 (9)
N30.7737 (5)0.03895 (16)0.0091 (2)0.0518 (9)
O10.4617 (5)0.37833 (14)0.0290 (2)0.0781 (10)
O20.4421 (4)0.31188 (15)0.1072 (2)0.0768 (10)
O30.5851 (4)0.32945 (13)0.21283 (19)0.0652 (9)
H3A0.52200.35750.17800.098*
O40.8426 (5)0.10265 (14)0.1374 (2)0.0773 (10)
O50.3664 (4)0.45501 (16)0.2154 (2)0.0744 (9)
H50.30000.44140.25870.112*
O60.6850 (6)0.5111 (2)0.2745 (3)0.1082 (14)
H60.58880.49370.25630.162*
C10.6684 (5)0.14309 (18)0.0505 (3)0.0474 (10)
C20.5915 (5)0.19991 (18)0.0036 (3)0.0452 (9)
H20.55750.19570.07510.054*
C30.5644 (5)0.26316 (18)0.0480 (3)0.0437 (9)
C40.6108 (5)0.27168 (19)0.1552 (3)0.0482 (10)
C50.6913 (6)0.2144 (2)0.2073 (3)0.0566 (11)
H5A0.72650.21860.27870.068*
C60.7208 (6)0.1523 (2)0.1581 (3)0.0559 (11)
H6A0.77650.11530.19590.067*
C70.6967 (5)0.07624 (19)0.0032 (3)0.0530 (10)
H70.67720.07360.07610.064*
C80.8224 (5)0.09925 (19)0.0410 (3)0.0495 (10)
C90.8502 (5)0.16287 (17)0.0252 (3)0.0402 (9)
C100.9332 (5)0.22067 (18)0.0246 (3)0.0459 (9)
H100.97240.21800.09560.055*
C110.9576 (5)0.28200 (18)0.0311 (3)0.0452 (9)
C120.9009 (5)0.2878 (2)0.1355 (3)0.0543 (11)
H120.91730.32960.17220.065*
C130.8189 (6)0.2303 (2)0.1848 (3)0.0564 (11)
H130.78050.23330.25580.068*
C140.7929 (5)0.16866 (19)0.1309 (3)0.0498 (10)
H140.73650.13050.16560.060*
H30.771 (5)0.0374 (19)0.0792 (9)0.060*
C150.2719 (8)0.4968 (2)0.1385 (4)0.0930 (17)
H15A0.21070.53380.17240.139*
H15B0.18850.46760.09790.139*
H15C0.35200.51750.09290.139*
C160.7983 (9)0.5025 (3)0.1930 (5)0.132 (2)
H16A0.77290.53820.14020.198*
H16B0.78080.45630.16200.198*
H16C0.91830.50710.22150.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0871 (10)0.0429 (6)0.0794 (8)0.0123 (6)0.0122 (6)0.0061 (5)
N10.064 (2)0.048 (2)0.051 (2)0.0092 (17)0.0017 (17)0.0028 (16)
N20.058 (2)0.0397 (17)0.0606 (19)0.0051 (16)0.0061 (16)0.0027 (15)
N30.064 (2)0.0435 (18)0.0480 (17)0.0113 (16)0.0056 (17)0.0019 (15)
O10.124 (3)0.0458 (16)0.0628 (18)0.0307 (18)0.0022 (18)0.0022 (14)
O20.104 (3)0.070 (2)0.0520 (18)0.0192 (18)0.0196 (17)0.0038 (14)
O30.095 (3)0.0486 (16)0.0492 (15)0.0114 (16)0.0097 (15)0.0068 (13)
O40.127 (3)0.0578 (17)0.0454 (16)0.0261 (18)0.0019 (17)0.0041 (13)
O50.086 (3)0.077 (2)0.0608 (19)0.0012 (19)0.0064 (17)0.0053 (15)
O60.140 (4)0.105 (3)0.078 (2)0.042 (3)0.000 (2)0.014 (2)
C10.051 (3)0.039 (2)0.052 (2)0.0008 (19)0.0063 (19)0.0016 (17)
C20.045 (2)0.044 (2)0.047 (2)0.0023 (18)0.0038 (17)0.0009 (16)
C30.049 (3)0.0349 (19)0.047 (2)0.0026 (18)0.0043 (18)0.0056 (15)
C40.057 (3)0.042 (2)0.044 (2)0.0030 (19)0.0013 (19)0.0009 (17)
C50.070 (3)0.054 (2)0.043 (2)0.003 (2)0.007 (2)0.0006 (18)
C60.064 (3)0.047 (2)0.055 (2)0.006 (2)0.002 (2)0.0099 (18)
C70.060 (3)0.045 (2)0.054 (2)0.001 (2)0.007 (2)0.0011 (18)
C80.057 (3)0.042 (2)0.049 (2)0.0069 (19)0.0000 (19)0.0014 (17)
C90.039 (2)0.040 (2)0.0413 (19)0.0031 (17)0.0015 (16)0.0003 (15)
C100.049 (3)0.044 (2)0.044 (2)0.0033 (19)0.0000 (18)0.0002 (16)
C110.044 (2)0.0346 (19)0.057 (2)0.0009 (17)0.0000 (18)0.0045 (16)
C120.059 (3)0.047 (2)0.056 (2)0.003 (2)0.003 (2)0.0118 (18)
C130.062 (3)0.059 (3)0.047 (2)0.004 (2)0.006 (2)0.0042 (19)
C140.051 (3)0.047 (2)0.050 (2)0.0079 (19)0.0027 (19)0.0044 (17)
C150.113 (5)0.074 (3)0.092 (3)0.034 (3)0.012 (3)0.018 (3)
C160.136 (6)0.136 (6)0.133 (5)0.021 (5)0.061 (5)0.028 (5)
Geometric parameters (Å, º) top
Cl1—C111.738 (3)C5—C61.355 (5)
N1—O21.214 (4)C5—H5A0.9300
N1—O11.226 (4)C6—H6A0.9300
N1—C31.458 (4)C7—H70.9300
N2—C71.272 (4)C8—C91.491 (5)
N2—N31.382 (4)C9—C141.386 (5)
N3—C81.341 (4)C9—C101.387 (4)
N3—H30.893 (10)C10—C111.377 (5)
O3—C41.336 (4)C10—H100.9300
O3—H3A0.8200C11—C121.369 (5)
O4—C81.227 (4)C12—C131.377 (5)
O5—C151.409 (5)C12—H120.9300
O5—H50.8200C13—C141.371 (5)
O6—C161.413 (6)C13—H130.9300
O6—H60.8200C14—H140.9300
C1—C21.378 (5)C15—H15A0.9600
C1—C61.406 (5)C15—H15B0.9600
C1—C71.458 (5)C15—H15C0.9600
C2—C31.385 (5)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.392 (5)C16—H16C0.9600
C4—C51.385 (5)
O2—N1—O1122.1 (3)O4—C8—C9120.8 (3)
O2—N1—C3119.1 (3)N3—C8—C9117.4 (3)
O1—N1—C3118.8 (3)C14—C9—C10118.6 (3)
C7—N2—N3116.0 (3)C14—C9—C8124.4 (3)
C8—N3—N2119.3 (3)C10—C9—C8117.0 (3)
C8—N3—H3119 (2)C11—C10—C9119.9 (3)
N2—N3—H3121 (2)C11—C10—H10120.0
C4—O3—H3A109.5C9—C10—H10120.0
C15—O5—H5109.5C12—C11—C10121.5 (3)
C16—O6—H6109.5C12—C11—Cl1119.3 (3)
C2—C1—C6117.8 (3)C10—C11—Cl1119.1 (3)
C2—C1—C7120.7 (3)C11—C12—C13118.4 (3)
C6—C1—C7121.5 (3)C11—C12—H12120.8
C1—C2—C3120.4 (3)C13—C12—H12120.8
C1—C2—H2119.8C14—C13—C12121.2 (4)
C3—C2—H2119.8C14—C13—H13119.4
C2—C3—C4122.0 (3)C12—C13—H13119.4
C2—C3—N1117.5 (3)C13—C14—C9120.4 (3)
C4—C3—N1120.6 (3)C13—C14—H14119.8
O3—C4—C5116.8 (3)C9—C14—H14119.8
O3—C4—C3126.6 (3)O5—C15—H15A109.5
C5—C4—C3116.6 (3)O5—C15—H15B109.5
C6—C5—C4122.4 (4)H15A—C15—H15B109.5
C6—C5—H5A118.8O5—C15—H15C109.5
C4—C5—H5A118.8H15A—C15—H15C109.5
C5—C6—C1120.9 (3)H15B—C15—H15C109.5
C5—C6—H6A119.6O6—C16—H16A109.5
C1—C6—H6A119.6O6—C16—H16B109.5
N2—C7—C1120.4 (3)H16A—C16—H16B109.5
N2—C7—H7119.8O6—C16—H16C109.5
C1—C7—H7119.8H16A—C16—H16C109.5
O4—C8—N3121.8 (3)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.821.962.618 (4)137
O3—H3A···O50.822.262.896 (4)135
O6—H6···O50.821.882.700 (5)179
N3—H3···O6i0.89 (1)1.99 (2)2.834 (4)158 (4)
O5—H5···O4ii0.821.962.779 (4)173
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O4·2CH4O
Mr383.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.626 (2), 18.846 (5), 12.739 (3)
β (°) 94.689 (4)
V3)1824.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.23 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.945, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7726, 3695, 1842
Rint0.048
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.208, 1.06
No. of reflections3695
No. of parameters243
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.821.962.618 (4)137
O3—H3A···O50.822.262.896 (4)135
O6—H6···O50.821.882.700 (5)179
N3—H3···O6i0.893 (10)1.988 (18)2.834 (4)158 (4)
O5—H5···O4ii0.821.962.779 (4)173
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Experimental Center of Linyi University for supporting this work.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011a). Acta Cryst. E67, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z. (2011b). Acta Cryst. E67, o301.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds