organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-(4-Meth­­oxy­phen­yl)-4′-phenyl-3H,4′H-spiro­[1-benzo­thio­phene-2,5′-isoxazol]-3-one

aDépartement de Chimie, Faculté des Sciences, Dhar Mehraz, BP 1796 Atlas, 30000 Fés, Morocco, bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco, and cCentre Nationale pour la Recherche, Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elyazidimohamed@hotmail.com

(Received 14 June 2011; accepted 21 June 2011; online 30 June 2011)

In the title compound, C23H17NO3S, the thio­phene and isoxazole rings each have an envelope conformation with the spiro C atom linking them forming the flap of the envelope in each case. The dihedral angle between the mean planes of the benzothio­phene ring and isoxazole rings is 81.35 (7)°. In the crystal, an inter­molecular C—H⋯O hydrogen bond links the mol­ecules into a chain running parallel to the a axis.

Related literature

For general background to dipolar-1,3 cyclo­addition reactions, see: Al Houari et al. (2010[Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36-43.]); Toth et al. (1999[Toth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29-36.]); El yazidi et al. (1994[El yazidi, M., Daou, B., Bougrin, K. & Soufiaoui, M. (1994). J. Soc. Mar. Chim. 3, 54-51.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17NO3S

  • Mr = 387.44

  • Triclinic, [P \overline 1]

  • a = 9.3644 (13) Å

  • b = 9.8132 (14) Å

  • c = 11.1502 (15) Å

  • α = 103.575 (8)°

  • β = 90.360 (8)°

  • γ = 106.089 (8)°

  • V = 954.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 14395 measured reflections

  • 4336 independent reflections

  • 3389 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.08

  • 4336 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.60 3.345 (2) 138
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,3-dipolar cyclo-addition of arylnitriloxides with ethylenic dipolarophiles produce isoxazolines in which the electron attracting or withdrawing substitutuent of the dipolarophile is at position 5 (IUPAC numbering) of the isoxazoline [Al Houari, et al. 2010; Toth et al. 1999 and El yazidi et al. 1994].

C23H17NO3S, Figure 1, is the product of the reaction of the p-anisylnitriloxide with (Z)-2-benzylidenebenzo[b]thiophen-3(2H)- one. The X-ray crystal structure study shows that the hydrogen atom attached to C9 is cis to the carbonyl group attached to C7.

The thiophene and isoxazole rings have envelope conformations, the spiro carbon atom linking them forming the flap of the envelope in each case.

The dihedral angles between the of mean planes of the benzothiophene ring, BTh ,(atoms S1 sequentially to C8), the the isoxazole ring, Iso, (atoms N1-O3-C8-C9-C10), the phenyl ring, MPh, (atoms C17 to C22) and the the phenyl ring, Ph, (atoms C11 to C16) are: Bth/Iso = 81.35 (7)°, BTh/MPh = 88.46 (7)°, BTh/Ph = 84.21 (7)°, Iso/MPh = 7.57 (9)°, Iso/Ph = 84.58 (9) and MPh/Ph = 86.41 (9)°.

The C—H···O hydrogen bonds [C13—H13··· O1 (1+x, y, z) (Table 1)] generates C8 chains, (Bernstein et al., 1995), which run parallel to the aaxis (Figure. 2).

Related literature top

For general background to dipolar-1,3 cycloaddition reactions, see: Al Houari et al. (2010); Toth et al. (1999); El yazidi et al. (1994). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

In a 100 ml flask, 2 mmoles of the (Z)-2-arylidenebenzo[b]thiophen-3(2H)-one and 2.2 mmoles of p-anisyloxime were dissolved in 20 ml of chloroform. The mixture was cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl) at 24°Chl(chlorometric degree) was added in small amounts without exceeding the temperature of 5°C. The mixture was left under magnetic stirring for 4 h at room temperature, washed with water until pH was neutral and dried on sodium sulfate. The solvent was evaporated using a rotary evaporator and the oily residue dissolved in ethanol. The resulting precipitate was then re-crystallized in ethanol.

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by C—H···O. H atoms not involved in hydrogen bonds have been omitted for clarity.
3'-(4-Methoxyphenyl)-4'-phenyl-3H,4'H-spiro[1-benzothiophene- 2,5'-isoxazol]-3-one top
Crystal data top
C23H17NO3SZ = 2
Mr = 387.44F(000) = 404
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3644 (13) ÅCell parameters from 312 reflections
b = 9.8132 (14) Åθ = 2.6–26.4°
c = 11.1502 (15) ŵ = 0.19 mm1
α = 103.575 (8)°T = 296 K
β = 90.360 (8)°Prism, colourless
γ = 106.089 (8)°0.24 × 0.22 × 0.16 mm
V = 954.2 (2) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
3389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω and ϕ scansh = 1212
14395 measured reflectionsk = 1212
4336 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.055P)2 + 0.2963P]
where P = (Fo2 + 2Fc2)/3
4336 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H17NO3Sγ = 106.089 (8)°
Mr = 387.44V = 954.2 (2) Å3
Triclinic, P1Z = 2
a = 9.3644 (13) ÅMo Kα radiation
b = 9.8132 (14) ŵ = 0.19 mm1
c = 11.1502 (15) ÅT = 296 K
α = 103.575 (8)°0.24 × 0.22 × 0.16 mm
β = 90.360 (8)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3389 reflections with I > 2σ(I)
14395 measured reflectionsRint = 0.021
4336 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
4336 reflectionsΔρmin = 0.25 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38947 (5)0.17699 (5)0.10614 (4)0.04579 (15)
C90.48093 (15)0.45610 (16)0.28184 (14)0.0289 (3)
H90.46980.45780.36950.035*
C110.63503 (15)0.44522 (16)0.25013 (14)0.0291 (3)
C80.35039 (16)0.33637 (17)0.20326 (14)0.0311 (3)
C170.53370 (17)0.74164 (17)0.31717 (15)0.0329 (3)
C70.21820 (16)0.27837 (17)0.27795 (14)0.0318 (3)
C100.45054 (16)0.59076 (17)0.25599 (14)0.0309 (3)
C120.72587 (18)0.41734 (17)0.33436 (15)0.0359 (3)
H120.69200.40430.41030.043*
C160.68582 (18)0.46342 (19)0.13698 (16)0.0389 (4)
H160.62530.48250.08030.047*
C10.21339 (18)0.06249 (18)0.12568 (16)0.0387 (4)
C60.13572 (17)0.12766 (18)0.21660 (15)0.0356 (3)
C180.63321 (19)0.77176 (18)0.41909 (16)0.0395 (4)
H180.64840.69470.44750.047*
C140.91775 (19)0.4278 (2)0.19263 (18)0.0458 (4)
H141.01320.42330.17380.055*
C190.7104 (2)0.91401 (19)0.47948 (17)0.0443 (4)
H190.77670.93200.54770.053*
C220.5151 (2)0.8598 (2)0.27498 (17)0.0437 (4)
H220.45020.84240.20600.052*
C210.5915 (2)1.0009 (2)0.33447 (19)0.0498 (5)
H210.57811.07820.30530.060*
C130.86727 (19)0.4089 (2)0.30515 (18)0.0457 (4)
H130.92840.39050.36170.055*
C200.6883 (2)1.02933 (18)0.43755 (17)0.0424 (4)
C150.82683 (19)0.4533 (2)0.10813 (18)0.0442 (4)
H150.86010.46370.03150.053*
C50.0038 (2)0.0500 (2)0.24311 (18)0.0490 (4)
H50.05520.09390.30450.059*
C20.1529 (2)0.0820 (2)0.0605 (2)0.0548 (5)
H20.20460.12710.00030.066*
C30.0136 (3)0.1569 (2)0.0876 (2)0.0628 (6)
H30.02850.25360.04420.075*
C40.0650 (2)0.0928 (2)0.1771 (2)0.0617 (6)
H40.15890.14570.19280.074*
C230.8590 (3)1.2094 (3)0.5952 (2)0.0779 (7)
H23A0.80911.16820.65890.117*
H23B0.89481.31390.62480.117*
H23C0.94161.17080.57350.117*
O10.19215 (13)0.35372 (14)0.37248 (11)0.0448 (3)
O20.75789 (18)1.17292 (14)0.48941 (14)0.0628 (4)
O30.28865 (12)0.40970 (13)0.12447 (10)0.0405 (3)
N10.34693 (15)0.56346 (15)0.17074 (13)0.0389 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0348 (2)0.0447 (3)0.0485 (3)0.00839 (18)0.00969 (18)0.00299 (19)
C90.0243 (7)0.0343 (7)0.0270 (7)0.0066 (6)0.0000 (5)0.0077 (6)
C110.0248 (7)0.0287 (7)0.0324 (8)0.0065 (6)0.0008 (6)0.0062 (6)
C80.0265 (7)0.0363 (8)0.0300 (7)0.0095 (6)0.0015 (6)0.0068 (6)
C170.0298 (7)0.0372 (8)0.0339 (8)0.0119 (6)0.0038 (6)0.0102 (6)
C70.0239 (7)0.0397 (8)0.0324 (8)0.0087 (6)0.0005 (6)0.0104 (6)
C100.0251 (7)0.0380 (8)0.0315 (8)0.0110 (6)0.0031 (6)0.0101 (6)
C120.0358 (8)0.0379 (8)0.0358 (8)0.0132 (7)0.0012 (6)0.0096 (7)
C160.0319 (8)0.0512 (10)0.0393 (9)0.0150 (7)0.0033 (7)0.0185 (8)
C10.0359 (8)0.0380 (8)0.0394 (9)0.0075 (7)0.0017 (7)0.0077 (7)
C60.0319 (8)0.0387 (8)0.0350 (8)0.0065 (6)0.0001 (6)0.0109 (7)
C180.0442 (9)0.0353 (8)0.0398 (9)0.0119 (7)0.0041 (7)0.0107 (7)
C140.0287 (8)0.0481 (10)0.0607 (12)0.0151 (7)0.0047 (8)0.0087 (9)
C190.0482 (10)0.0418 (9)0.0392 (9)0.0088 (8)0.0066 (8)0.0077 (7)
C220.0437 (9)0.0457 (10)0.0456 (10)0.0155 (8)0.0049 (8)0.0155 (8)
C210.0590 (11)0.0386 (9)0.0568 (12)0.0165 (8)0.0005 (9)0.0187 (8)
C130.0376 (9)0.0507 (10)0.0528 (11)0.0209 (8)0.0076 (8)0.0109 (8)
C200.0453 (9)0.0343 (8)0.0446 (10)0.0085 (7)0.0072 (8)0.0074 (7)
C150.0358 (9)0.0522 (10)0.0475 (10)0.0138 (8)0.0133 (7)0.0164 (8)
C50.0388 (9)0.0551 (11)0.0472 (10)0.0018 (8)0.0070 (8)0.0147 (9)
C20.0566 (12)0.0413 (10)0.0575 (12)0.0094 (9)0.0010 (9)0.0005 (9)
C30.0654 (13)0.0394 (10)0.0675 (14)0.0046 (9)0.0059 (11)0.0061 (9)
C40.0480 (11)0.0546 (12)0.0682 (14)0.0106 (9)0.0027 (10)0.0180 (11)
C230.0882 (18)0.0500 (12)0.0695 (16)0.0054 (12)0.0139 (13)0.0046 (11)
O10.0353 (6)0.0540 (7)0.0383 (6)0.0110 (5)0.0076 (5)0.0005 (6)
O20.0791 (10)0.0359 (7)0.0628 (9)0.0036 (7)0.0049 (8)0.0074 (6)
O30.0368 (6)0.0441 (6)0.0361 (6)0.0029 (5)0.0108 (5)0.0124 (5)
N10.0353 (7)0.0421 (8)0.0398 (8)0.0098 (6)0.0037 (6)0.0128 (6)
Geometric parameters (Å, º) top
S1—C11.7667 (18)C15—C161.386 (3)
S1—C81.8111 (17)C17—C181.387 (2)
O1—C71.206 (2)C17—C221.401 (3)
O2—C201.360 (2)C18—C191.385 (3)
O2—C231.420 (3)C19—C201.385 (3)
O3—N11.4196 (19)C20—C211.385 (3)
O3—C81.465 (2)C21—C221.372 (3)
N1—C101.281 (2)C2—H20.9300
C1—C21.388 (3)C3—H30.9300
C1—C61.389 (2)C4—H40.9300
C2—C31.382 (3)C5—H50.9300
C3—C41.380 (3)C9—H90.9800
C4—C51.378 (3)C12—H120.9300
C5—C61.391 (3)C13—H130.9300
C6—C71.462 (2)C14—H140.9300
C7—C81.548 (2)C15—H150.9300
C8—C91.533 (2)C16—H160.9300
C9—C101.515 (2)C18—H180.9300
C9—C111.514 (2)C19—H190.9300
C10—C171.464 (2)C21—H210.9300
C11—C121.386 (2)C22—H220.9300
C11—C161.384 (2)C23—H23A0.9600
C12—C131.386 (3)C23—H23B0.9600
C13—C141.378 (3)C23—H23C0.9600
C14—C151.376 (3)
C1—S1—C891.79 (8)C18—C19—C20119.55 (17)
C20—O2—C23118.54 (17)O2—C20—C19124.60 (17)
N1—O3—C8109.06 (11)O2—C20—C21115.76 (16)
O3—N1—C10109.34 (13)C19—C20—C21119.62 (17)
S1—C1—C2125.36 (14)C20—C21—C22120.64 (18)
S1—C1—C6114.40 (13)C17—C22—C21120.68 (17)
C2—C1—C6120.23 (17)C1—C2—H2121.00
C1—C2—C3118.11 (19)C3—C2—H2121.00
C2—C3—C4122.11 (19)C2—C3—H3119.00
C3—C4—C5119.72 (19)C4—C3—H3119.00
C4—C5—C6119.07 (18)C3—C4—H4120.00
C1—C6—C5120.74 (16)C5—C4—H4120.00
C1—C6—C7112.67 (15)C4—C5—H5120.00
C5—C6—C7126.58 (16)C6—C5—H5120.00
O1—C7—C6127.74 (15)C8—C9—H9109.00
O1—C7—C8121.67 (15)C10—C9—H9109.00
C6—C7—C8110.59 (13)C11—C9—H9109.00
S1—C8—O3108.71 (10)C11—C12—H12120.00
S1—C8—C7106.43 (11)C13—C12—H12120.00
S1—C8—C9117.97 (11)C12—C13—H13120.00
O3—C8—C7103.57 (12)C14—C13—H13120.00
O3—C8—C9105.03 (12)C13—C14—H14120.00
C7—C8—C9114.10 (12)C15—C14—H14120.00
C8—C9—C10100.13 (12)C14—C15—H15120.00
C8—C9—C11115.78 (13)C16—C15—H15120.00
C10—C9—C11112.61 (13)C11—C16—H16120.00
N1—C10—C9114.45 (14)C15—C16—H16120.00
N1—C10—C17120.87 (15)C17—C18—H18119.00
C9—C10—C17124.63 (14)C19—C18—H18119.00
C9—C11—C12120.14 (14)C18—C19—H19120.00
C9—C11—C16120.12 (14)C20—C19—H19120.00
C12—C11—C16119.75 (15)C20—C21—H21120.00
C11—C12—C13119.81 (16)C22—C21—H21120.00
C12—C13—C14120.29 (17)C17—C22—H22120.00
C13—C14—C15119.98 (17)C21—C22—H22120.00
C14—C15—C16120.16 (18)O2—C23—H23A109.00
C11—C16—C15120.01 (16)O2—C23—H23B110.00
C10—C17—C18120.82 (15)O2—C23—H23C109.00
C10—C17—C22121.19 (15)H23A—C23—H23B109.00
C18—C17—C22117.99 (16)H23A—C23—H23C109.00
C17—C18—C19121.50 (16)H23B—C23—H23C109.00
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.603.345 (2)138
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H17NO3S
Mr387.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.3644 (13), 9.8132 (14), 11.1502 (15)
α, β, γ (°)103.575 (8), 90.360 (8), 106.089 (8)
V3)954.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14395, 4336, 3389
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.08
No. of reflections4336
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.603.345 (2)138
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements.

References

First citationAl Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl yazidi, M., Daou, B., Bougrin, K. & Soufiaoui, M. (1994). J. Soc. Mar. Chim. 3, 54–51.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29–36.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds