metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m985-m986

Piperazine-1,4-diium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cobaltate(II) tetra­hydrate

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 5 June 2011; accepted 16 June 2011; online 25 June 2011)

The asymmetric unit of the title complex, (C4H12N2)[Co(C7H3NO4)2]·4H2O, consists of one piperazinediium dication, one [Co(py-2,6-dc)2]2− dianion (where py-2,6-dc is pyridine-2,6-dicarboxyl­ate) and four water mol­ecules. The piperazinediium cation adopts a chair conformation and the CoII ion is six-coordinated in an N2O4 environment, having a distorted octa­hedral geometry. In the crystal, inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds link the components, forming a three-dimensional network.

Related literature

The structure determination of title compound was performed as a part of our project on the synthesis of new proton-transfer compounds, see: Raissi Shabari et al. (2010[Raissi Shabari, A., Kharaghani, S. & Pourayoubi, M. (2010). Acta Cryst. E66, m1000.]). For bond lengths in a related cobaltate(II) complex, see: Pasdar et al. (2011[Pasdar, H., Sadat Kashani, S., Ghiasi, R., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m507-m508.]). For bond lengths and angles in the piperazinediium dication, see: Sutherland & Harrison (2009[Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.]); Allen et al. (1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]). For positive-charge-assisted hydrogen bonds, see: Gilli et al. (1994[Gilli, P., Ferretti, V., Bertolasi, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[Co(C7H3NO4)2]·4H2O

  • Mr = 549.36

  • Monoclinic, P 21 /n

  • a = 7.9537 (16) Å

  • b = 13.420 (3) Å

  • c = 21.004 (4) Å

  • β = 90.55 (3)°

  • V = 2241.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 150 K

  • 0.5 × 0.40 × 0.15 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.670, Tmax = 0.878

  • 15339 measured reflections

  • 6018 independent reflections

  • 5226 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.07

  • 6018 reflections

  • 364 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12B⋯O3i 0.79 (3) 2.06 (3) 2.8428 (18) 174 (3)
O11—H11B⋯O5 0.83 (3) 2.00 (3) 2.8290 (18) 177 (3)
O11—H11A⋯O1ii 0.81 (3) 2.02 (3) 2.8173 (19) 170 (3)
O10—H10B⋯O7 0.79 (3) 2.15 (3) 2.9213 (19) 165 (3)
O10—H10A⋯O11iii 0.87 (3) 1.99 (3) 2.854 (2) 172 (3)
O9—H9B⋯O8 0.79 (3) 1.96 (3) 2.7521 (18) 175 (2)
O9—H9A⋯O12iv 0.83 (3) 2.01 (3) 2.840 (2) 173 (3)
N4—H4B⋯O3v 0.89 (2) 1.92 (2) 2.7973 (18) 165 (2)
N4—H4A⋯O6iii 0.91 (2) 1.89 (2) 2.7592 (17) 161 (2)
N3—H3B⋯O9vi 0.91 (2) 1.86 (2) 2.6958 (18) 152 (2)
N3—H3A⋯O2 0.91 (2) 2.50 (2) 3.1126 (19) 124.5 (18)
N3—H3A⋯O1 0.91 (2) 1.88 (2) 2.7957 (18) 176 (2)
C18—H18B⋯O10vii 0.97 2.58 3.457 (2) 151
C17—H17B⋯O7vii 0.97 2.36 3.127 (2) 135
C16—H16B⋯O12iv 0.97 2.52 3.293 (2) 137
C15—H15B⋯O10vi 0.97 2.60 3.261 (2) 126
C15—H15A⋯O2 0.97 2.54 3.140 (2) 120
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) x+1, y, z; (vii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of title compound was performed as a part of a project on the synthesis of new proton-transfer compounds (Raissi Shabari et al., 2010).

The Co atom in title compound adopts a distorted octahedral coordination arising from four oxygen and two nitrogen atoms of two pyridine-2,6-dicarboxylato ligands, Fig. 1. The Co—O and Co—N bond lengths are similar to those in a recently published bis(pyridine-2,6-dicarboxylato)cobaltate(II) complex, (C6H10N2)[Co(C7H3NO4)2].5H2O (Pasdar et al., 2011). The organic dication adopts a typical chair geometry with normal bond lengths and angles (Sutherland & Harrison, 2009; Allen et al., 1995).

The protonated piperazine nitrogen atoms are involved in positive charge assisted (Gilli et al., 1994) N—H···O hydrogen bonds, atom N3 is involved with the O atoms of an adjacent carbonyl of one pyridine-2,6-dicarboxylato ligand and a neighbouring H2O molecule and atom N4 with two pyridine-2,6-dicarboxylato ligands in two neighbouring complexes.

Cations, anions and four crystallographically independent H2O molecules are hydrogen bonded in a three-dimensional network through N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1).

Related literature top

The structure determination of title compound was performed as a part of our

project on the synthesis of new proton-transfer compounds, see: Raissi Shabari et al. (2010). For bond lengths in a related cobaltate(II) complex, see: Pasdar et al. (2011). For bond lengths and angles in piperazinediium dications, see: Sutherland & Harrison (2009); Allen et al. (1995). For positive-charge-assisted hydrogen bonds, see: Gilli et al. (1994).

Experimental top

A solution of Co(NO3)2.6H2O (2 mmol) in H2O was added to a solution of pyridine-2,6-dicarboxylic acid (4 mmol) in H2O and stirred (45 minutes) at room temperature. To the resulting solution, a solution of piperazine (4 mmol) in H2O was added and stirred (4 h) at 323 K. Suitable single crystals for X-ray analysis were obtained after slow evaporation at room temperature. IR (KBr, ν, cm-1): 3425, 3240, 3013, 3001, 2725, 2467, 1608, 1568, 1425, 1371, 1279, 1182, 1074, 1036, 914, 824, 760, 733, 692, 677, 592, 534.

Refinement top

H atoms of water molecules and N—H groups of cation were found in a difference Fourier map and refined isotropically. Carbon-bound H-atoms were placed in calculated positions, C—H = 0.93 Å (aromatic) and 0.97 Å (CH2), and were included in the refinement using a riding-model approximation, with Uiso = 1.2Ueq (C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labeling scheme for title complex with displacement ellipsoids drawn at the 50% probability level.
Piperazine-1,4-diium bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)cobaltate(II) tetrahydrate top
Crystal data top
(C4H12N2)[Co(C7H3NO4)2]·4H2OF(000) = 1140
Mr = 549.36Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6018 reflections
a = 7.9537 (16) Åθ = 2.5–29.1°
b = 13.420 (3) ŵ = 0.84 mm1
c = 21.004 (4) ÅT = 150 K
β = 90.55 (3)°Plate, pink
V = 2241.8 (8) Å30.5 × 0.4 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
6018 independent reflections
Radiation source: fine-focus sealed tube5226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0.15 mm pixels mm-1θmax = 29.1°, θmin = 2.5°
rotation method scansh = 1010
Absorption correction: numerical
shape of crystal determined optically
k = 1618
Tmin = 0.670, Tmax = 0.878l = 2428
15339 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0326P)2 + 1.2111P]
where P = (Fo2 + 2Fc2)/3
6018 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C4H12N2)[Co(C7H3NO4)2]·4H2OV = 2241.8 (8) Å3
Mr = 549.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9537 (16) ŵ = 0.84 mm1
b = 13.420 (3) ÅT = 150 K
c = 21.004 (4) Å0.5 × 0.4 × 0.15 mm
β = 90.55 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
6018 independent reflections
Absorption correction: numerical
shape of crystal determined optically
5226 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.878Rint = 0.038
15339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.48 e Å3
6018 reflectionsΔρmin = 0.33 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.26226 (16)0.55638 (11)0.28084 (7)0.0288 (3)
Co10.73056 (2)0.745668 (14)0.504511 (9)0.01278 (6)
C181.08242 (19)0.81672 (13)0.23202 (8)0.0195 (3)
H18A1.12800.76590.20430.023*
H18B1.16240.87120.23440.023*
C160.76380 (18)0.73170 (12)0.26866 (7)0.0173 (3)
H16A0.68280.67770.26670.021*
H16B0.71850.78360.29570.021*
C150.92728 (19)0.69397 (11)0.29675 (7)0.0176 (3)
H15A0.90910.67140.34000.021*
H15B0.96700.63780.27200.021*
C170.9172 (2)0.85410 (12)0.20509 (8)0.0197 (3)
H17A0.87590.90830.23110.024*
H17B0.93390.87930.16230.024*
N40.79141 (16)0.77200 (10)0.20359 (6)0.0165 (2)
N31.05640 (16)0.77441 (11)0.29680 (6)0.0175 (3)
O50.91680 (15)0.73565 (8)0.58111 (5)0.0206 (2)
N10.71594 (14)0.89536 (9)0.51050 (6)0.0128 (2)
O40.53764 (14)0.77007 (8)0.57578 (5)0.0188 (2)
O20.89349 (14)0.79723 (8)0.43015 (5)0.0191 (2)
O80.57909 (14)0.68290 (8)0.42961 (5)0.0187 (2)
C70.53098 (18)0.85856 (11)0.59591 (7)0.0145 (3)
C60.62806 (17)0.93522 (11)0.55788 (7)0.0132 (3)
C90.86203 (17)0.56523 (11)0.56247 (7)0.0128 (3)
C130.69018 (17)0.53516 (11)0.47424 (7)0.0124 (3)
O30.44917 (14)0.88780 (9)0.64298 (5)0.0190 (2)
O10.95932 (14)0.93309 (8)0.37446 (5)0.0188 (2)
O70.51331 (14)0.53761 (9)0.38257 (6)0.0218 (2)
N20.76472 (14)0.59801 (9)0.51494 (6)0.0116 (2)
C140.58397 (18)0.58788 (11)0.42379 (7)0.0148 (3)
C80.94256 (18)0.64790 (11)0.60154 (7)0.0149 (3)
C20.80213 (17)0.95197 (11)0.46993 (7)0.0128 (3)
C50.62615 (19)1.03742 (11)0.56736 (7)0.0159 (3)
H50.56641.06520.60080.019*
C120.71303 (17)0.43292 (11)0.47966 (7)0.0147 (3)
H120.66220.38920.45100.018*
C100.88885 (18)0.46439 (11)0.57169 (7)0.0163 (3)
H100.95510.44170.60540.020*
C10.89276 (17)0.89032 (11)0.42059 (7)0.0147 (3)
C30.80328 (18)1.05509 (11)0.47560 (7)0.0151 (3)
H30.86101.09460.44680.018*
C110.81438 (18)0.39770 (11)0.52927 (7)0.0169 (3)
H110.83220.32960.53400.020*
C40.71541 (19)1.09736 (11)0.52577 (8)0.0172 (3)
H40.71651.16610.53150.021*
O90.37881 (15)0.76948 (10)0.33746 (7)0.0244 (3)
O61.02757 (14)0.62407 (9)0.64909 (6)0.0223 (2)
O110.9680 (2)0.87887 (11)0.67821 (7)0.0312 (3)
O120.46115 (18)0.06341 (10)0.71858 (6)0.0260 (3)
H3B1.157 (3)0.7514 (16)0.3122 (11)0.029 (6)*
H4B0.828 (3)0.7228 (18)0.1787 (11)0.029 (6)*
H3A1.022 (3)0.8243 (18)0.3232 (11)0.031 (6)*
H4A0.694 (3)0.7923 (19)0.1846 (11)0.034 (6)*
H9B0.437 (3)0.7419 (18)0.3625 (12)0.031 (6)*
H10B0.324 (4)0.561 (2)0.3103 (15)0.050 (8)*
H10A0.321 (3)0.582 (2)0.2501 (14)0.051 (8)*
H9A0.432 (4)0.815 (2)0.3200 (14)0.052 (8)*
H12A0.508 (3)0.050 (2)0.7517 (14)0.051 (8)*
H12B0.464 (3)0.013 (2)0.6991 (14)0.045 (8)*
H11B0.950 (3)0.838 (2)0.6492 (14)0.046 (7)*
H11A0.989 (3)0.929 (2)0.6591 (13)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0222 (6)0.0391 (8)0.0252 (7)0.0005 (5)0.0045 (5)0.0017 (6)
Co10.01592 (9)0.00943 (9)0.01298 (10)0.00047 (7)0.00079 (6)0.00003 (7)
C180.0185 (7)0.0244 (8)0.0158 (7)0.0038 (6)0.0021 (5)0.0007 (6)
C160.0154 (6)0.0188 (7)0.0177 (7)0.0008 (5)0.0014 (5)0.0008 (5)
C150.0211 (7)0.0161 (7)0.0156 (7)0.0040 (5)0.0001 (5)0.0027 (5)
C170.0262 (8)0.0165 (7)0.0165 (7)0.0008 (6)0.0016 (6)0.0040 (6)
N40.0158 (6)0.0190 (6)0.0147 (6)0.0039 (5)0.0044 (5)0.0003 (5)
N30.0149 (6)0.0247 (7)0.0128 (6)0.0044 (5)0.0024 (5)0.0024 (5)
O50.0275 (6)0.0138 (5)0.0202 (5)0.0027 (4)0.0086 (4)0.0010 (4)
N10.0126 (5)0.0118 (5)0.0140 (6)0.0001 (4)0.0003 (4)0.0004 (4)
O40.0240 (5)0.0130 (5)0.0194 (5)0.0025 (4)0.0056 (4)0.0011 (4)
O20.0243 (5)0.0142 (5)0.0188 (5)0.0013 (4)0.0063 (4)0.0001 (4)
O80.0235 (5)0.0147 (5)0.0177 (5)0.0013 (4)0.0082 (4)0.0011 (4)
C70.0156 (6)0.0153 (7)0.0126 (6)0.0003 (5)0.0003 (5)0.0021 (5)
C60.0149 (6)0.0127 (6)0.0120 (6)0.0004 (5)0.0000 (5)0.0002 (5)
C90.0113 (6)0.0143 (6)0.0129 (6)0.0016 (5)0.0012 (5)0.0005 (5)
C130.0113 (6)0.0139 (6)0.0120 (6)0.0000 (5)0.0007 (5)0.0011 (5)
O30.0236 (5)0.0180 (5)0.0154 (5)0.0002 (4)0.0067 (4)0.0003 (4)
O10.0230 (5)0.0181 (5)0.0154 (5)0.0018 (4)0.0053 (4)0.0013 (4)
O70.0243 (6)0.0231 (6)0.0179 (5)0.0034 (4)0.0092 (4)0.0060 (4)
N20.0111 (5)0.0121 (5)0.0117 (5)0.0002 (4)0.0005 (4)0.0004 (4)
C140.0140 (6)0.0180 (7)0.0123 (6)0.0026 (5)0.0014 (5)0.0002 (5)
C80.0137 (6)0.0170 (7)0.0139 (6)0.0036 (5)0.0013 (5)0.0015 (5)
C20.0120 (6)0.0138 (6)0.0124 (6)0.0002 (5)0.0004 (5)0.0012 (5)
C50.0191 (6)0.0145 (7)0.0141 (6)0.0000 (5)0.0005 (5)0.0031 (5)
C120.0143 (6)0.0124 (6)0.0173 (7)0.0019 (5)0.0009 (5)0.0031 (5)
C100.0152 (6)0.0163 (7)0.0174 (7)0.0002 (5)0.0033 (5)0.0045 (5)
C10.0133 (6)0.0168 (7)0.0142 (6)0.0007 (5)0.0003 (5)0.0014 (5)
C30.0160 (6)0.0126 (6)0.0168 (7)0.0020 (5)0.0004 (5)0.0018 (5)
C110.0178 (6)0.0109 (6)0.0221 (7)0.0002 (5)0.0009 (6)0.0024 (5)
C40.0204 (7)0.0109 (6)0.0202 (7)0.0016 (5)0.0003 (6)0.0007 (5)
O90.0182 (5)0.0233 (6)0.0315 (7)0.0007 (5)0.0089 (5)0.0059 (5)
O60.0243 (5)0.0227 (6)0.0196 (6)0.0062 (4)0.0116 (4)0.0031 (5)
O110.0541 (9)0.0202 (6)0.0195 (6)0.0074 (6)0.0038 (6)0.0005 (5)
O120.0400 (7)0.0204 (6)0.0175 (6)0.0034 (5)0.0031 (5)0.0012 (5)
Geometric parameters (Å, º) top
O10—H10B0.79 (3)O8—C141.2817 (19)
O10—H10A0.87 (3)C7—O31.2518 (19)
Co1—N22.0117 (13)C7—C61.518 (2)
Co1—N12.0162 (13)C6—C51.386 (2)
Co1—O82.1446 (12)C9—N21.3321 (18)
Co1—O22.1532 (13)C9—C101.383 (2)
Co1—O42.1787 (13)C9—C81.518 (2)
Co1—O52.1807 (13)C13—N21.3357 (18)
C18—N31.491 (2)C13—C121.389 (2)
C18—C171.511 (2)C13—C141.5229 (19)
C18—H18A0.9700O1—C11.2485 (19)
C18—H18B0.9700O7—C141.2293 (18)
C16—N41.488 (2)C8—O61.2426 (18)
C16—C151.510 (2)C2—C31.389 (2)
C16—H16A0.9700C2—C11.514 (2)
C16—H16B0.9700C5—C41.388 (2)
C15—N31.490 (2)C5—H50.9300
C15—H15A0.9700C12—C111.394 (2)
C15—H15B0.9700C12—H120.9300
C17—N41.488 (2)C10—C111.391 (2)
C17—H17A0.9700C10—H100.9300
C17—H17B0.9700C3—C41.391 (2)
N4—H4B0.89 (2)C3—H30.9300
N4—H4A0.91 (2)C11—H110.9300
N3—H3B0.91 (2)C4—H40.9300
N3—H3A0.91 (2)O9—H9B0.79 (3)
O5—C81.2692 (19)O9—H9A0.83 (3)
N1—C61.3335 (19)O11—H11B0.83 (3)
N1—C21.3358 (19)O11—H11A0.81 (3)
O4—C71.2619 (18)O12—H12A0.80 (3)
O2—C11.2652 (19)O12—H12B0.79 (3)
H10B—O10—H10A103 (3)C6—N1—Co1118.50 (10)
N2—Co1—N1169.23 (5)C2—N1—Co1119.77 (10)
N2—Co1—O876.55 (5)C7—O4—Co1113.82 (10)
N1—Co1—O8113.87 (5)C1—O2—Co1115.50 (10)
N2—Co1—O2108.30 (5)C14—O8—Co1116.32 (9)
N1—Co1—O276.15 (5)O3—C7—O4125.69 (14)
O8—Co1—O286.10 (5)O3—C7—C6118.30 (13)
N2—Co1—O499.70 (5)O4—C7—C6115.99 (13)
N1—Co1—O476.46 (5)N1—C6—C5120.71 (14)
O8—Co1—O499.71 (5)N1—C6—C7113.19 (12)
O2—Co1—O4151.99 (4)C5—C6—C7126.06 (13)
N2—Co1—O576.63 (4)N2—C9—C10121.04 (13)
N1—Co1—O593.13 (4)N2—C9—C8113.76 (13)
O8—Co1—O5152.85 (4)C10—C9—C8125.15 (13)
O2—Co1—O598.38 (5)N2—C13—C12120.96 (13)
O4—Co1—O588.87 (5)N2—C13—C14113.07 (12)
N3—C18—C17109.89 (13)C12—C13—C14125.97 (13)
N3—C18—H18A109.7C9—N2—C13121.49 (13)
C17—C18—H18A109.7C9—N2—Co1118.93 (10)
N3—C18—H18B109.7C13—N2—Co1119.58 (10)
C17—C18—H18B109.7O7—C14—O8126.80 (14)
H18A—C18—H18B108.2O7—C14—C13118.81 (13)
N4—C16—C15110.28 (12)O8—C14—C13114.39 (12)
N4—C16—H16A109.6O6—C8—O5126.53 (14)
C15—C16—H16A109.6O6—C8—C9118.02 (13)
N4—C16—H16B109.6O5—C8—C9115.43 (13)
C15—C16—H16B109.6N1—C2—C3120.99 (14)
H16A—C16—H16B108.1N1—C2—C1112.12 (12)
N3—C15—C16110.38 (12)C3—C2—C1126.89 (13)
N3—C15—H15A109.6C6—C5—C4118.47 (14)
C16—C15—H15A109.6C6—C5—H5120.8
N3—C15—H15B109.6C4—C5—H5120.8
C16—C15—H15B109.6C13—C12—C11118.08 (13)
H15A—C15—H15B108.1C13—C12—H12121.0
N4—C17—C18110.13 (13)C11—C12—H12121.0
N4—C17—H17A109.6C9—C10—C11118.40 (13)
C18—C17—H17A109.6C9—C10—H10120.8
N4—C17—H17B109.6C11—C10—H10120.8
C18—C17—H17B109.6O1—C1—O2125.15 (14)
H17A—C17—H17B108.1O1—C1—C2119.23 (13)
C16—N4—C17110.77 (12)O2—C1—C2115.62 (13)
C16—N4—H4B108.8 (15)C2—C3—C4117.93 (14)
C17—N4—H4B109.6 (15)C2—C3—H3121.0
C16—N4—H4A112.4 (15)C4—C3—H3121.0
C17—N4—H4A110.8 (16)C10—C11—C12120.02 (14)
H4B—N4—H4A104 (2)C10—C11—H11120.0
C15—N3—C18112.15 (12)C12—C11—H11120.0
C15—N3—H3B110.8 (14)C5—C4—C3120.28 (14)
C18—N3—H3B109.0 (14)C5—C4—H4119.9
C15—N3—H3A108.6 (14)C3—C4—H4119.9
C18—N3—H3A108.7 (15)H9B—O9—H9A110 (2)
H3B—N3—H3A107 (2)H11B—O11—H11A103 (3)
C8—O5—Co1114.39 (9)H12A—O12—H12B104 (3)
C6—N1—C2121.59 (13)
N4—C16—C15—N356.04 (16)C8—C9—N2—Co12.77 (16)
N3—C18—C17—N457.15 (17)C12—C13—N2—C90.7 (2)
C15—C16—N4—C1758.43 (16)C14—C13—N2—C9179.69 (12)
C18—C17—N4—C1659.08 (16)C12—C13—N2—Co1179.15 (11)
C16—C15—N3—C1855.72 (17)C14—C13—N2—Co10.48 (16)
C17—C18—N3—C1556.17 (17)N1—Co1—N2—C912.6 (3)
N2—Co1—O5—C88.50 (11)O8—Co1—N2—C9178.50 (11)
N1—Co1—O5—C8168.13 (11)O2—Co1—N2—C9100.29 (11)
O8—Co1—O5—C817.59 (17)O4—Co1—N2—C980.74 (11)
O2—Co1—O5—C8115.43 (11)O5—Co1—N2—C95.75 (10)
O4—Co1—O5—C891.75 (11)N1—Co1—N2—C13167.6 (2)
N2—Co1—N1—C659.3 (3)O8—Co1—N2—C131.66 (10)
O8—Co1—N1—C6105.67 (11)O2—Co1—N2—C1379.55 (11)
O2—Co1—N1—C6175.04 (11)O4—Co1—N2—C1399.42 (11)
O4—Co1—N1—C610.90 (10)O5—Co1—N2—C13174.09 (11)
O5—Co1—N1—C677.18 (11)Co1—O8—C14—O7176.49 (13)
N2—Co1—N1—C2116.5 (3)Co1—O8—C14—C133.39 (16)
O8—Co1—N1—C278.56 (11)N2—C13—C14—O7177.88 (14)
O2—Co1—N1—C20.73 (10)C12—C13—C14—O71.7 (2)
O4—Co1—N1—C2173.33 (11)N2—C13—C14—O82.00 (18)
O5—Co1—N1—C298.59 (11)C12—C13—C14—O8178.38 (14)
N2—Co1—O4—C7156.74 (10)Co1—O5—C8—O6171.44 (13)
N1—Co1—O4—C712.98 (10)Co1—O5—C8—C99.52 (16)
O8—Co1—O4—C7125.39 (10)N2—C9—C8—O6175.91 (13)
O2—Co1—O4—C725.34 (16)C10—C9—C8—O66.8 (2)
O5—Co1—O4—C780.51 (11)N2—C9—C8—O54.96 (19)
N2—Co1—O2—C1176.16 (10)C10—C9—C8—O5172.35 (14)
N1—Co1—O2—C16.37 (10)C6—N1—C2—C30.1 (2)
O8—Co1—O2—C1109.39 (11)Co1—N1—C2—C3175.70 (10)
O4—Co1—O2—C16.00 (17)C6—N1—C2—C1179.60 (12)
O5—Co1—O2—C197.55 (11)Co1—N1—C2—C13.96 (15)
N2—Co1—O8—C142.85 (11)N1—C6—C5—C41.1 (2)
N1—Co1—O8—C14180.00 (10)C7—C6—C5—C4176.42 (13)
O2—Co1—O8—C14107.02 (11)N2—C13—C12—C110.8 (2)
O4—Co1—O8—C14100.60 (11)C14—C13—C12—C11179.66 (13)
O5—Co1—O8—C146.25 (17)N2—C9—C10—C111.3 (2)
Co1—O4—C7—O3168.85 (12)C8—C9—C10—C11175.84 (14)
Co1—O4—C7—C612.83 (16)Co1—O2—C1—O1169.47 (12)
C2—N1—C6—C51.3 (2)Co1—O2—C1—C210.27 (16)
Co1—N1—C6—C5174.37 (11)N1—C2—C1—O1170.25 (13)
C2—N1—C6—C7176.50 (12)C3—C2—C1—O110.1 (2)
Co1—N1—C6—C77.81 (15)N1—C2—C1—O29.50 (18)
O3—C7—C6—N1177.41 (13)C3—C2—C1—O2170.14 (14)
O4—C7—C6—N14.14 (18)N1—C2—C3—C41.6 (2)
O3—C7—C6—C54.9 (2)C1—C2—C3—C4178.01 (13)
O4—C7—C6—C5173.53 (14)C9—C10—C11—C121.2 (2)
C10—C9—N2—C130.4 (2)C13—C12—C11—C100.2 (2)
C8—C9—N2—C13177.06 (12)C6—C5—C4—C30.5 (2)
C10—C9—N2—Co1179.80 (11)C2—C3—C4—C51.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O3i0.79 (3)2.06 (3)2.8428 (18)174 (3)
O11—H11B···O50.83 (3)2.00 (3)2.8290 (18)177 (3)
O11—H11A···O1ii0.81 (3)2.02 (3)2.8173 (19)170 (3)
O10—H10B···O70.79 (3)2.15 (3)2.9213 (19)165 (3)
O10—H10A···O11iii0.87 (3)1.99 (3)2.854 (2)172 (3)
O9—H9B···O80.79 (3)1.96 (3)2.7521 (18)175 (2)
O9—H9A···O12iv0.83 (3)2.01 (3)2.840 (2)173 (3)
N4—H4B···O3v0.89 (2)1.92 (2)2.7973 (18)165 (2)
N4—H4A···O6iii0.91 (2)1.89 (2)2.7592 (17)161 (2)
N3—H3B···O9vi0.91 (2)1.86 (2)2.6958 (18)152 (2)
N3—H3A···O20.91 (2)2.50 (2)3.1126 (19)124.5 (18)
N3—H3A···O10.91 (2)1.88 (2)2.7957 (18)176 (2)
C18—H18B···O10vii0.972.583.457 (2)151
C17—H17B···O7vii0.972.363.127 (2)135
C16—H16B···O12iv0.972.523.293 (2)137
C15—H15B···O10vi0.972.603.261 (2)126
C15—H15A···O20.972.543.140 (2)120
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+1, y, z; (vii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Co(C7H3NO4)2]·4H2O
Mr549.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.9537 (16), 13.420 (3), 21.004 (4)
β (°) 90.55 (3)
V3)2241.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.5 × 0.4 × 0.15
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.670, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
15339, 6018, 5226
Rint0.038
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.07
No. of reflections6018
No. of parameters364
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12B···O3i0.79 (3)2.06 (3)2.8428 (18)174 (3)
O11—H11B···O50.83 (3)2.00 (3)2.8290 (18)177 (3)
O11—H11A···O1ii0.81 (3)2.02 (3)2.8173 (19)170 (3)
O10—H10B···O70.79 (3)2.15 (3)2.9213 (19)165 (3)
O10—H10A···O11iii0.87 (3)1.99 (3)2.854 (2)172 (3)
O9—H9B···O80.79 (3)1.96 (3)2.7521 (18)175 (2)
O9—H9A···O12iv0.83 (3)2.01 (3)2.840 (2)173 (3)
N4—H4B···O3v0.89 (2)1.92 (2)2.7973 (18)165 (2)
N4—H4A···O6iii0.91 (2)1.89 (2)2.7592 (17)161 (2)
N3—H3B···O9vi0.91 (2)1.86 (2)2.6958 (18)152 (2)
N3—H3A···O20.91 (2)2.50 (2)3.1126 (19)124.5 (18)
N3—H3A···O10.91 (2)1.88 (2)2.7957 (18)176 (2)
C18—H18B···O10vii0.972.583.457 (2)150.8
C17—H17B···O7vii0.972.363.127 (2)135.1
C16—H16B···O12iv0.972.523.293 (2)136.8
C15—H15B···O10vi0.972.603.261 (2)126.0
C15—H15A···O20.972.543.140 (2)119.9
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+1, y, z; (vii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Support of this investigation by the North Tehran Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, P., Ferretti, V., Bertolasi, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationPasdar, H., Sadat Kashani, S., Ghiasi, R., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m507–m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaissi Shabari, A., Kharaghani, S. & Pourayoubi, M. (2010). Acta Cryst. E66, m1000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m985-m986
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds