organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Carb­­oxy-2-iso­propyl-1H-imidazol-3-ium-4-carboxyl­ate monohydrate

aDepartment of Chemical and Biochemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, People's Republic of China, bSchool of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing, People's Republic of China, and cCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
*Correspondence e-mail: chjdu@yahoo.com.cn

(Received 1 June 2011; accepted 23 June 2011; online 30 June 2011)

In the title compound, C8H10N2O4·H2O, the imidazole N atom is protonated and one of the carboxyl­ate groups is deprotoned, forming a zwitterion. An intra­molecular O—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. In addition, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into two-dimensional networks parallel to (10[\overline{2}]).

Related literature

For the use of related imidazole­dicarb­oxy­lic acid structures in coordination chemistry, see: Sun et al. (2006[Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751-o2752.]); Merchan & Stoeckli-Evans (2007[Merchan, A. C. & Stoeckli-Evans, H. (2007). Private communication.]); Guo (2009[Guo, Y.-P. (2009). Acta Cryst. E65, o22.]); Wang & Qin (2010[Wang, J. G. & Qin, J. H. (2010). Z. Kristallogr. New Cyst. Struct. 225, 325-326]); Wang et al. (2010[Wang, S., Zhao, T. T., Li, G. H., Wojtas, L., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). J. Am. Chem. Soc. 132, 18038-18041.]); Feng et al. (2010[Feng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399-1408.]); Li et al. (2010[Li, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y. & Hong, H. W. (2010). Inorg. Chem. 49, 2600-2613.]). For the synthesis of the title compound, see: Alcalde et al. (1992[Alcalde, E., Dinares, I., Perez-Garcia, L. & Roca, T. (1992). Synthesis, pp. 395-398.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O4·H2O

  • Mr = 216.20

  • Monoclinic, P 21 /c

  • a = 7.828 (2) Å

  • b = 14.308 (4) Å

  • c = 8.930 (2) Å

  • β = 93.590 (3)°

  • V = 998.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.967

  • 4874 measured reflections

  • 2147 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.06

  • 2147 reflections

  • 140 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.64 2.4576 (19) 175
N1—H1⋯O5 0.86 1.83 2.6879 (19) 171
N2—H2⋯O1i 0.86 1.93 2.7619 (19) 162
O5—H5B⋯O3ii 0.85 2.03 2.8684 (19) 171
O5—H5A⋯O4iii 0.85 1.94 2.7857 (19) 173
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past the construction of metal complexes based on N-heterocyclic carboxylic acids has attracted much attention due to their intriguing topologies as well as their potential applications in many fields. Particular attention has been paid to the 1H-imidazole-4,5-dicarboxylic acid ligand and its analogs: (Sun et al., 2006) have synthesized the 4-carboxy-2-(pyridinium-4-yl)-1H-imidazole-5-carboxylate monohydrate; Merchan et al. (2007) have prepared the dimethylammonium 4-carboxy-1H-imidazole-5-carboxylate; (Guo, 2009) have reported the 4-carboxy-2-methyl-1H-imidazole-5-carboxylate monohydrate and (Wang & Qin, 2010) have reported the dimethylammonium 4-carboxy-2-n-propyl-1H-imidazole-5-carboxylate. All of these 1H-imidazole-4,5-dicarboxylic acid and their analogs have been used as ligands to design metal complexes and most of them are proved ideal ligands (Wang et al., 2010; Feng et al., 2010; Li et al., 2010). However, the crystal structure of 4-carboxy-2-isopropyl-1H-imidazole-5-carboxylate has not been yet determined. Keeping that in mind, we report here the preparation and crystal structure of the title compound. The crystal structure (Fig.2, Table1) is stabilized by two intramolecular and three intermolecular N—H···O and O—H···O hydrogen bonds which link the molecules into two-dimensional networks parallel to the (102) planes.

Related literature top

For the use of related imidazoledicarboxylic acid structures in coordination chemistry, see: Sun et al. (2006); Merchan & Stoeckli-Evans (2007); Guo (2009); Wang & Qin (2010); Wang et al. (2010); Feng et al. (2010); Li et al. (2010). For the synthesis of the title compound, see: Alcalde et al. (1992).

Experimental top

The title compound was synthesized according to the method reported in the literature (Alcalde et al., 1992). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of a water solution of the compound.

Refinement top

H atoms bonded to the water O atom were located in an electron density map and refined with distance restraints of O—H = 0.85 Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96—0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å. Uiso(H) = kUeq(carrier atom), where k = 1.2 for N and Ctertiary and 1.5 for O and Cmethyl.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal structure. The H-atoms not included in hydrogen bonding have been omitted for clarity.
5-Carboxy-2-isopropyl-1H-imidazol-3-ium-4-carboxylate monohydrate top
Crystal data top
C8H10N2O4·H2OF(000) = 456
Mr = 216.20Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1379 reflections
a = 7.828 (2) Åθ = 2.7–25.1°
b = 14.308 (4) ŵ = 0.12 mm1
c = 8.930 (2) ÅT = 298 K
β = 93.590 (3)°Block, colourless
V = 998.2 (4) Å30.40 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2147 independent reflections
Radiation source: fine-focus sealed tube1599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.953, Tmax = 0.967k = 1718
4874 measured reflectionsl = 117
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.059P)2 + 0.133P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2147 reflectionsΔρmax = 0.32 e Å3
140 parametersΔρmin = 0.19 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C8H10N2O4·H2OV = 998.2 (4) Å3
Mr = 216.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.828 (2) ŵ = 0.12 mm1
b = 14.308 (4) ÅT = 298 K
c = 8.930 (2) Å0.40 × 0.32 × 0.28 mm
β = 93.590 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2147 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1599 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.967Rint = 0.028
4874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2147 reflectionsΔρmin = 0.19 e Å3
140 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression ofF2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C41.2174 (2)0.88114 (12)0.4485 (2)0.0397 (4)
C21.0189 (2)0.76673 (11)0.29253 (18)0.0346 (4)
C31.0710 (2)0.85223 (11)0.34578 (19)0.0350 (4)
C60.6833 (2)0.91545 (12)0.1177 (2)0.0413 (4)
H60.69710.98350.12050.050*
C11.0889 (2)0.67085 (11)0.3136 (2)0.0391 (4)
C50.8360 (2)0.87217 (11)0.19793 (19)0.0366 (4)
C70.5240 (2)0.89011 (17)0.1978 (2)0.0593 (6)
H7A0.51390.82330.20310.089*
H7B0.42490.91540.14350.089*
H7C0.53280.91560.29750.089*
C80.6644 (3)0.88445 (16)0.0461 (2)0.0622 (6)
H8A0.76200.90510.09710.093*
H8B0.56240.91130.09340.093*
H8C0.65710.81750.05070.093*
O21.21461 (18)0.66102 (9)0.41079 (17)0.0588 (4)
O41.24232 (16)0.96417 (9)0.47291 (15)0.0527 (4)
O31.31065 (17)0.81470 (9)0.50578 (16)0.0521 (4)
H31.27830.76470.46920.078*
O11.02199 (16)0.60794 (8)0.23815 (16)0.0494 (4)
N10.87377 (17)0.78132 (9)0.20091 (15)0.0368 (3)
H10.81620.73840.15290.044*
N20.95551 (16)0.91583 (9)0.28360 (16)0.0372 (4)
H20.96010.97520.29810.045*
O50.66848 (18)0.65027 (9)0.07026 (18)0.0638 (5)
H5B0.56040.65490.05620.096*
H5A0.69380.59270.06460.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0340 (9)0.0334 (10)0.0514 (10)0.0000 (7)0.0003 (7)0.0017 (8)
C20.0306 (8)0.0264 (8)0.0464 (9)0.0013 (6)0.0014 (7)0.0008 (7)
C30.0308 (8)0.0258 (8)0.0483 (10)0.0020 (6)0.0007 (7)0.0004 (6)
C60.0366 (9)0.0297 (9)0.0565 (11)0.0066 (7)0.0047 (7)0.0023 (7)
C10.0346 (9)0.0256 (9)0.0566 (10)0.0024 (7)0.0013 (7)0.0012 (7)
C50.0336 (9)0.0260 (8)0.0499 (10)0.0017 (7)0.0005 (7)0.0001 (7)
C70.0405 (11)0.0786 (16)0.0581 (12)0.0123 (10)0.0015 (9)0.0096 (11)
C80.0637 (13)0.0724 (16)0.0502 (12)0.0243 (12)0.0007 (10)0.0104 (10)
O20.0564 (9)0.0348 (8)0.0813 (10)0.0108 (6)0.0258 (7)0.0023 (6)
O40.0521 (8)0.0331 (7)0.0711 (9)0.0084 (6)0.0102 (6)0.0041 (6)
O30.0438 (8)0.0372 (7)0.0725 (9)0.0015 (6)0.0178 (6)0.0031 (6)
O10.0450 (7)0.0245 (6)0.0775 (9)0.0024 (5)0.0040 (6)0.0058 (6)
N10.0336 (7)0.0242 (7)0.0514 (8)0.0017 (6)0.0070 (6)0.0022 (6)
N20.0334 (8)0.0205 (7)0.0570 (9)0.0013 (5)0.0028 (6)0.0026 (6)
O50.0516 (8)0.0357 (8)0.0994 (11)0.0046 (6)0.0323 (8)0.0154 (7)
Geometric parameters (Å, º) top
C4—O41.221 (2)C5—N21.327 (2)
C4—O31.285 (2)C5—N11.333 (2)
C4—C31.481 (2)C7—H7A0.9600
C2—C31.366 (2)C7—H7B0.9600
C2—N11.374 (2)C7—H7C0.9600
C2—C11.485 (2)C8—H8A0.9600
C3—N21.375 (2)C8—H8B0.9600
C6—C51.489 (2)C8—H8C0.9600
C6—C71.520 (3)O3—H30.8200
C6—C81.526 (3)N1—H10.8600
C6—H60.9800N2—H20.8600
C1—O11.222 (2)O5—H5B0.8500
C1—O21.279 (2)O5—H5A0.8501
O4—C4—O3124.60 (17)C6—C7—H7A109.5
O4—C4—C3119.41 (16)C6—C7—H7B109.5
O3—C4—C3115.99 (15)H7A—C7—H7B109.5
C3—C2—N1106.79 (14)C6—C7—H7C109.5
C3—C2—C1133.16 (16)H7A—C7—H7C109.5
N1—C2—C1120.04 (15)H7B—C7—H7C109.5
C2—C3—N2106.13 (14)C6—C8—H8A109.5
C2—C3—C4131.93 (15)C6—C8—H8B109.5
N2—C3—C4121.93 (14)H8A—C8—H8B109.5
C5—C6—C7109.35 (15)C6—C8—H8C109.5
C5—C6—C8111.52 (14)H8A—C8—H8C109.5
C7—C6—C8110.41 (17)H8B—C8—H8C109.5
C5—C6—H6108.5C4—O3—H3109.5
C7—C6—H6108.5C5—N1—C2109.54 (14)
C8—C6—H6108.5C5—N1—H1125.2
O1—C1—O2125.32 (16)C2—N1—H1125.2
O1—C1—C2117.95 (16)C5—N2—C3110.08 (14)
O2—C1—C2116.73 (15)C5—N2—H2125.0
N2—C5—N1107.44 (14)C3—N2—H2125.0
N2—C5—C6126.67 (15)H5B—O5—H5A107.5
N1—C5—C6125.84 (15)
N1—C2—C3—N20.31 (17)C7—C6—C5—N2106.3 (2)
C1—C2—C3—N2178.46 (17)C8—C6—C5—N2131.29 (19)
N1—C2—C3—C4179.79 (16)C7—C6—C5—N171.0 (2)
C1—C2—C3—C41.4 (3)C8—C6—C5—N151.3 (2)
O4—C4—C3—C2175.88 (18)N2—C5—N1—C21.04 (18)
O3—C4—C3—C23.9 (3)C6—C5—N1—C2176.75 (15)
O4—C4—C3—N24.0 (2)C3—C2—N1—C50.44 (18)
O3—C4—C3—N2176.25 (16)C1—C2—N1—C5179.40 (15)
C3—C2—C1—O1172.81 (18)N1—C5—N2—C31.24 (18)
N1—C2—C1—O15.8 (2)C6—C5—N2—C3176.52 (16)
C3—C2—C1—O27.7 (3)C2—C3—N2—C50.97 (18)
N1—C2—C1—O2173.71 (15)C4—C3—N2—C5179.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.642.4576 (19)175
N1—H1···O50.861.832.6879 (19)171
N2—H2···O1i0.861.932.7619 (19)162
O5—H5B···O3ii0.852.032.8684 (19)171
O5—H5A···O4iii0.851.942.7857 (19)173
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O4·H2O
Mr216.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.828 (2), 14.308 (4), 8.930 (2)
β (°) 93.590 (3)
V3)998.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4874, 2147, 1599
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.06
No. of reflections2147
No. of parameters140
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.642.4576 (19)175
N1—H1···O50.861.832.6879 (19)171
N2—H2···O1i0.861.932.7619 (19)162
O5—H5B···O3ii0.852.032.8684 (19)171
O5—H5A···O4iii0.851.942.7857 (19)173
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 1011104).

References

First citationAlcalde, E., Dinares, I., Perez-Garcia, L. & Roca, T. (1992). Synthesis, pp. 395–398.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399–1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, Y.-P. (2009). Acta Cryst. E65, o22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y. & Hong, H. W. (2010). Inorg. Chem. 49, 2600–2613.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMerchan, A. C. & Stoeckli-Evans, H. (2007). Private communication.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J. G. & Qin, J. H. (2010). Z. Kristallogr. New Cyst. Struct. 225, 325–326  CAS Google Scholar
First citationWang, S., Zhao, T. T., Li, G. H., Wojtas, L., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). J. Am. Chem. Soc. 132, 18038–18041.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds