organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[1,4-Phenyl­enebis(methyl­ene)]bis­­(2-methyl-1H-imidazol-3-ium) 2,4-dicarb­­oxy­benzene-1,5-di­carboxyl­ate monohydrate

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tsdgying@126.com

(Received 7 June 2011; accepted 11 June 2011; online 18 June 2011)

In the dication of the title compound, C16H20N42+·C10H4O82−·H2O, the dihedral angles formed by mean planes of the imidazolium rings and the benzene ring are 69.05 (18) and 89.1 (2)°. In the crystal, the components are linked into a three-dimensional network by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of 1,4-bis­(2-methyl-1H-imidazole-3-ium)benzene, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953.]). For related complexes, see: Liu Wu, Wan et al. (2011[Liu, T.-F., Wu, W.-F., Wan, C.-Q., He, C.-H., Jiao, C.-H. & Cui, G.-H. (2011). J. Coord. Chem. 64, 975-986.]); Liu, Wu, Zhang & Cui (2011[Liu, T.-F., Wu, W.-F., Zhang, W.-G. & Cui, G.-H. (2011). Z. Anorg. Allg. Chem. 637, 148-153.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N42+·C10H4O82−·H2O

  • Mr = 538.51

  • Monoclinic, P 21 /c

  • a = 9.7139 (19) Å

  • b = 19.428 (4) Å

  • c = 13.856 (3) Å

  • β = 97.39 (3)°

  • V = 2593.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.971

  • 20668 measured reflections

  • 4571 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.144

  • S = 1.10

  • 4571 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.82 1.76 2.575 (3) 172
O1W—H1A⋯O6 0.86 1.90 2.747 (3) 168
O1W—H1B⋯O5ii 0.85 1.98 2.743 (3) 149
N4—H1C⋯O4iii 0.98 1.75 2.679 (4) 158
N2—H2⋯O1Wiv 1.07 1.59 2.651 (4) 172
O8—H8⋯O3v 0.82 1.81 2.586 (3) 157
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-bis(2-methylimidazole-1-methyl)benzene is a flexible bridging ligand, which can participate in the construction of coordination polymers and can provide information on the influences of 2-substituted derivatives of imidazole on the structures and properties of resulting complexes (Liu et al., 2011a,2011b). In our attempt to synthesize a zinc complex with this ligand, we unexpectedly obtained the title compound (I) and report herein its synthesis and crystal structure determination.

The asymmetric unit of (I) is shown in (Fig. 1). Bond distances and angles are as found in other structures (Liu Wu, Wan et al., 2011); Liu, Wu, Zhang & Cui, 2011). In the dication, the dihedral angles formed by the mean-planes of the imidazole rings and the benzene ring (C11-C16) are 69.05 (18)° (N1/N2/C18/C19/C20) and 89.1 (2)° (N3/N4/C23/C24/C25). In the crystal, the components are linked into a three-dimensional network by intermolecular N—H···O and O—H···O hydrogen bonds.

Related literature top

For the synthesis of 1,4-bis(2-methyl-1H-imidazole-3-ium)benzene, see: Hoskins et al. (1997). For related complexes, see: Liu Wu, Wan et al. (2011); Liu, Wu, Zhang & Cui (2011).

Experimental top

1,4-Bis(2-methylimidazole-1-methyl)benzene was prepared by the method of Hoskins et al. (1997). A mixture of Zn(NO3)2.6H2O (298 mg,1 mmol), 1,4-bis(2-methylimidazole-1-methyl)benzene (1.0 mmol, 266.4 mg), 1,2,4,5-benzenetetracarboxylic acid (1.0 mmol, 254.2 mg) and H2O (12 mL) was placed in a Teflon-lined stainless vessel and heated to 393 K for 4 days under autogenous pressure, and then cooled to room temperature in 24 h. block-shaped colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained.

Refinement top

H atoms bonded to C atoms and hydroxy H atoms were placed in calculated positions with C–H = 0.93 or 0.97 Å, O-H = 0.82Å and refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O, Cmethyl). Water H atoms and N-bound H atoms were located in a difference Fourier map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O, N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability levels.
1,1'-[1,4-Phenylenebis(methylene)]bis(2-methyl-1H-imidazol-3-ium) 2,4-dicarboxybenzene-1,5-dicarboxylate monohydrate top
Crystal data top
C16H20N42+·C10H4O82·H2OF(000) = 1128
Mr = 538.51Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2963 reflections
a = 9.7139 (19) Åθ = 4.6–23.5°
b = 19.428 (4) ŵ = 0.11 mm1
c = 13.856 (3) ÅT = 295 K
β = 97.39 (3)°Block, colourless
V = 2593.3 (9) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4571 independent reflections
Radiation source: fine–focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.968, Tmax = 0.971k = 2323
20668 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.9004P]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H20N42+·C10H4O82·H2OV = 2593.3 (9) Å3
Mr = 538.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7139 (19) ŵ = 0.11 mm1
b = 19.428 (4) ÅT = 295 K
c = 13.856 (3) Å0.22 × 0.18 × 0.16 mm
β = 97.39 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4571 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3075 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.971Rint = 0.078
20668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.10Δρmax = 0.30 e Å3
4571 reflectionsΔρmin = 0.25 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.3527 (2)0.26814 (12)0.7753 (2)0.0460 (7)
H11.43610.25980.78060.069*
C11.1278 (3)0.21981 (14)0.7695 (2)0.0211 (7)
O60.6182 (2)0.25426 (12)0.78948 (16)0.0389 (6)
N20.0283 (3)0.27283 (15)1.00182 (19)0.0370 (7)
C61.0713 (3)0.28578 (15)0.7517 (2)0.0241 (7)
H61.13090.32320.75120.029*
C50.9277 (3)0.29696 (14)0.7346 (2)0.0215 (7)
C21.0382 (3)0.16286 (15)0.7718 (2)0.0228 (7)
O31.0942 (3)0.04591 (11)0.73740 (17)0.0466 (7)
C100.8718 (3)0.36897 (15)0.7201 (2)0.0280 (7)
O70.7529 (2)0.38125 (12)0.6872 (2)0.0552 (8)
C40.8365 (3)0.23966 (15)0.7314 (2)0.0211 (7)
C90.6773 (3)0.24479 (15)0.7138 (2)0.0280 (7)
C30.8944 (3)0.17407 (15)0.7510 (2)0.0251 (7)
H30.83510.13640.75010.030*
N30.4318 (3)0.51795 (13)0.63373 (19)0.0311 (7)
O50.6155 (2)0.23446 (14)0.62994 (17)0.0487 (7)
N10.2118 (3)0.33609 (14)1.03805 (19)0.0341 (7)
C71.2841 (3)0.21099 (16)0.7850 (2)0.0269 (7)
O41.1014 (3)0.07904 (12)0.89343 (18)0.0526 (7)
C180.0723 (4)0.33800 (18)1.0185 (2)0.0359 (8)
O21.3390 (2)0.15570 (12)0.8038 (2)0.0622 (9)
C81.0850 (3)0.08958 (16)0.8028 (3)0.0291 (8)
C140.4739 (3)0.47375 (16)0.8037 (2)0.0303 (8)
O80.9640 (3)0.41682 (12)0.7470 (3)0.0736 (10)
H80.92680.45470.74150.110*
C230.3679 (4)0.47019 (17)0.5734 (2)0.0355 (8)
C250.3698 (4)0.58156 (17)0.6113 (3)0.0398 (9)
H250.39420.62320.64190.048*
C170.3073 (4)0.39578 (18)1.0599 (3)0.0445 (9)
H17A0.38400.38211.10790.053*
H17B0.25790.43271.08770.053*
C110.3644 (4)0.42225 (17)0.9695 (2)0.0369 (9)
N40.2683 (3)0.50177 (15)0.5137 (2)0.0436 (8)
C220.5378 (3)0.50329 (17)0.7177 (2)0.0357 (8)
H22A0.58680.54540.73770.043*
H22B0.60470.47080.69810.043*
C190.1416 (4)0.22940 (18)1.0100 (3)0.0411 (9)
H190.13950.18191.00150.049*
C200.2568 (4)0.26881 (18)1.0327 (2)0.0388 (9)
H200.34820.25351.04270.047*
C130.5502 (4)0.4301 (2)0.8693 (3)0.0532 (11)
H130.63920.41740.85860.064*
C240.2675 (4)0.57139 (19)0.5368 (3)0.0476 (10)
H240.20790.60470.50680.057*
C160.2873 (5)0.4638 (2)0.9035 (3)0.0718 (14)
H160.19730.47550.91340.086*
C120.4964 (4)0.4048 (2)0.9512 (3)0.0556 (11)
H120.55040.37580.99400.067*
C150.3412 (4)0.4890 (2)0.8213 (3)0.0677 (14)
H150.28570.51670.77750.081*
O1W0.7588 (2)0.24523 (16)0.97416 (18)0.0651 (9)
C260.4009 (4)0.39518 (18)0.5750 (3)0.0522 (11)
H26A0.35200.37250.62190.078*
H26B0.49900.38890.59230.078*
H26C0.37310.37590.51170.078*
C210.0224 (4)0.3989 (2)1.0153 (3)0.0587 (11)
H21A0.00200.42501.07420.088*
H21B0.11700.38351.00890.088*
H21C0.00890.42740.96060.088*
H1C0.21740.47870.45750.088*
H20.08200.26580.99240.088*
H1A0.70480.24850.92050.088*
H1B0.68950.25291.00440.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (11)0.0409 (15)0.0811 (19)0.0003 (11)0.0055 (13)0.0144 (13)
C10.0194 (16)0.0217 (16)0.0228 (17)0.0016 (13)0.0051 (13)0.0015 (13)
O60.0169 (11)0.0709 (17)0.0295 (13)0.0036 (11)0.0052 (10)0.0011 (12)
N20.0357 (17)0.0423 (18)0.0331 (17)0.0002 (14)0.0045 (14)0.0022 (13)
C60.0203 (16)0.0203 (16)0.0315 (18)0.0035 (13)0.0025 (14)0.0007 (13)
C50.0186 (16)0.0220 (16)0.0241 (17)0.0036 (13)0.0037 (13)0.0022 (13)
C20.0222 (16)0.0205 (16)0.0258 (17)0.0003 (13)0.0034 (13)0.0019 (13)
O30.0692 (18)0.0224 (13)0.0476 (16)0.0054 (12)0.0056 (13)0.0041 (12)
C100.0247 (18)0.0238 (18)0.035 (2)0.0001 (15)0.0030 (15)0.0039 (14)
O70.0304 (15)0.0345 (15)0.097 (2)0.0101 (11)0.0081 (14)0.0086 (14)
C40.0175 (15)0.0250 (17)0.0206 (16)0.0013 (13)0.0016 (13)0.0034 (13)
C90.0210 (17)0.0278 (18)0.035 (2)0.0005 (14)0.0019 (16)0.0033 (15)
C30.0207 (16)0.0234 (17)0.0312 (18)0.0071 (13)0.0029 (14)0.0013 (14)
N30.0331 (15)0.0300 (16)0.0306 (16)0.0048 (13)0.0059 (13)0.0040 (13)
O50.0243 (13)0.086 (2)0.0335 (15)0.0021 (13)0.0040 (11)0.0098 (13)
N10.0387 (17)0.0352 (17)0.0283 (16)0.0049 (14)0.0037 (13)0.0000 (13)
C70.0249 (17)0.0249 (18)0.0303 (19)0.0020 (15)0.0015 (15)0.0041 (14)
O40.0766 (19)0.0400 (15)0.0376 (16)0.0118 (13)0.0067 (14)0.0096 (12)
C180.041 (2)0.040 (2)0.0267 (19)0.0029 (17)0.0053 (16)0.0015 (16)
O20.0251 (13)0.0291 (14)0.130 (3)0.0091 (11)0.0012 (15)0.0043 (15)
C80.0228 (17)0.0228 (18)0.041 (2)0.0009 (14)0.0020 (16)0.0040 (16)
C140.0293 (18)0.0299 (18)0.0314 (19)0.0041 (15)0.0023 (15)0.0035 (15)
O80.0444 (16)0.0205 (14)0.146 (3)0.0020 (12)0.0264 (18)0.0019 (17)
C230.040 (2)0.032 (2)0.034 (2)0.0040 (16)0.0042 (17)0.0010 (16)
C250.049 (2)0.0268 (19)0.043 (2)0.0006 (17)0.0027 (19)0.0008 (17)
C170.052 (2)0.043 (2)0.038 (2)0.0125 (19)0.0045 (18)0.0023 (17)
C110.040 (2)0.033 (2)0.038 (2)0.0066 (17)0.0048 (17)0.0026 (16)
N40.0488 (19)0.0444 (19)0.0342 (18)0.0055 (15)0.0076 (15)0.0051 (14)
C220.0316 (19)0.036 (2)0.038 (2)0.0015 (15)0.0029 (16)0.0011 (16)
C190.048 (2)0.034 (2)0.042 (2)0.0005 (18)0.0113 (18)0.0044 (17)
C200.040 (2)0.041 (2)0.037 (2)0.0061 (17)0.0092 (17)0.0013 (17)
C130.043 (2)0.061 (3)0.059 (3)0.016 (2)0.015 (2)0.015 (2)
C240.055 (3)0.040 (2)0.044 (2)0.0078 (19)0.006 (2)0.0033 (18)
C160.055 (3)0.093 (4)0.073 (3)0.030 (3)0.034 (2)0.032 (3)
C120.050 (3)0.061 (3)0.057 (3)0.014 (2)0.010 (2)0.021 (2)
C150.055 (3)0.084 (3)0.068 (3)0.030 (2)0.022 (2)0.045 (3)
O1W0.0330 (14)0.123 (3)0.0385 (16)0.0012 (15)0.0002 (12)0.0064 (16)
C260.059 (3)0.036 (2)0.059 (3)0.0044 (18)0.000 (2)0.0091 (19)
C210.059 (3)0.054 (3)0.063 (3)0.014 (2)0.007 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C71.311 (4)C14—C221.524 (5)
O1—H10.8200O8—H80.8200
C1—C61.404 (4)C23—N41.338 (4)
C1—C21.411 (4)C23—C261.492 (5)
C1—C71.516 (4)C25—C241.352 (5)
O6—C91.272 (4)C25—H250.9300
N2—C181.347 (4)C17—C111.523 (5)
N2—C191.380 (4)C17—H17A0.9700
N2—H21.0718C17—H17B0.9700
C6—C51.402 (4)C11—C161.369 (5)
C6—H60.9300C11—C121.381 (5)
C5—C41.420 (4)N4—C241.390 (4)
C5—C101.505 (4)N4—H1C0.9761
C2—C31.406 (4)C22—H22A0.9700
C2—C81.539 (4)C22—H22B0.9700
O3—C81.253 (4)C19—C201.359 (5)
C10—O71.210 (4)C19—H190.9300
C10—O81.312 (4)C20—H200.9300
C4—C31.405 (4)C13—C121.398 (5)
C4—C91.538 (4)C13—H130.9300
C9—O51.253 (4)C24—H240.9300
C3—H30.9300C16—C151.402 (5)
N3—C231.346 (4)C16—H160.9300
N3—C251.392 (4)C12—H120.9300
N3—C221.479 (4)C15—H150.9300
N1—C181.349 (4)O1W—H1A0.8558
N1—C201.383 (4)O1W—H1B0.8509
N1—C171.492 (4)C26—H26A0.9600
C7—O21.212 (4)C26—H26B0.9600
O4—C81.262 (4)C26—H26C0.9600
C18—C211.496 (5)C21—H21A0.9600
C14—C151.374 (5)C21—H21B0.9600
C14—C131.386 (5)C21—H21C0.9600
C7—O1—H1109.5N1—C17—C11112.2 (3)
C6—C1—C2119.5 (3)N1—C17—H17A109.2
C6—C1—C7119.4 (3)C11—C17—H17A109.2
C2—C1—C7121.2 (3)N1—C17—H17B109.2
C18—N2—C19109.2 (3)C11—C17—H17B109.2
C18—N2—H2115.5H17A—C17—H17B107.9
C19—N2—H2134.9C16—C11—C12117.6 (3)
C5—C6—C1122.0 (3)C16—C11—C17121.5 (3)
C5—C6—H6119.0C12—C11—C17120.9 (3)
C1—C6—H6119.0C23—N4—C24109.2 (3)
C6—C5—C4119.2 (3)C23—N4—H1C122.3
C6—C5—C10120.1 (3)C24—N4—H1C127.8
C4—C5—C10120.8 (2)N3—C22—C14112.0 (3)
C3—C2—C1118.2 (3)N3—C22—H22A109.2
C3—C2—C8116.8 (2)C14—C22—H22A109.2
C1—C2—C8124.8 (3)N3—C22—H22B109.2
O7—C10—O8123.5 (3)C14—C22—H22B109.2
O7—C10—C5123.0 (3)H22A—C22—H22B107.9
O8—C10—C5113.5 (3)C20—C19—N2107.4 (3)
C3—C4—C5118.2 (3)C20—C19—H19126.3
C3—C4—C9117.3 (3)N2—C19—H19126.3
C5—C4—C9124.4 (2)C19—C20—N1106.8 (3)
O5—C9—O6125.1 (3)C19—C20—H20126.6
O5—C9—C4119.2 (3)N1—C20—H20126.6
O6—C9—C4115.4 (3)C14—C13—C12121.6 (3)
C4—C3—C2122.9 (3)C14—C13—H13119.2
C4—C3—H3118.6C12—C13—H13119.2
C2—C3—H3118.6C25—C24—N4107.0 (3)
C23—N3—C25108.8 (3)C25—C24—H24126.5
C23—N3—C22125.1 (3)N4—C24—H24126.5
C25—N3—C22125.7 (3)C11—C16—C15121.3 (4)
C18—N1—C20109.4 (3)C11—C16—H16119.4
C18—N1—C17127.0 (3)C15—C16—H16119.4
C20—N1—C17123.6 (3)C11—C12—C13121.0 (4)
O2—C7—O1123.9 (3)C11—C12—H12119.5
O2—C7—C1122.4 (3)C13—C12—H12119.5
O1—C7—C1113.8 (3)C14—C15—C16121.7 (4)
N2—C18—N1107.3 (3)C14—C15—H15119.1
N2—C18—C21124.0 (3)C16—C15—H15119.1
N1—C18—C21128.8 (3)H1A—O1W—H1B88.8
O3—C8—O4126.8 (3)C23—C26—H26A109.5
O3—C8—C2118.0 (3)C23—C26—H26B109.5
O4—C8—C2115.0 (3)H26A—C26—H26B109.5
C15—C14—C13116.7 (3)C23—C26—H26C109.5
C15—C14—C22122.9 (3)H26A—C26—H26C109.5
C13—C14—C22120.4 (3)H26B—C26—H26C109.5
C10—O8—H8109.5C18—C21—H21A109.5
N4—C23—N3107.9 (3)C18—C21—H21B109.5
N4—C23—C26126.4 (3)H21A—C21—H21B109.5
N3—C23—C26125.7 (3)C18—C21—H21C109.5
C24—C25—N3107.1 (3)H21A—C21—H21C109.5
C24—C25—H25126.4H21B—C21—H21C109.5
N3—C25—H25126.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.762.575 (3)172
O1W—H1A···O60.861.902.747 (3)168
O1W—H1B···O5ii0.851.982.743 (3)149
N4—H1C···O4iii0.981.752.679 (4)158
N2—H2···O1Wiv1.071.592.651 (4)172
O8—H8···O3v0.821.812.586 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H20N42+·C10H4O82·H2O
Mr538.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.7139 (19), 19.428 (4), 13.856 (3)
β (°) 97.39 (3)
V3)2593.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
20668, 4571, 3075
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.144, 1.10
No. of reflections4571
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.762.575 (3)172
O1W—H1A···O60.861.902.747 (3)168
O1W—H1B···O5ii0.851.982.743 (3)149
N4—H1C···O4iii0.981.752.679 (4)158
N2—H2···O1Wiv1.071.592.651 (4)172
O8—H8···O3v0.821.812.586 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z; (v) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Hebei United University for supporting this work.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, T.-F., Wu, W.-F., Wan, C.-Q., He, C.-H., Jiao, C.-H. & Cui, G.-H. (2011). J. Coord. Chem. 64, 975–986.  CrossRef CAS Google Scholar
First citationLiu, T.-F., Wu, W.-F., Zhang, W.-G. & Cui, G.-H. (2011). Z. Anorg. Allg. Chem. 637, 148–153.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds