organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di-O-benzoyl-1,2-O-iso­propyl­­idene-α-D-ribo-hexos-3-ulo-1,4:3,6-di­furan­ose

aNew Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zqr409@163.com

(Received 17 June 2011; accepted 21 June 2011; online 25 June 2011)

The title compound, C23H22O8, is a binary benzoyl ester whose nucleus consists of a fused system made up of a methyl­enedi­oxy ring and two tetra­hydro­furan rings. One of the benzoyl ester groups is attached at the junction of the two tetra­hydro­furan rings. The other is attached to the outer tetra­furan ring. Both the benzoyl ester groups are in an axial conformation with respect to the outer tetrhydro­furan ring. In the crystal, mol­ecules are linked by two weak C—H⋯O hydrogen bonds, forming a chain running parallel to the a axis.

Related literature

For details of the synthesis and absolute configuration of the nucleus, see: Tronchet & Bourgeois (1971[Tronchet, J. M. J. & Bourgeois, J. M. (1971). Helv. Chim. Acta, 54, 1580-1589.]). For applications of the nucleus, see: Xavier et al. (2009[Xavier, N. M., Madeira, P. J. A., Florêncio, M. H. & Rauter, A. P. (2009). Eur. J. Org. Chem. pp. 4983-4991.]); Rajwanshi et al. (1999[Rajwanshi, V. K., Kumar, R., Kofod-Hansen, M. & Wengel, J. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1407-1414.]). For structure of a bicyclo-glycosyl compound, see: Zhang et al. (2011[Zhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22O8

  • Mr = 426.41

  • Orthorhombic, P 21 21 21

  • a = 6.05837 (10) Å

  • b = 8.33827 (14) Å

  • c = 40.9992 (7) Å

  • V = 2071.13 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 291 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.780, Tmax = 0.812

  • 10556 measured reflections

  • 2421 independent reflections

  • 2335 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.06

  • 2421 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.98 2.55 3.2793 (17) 131
C4—H4⋯O8ii 0.98 2.59 3.4882 (16) 153
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

C23H22O8, (I), is an important intermediate in the synthesis of bicyclo-glycosyls (Zhang et al., 2011), whose nucleoside derivatives play a vital role as anti-tumour and antivirus agents have been synthesised (Xavier et al. 2009; Rajwanshi et al. 1999).

The nucleus of molecule (I),Figure 1, consists of three fused rings, a methylenedioxy ring which is linked to two fused tetrahydrofuran rings. The methylenedioxy ring and a tetrahydrofuran ring are oriented in opposite directions with respect to the central tetrahydrofuran. One of the benzoyl ester groups is attached at the junction of the two tetrahydrofuran rings. The other is attached to the outer tetrafuran ring. Both the benzoyl ester groups are in an axial conformation with respect to the outer tetrhydrofuran ring.

The molecules are linked by two weak C-H···O hydrogen bonds, Table 1, to form a chain which runs parallel to the a-axis, Figure 2.

Related literature top

For details of the synthesis of the nucleus, see: Tronchet & Bourgeois (1971). For applications of the nucleus, see: Xavier et al. (2009); Rajwanshi et al. (1999). For structure of a bicyclo-glcosyl compound, see: Zhang et al. (2011).

Experimental top

The title compound (I) was synthesized from 1,2;5,6-di-O-isopropylidene-α- D-ribo-hexofuranosid-3-ulose as described previously by Tronchet, (Tronchet & Bourgeois, 1971), whose starting material was D-glucose. A solution of 1,2;5,6-di-O-isopropylidene-α- D-ribo-hexofuranosid-3-ulose (1.01 g, 3.87 mmol) in aq. AcOH (60%,15 ml) was stirred at room temperature overnight. The solvent was co-evaporated with toluene and the residue was purified by column chromatography (EtOAc) to pruduce the difuranose compound 1,2-O-Isopropylidene-α-D-ribo-hexos-3-ulo-1,4:3,6-difuranose(0.79 g). Benzoyl chloride (0.05 ml,9 mmol) was then added to a solution of this difuranose compound in dry pyridine (3 ml). This solution was stirred at room temperature for 2 h. Water (10 ml) was added to the solution, and the mixture was extracted with EtOAc. The combined organic layers were washed with water and dried with anhydrous Na2SO4. After filtration and evaporation of the solvent, the residue was recrystallised in EtOAc to obtain the title compound as white solid. Crystals suitable for X-ray analysis were grown by slow evaporation from acetone at room temperature for two weeks. mp: 459-460K; Rf = 0.35 (petroleum ether/EtOAc, 5:1); 1H NMR (400 MHz, CDCl3) σ: 8.10(4H, m), 7.62(m, 2H), 7.49(m, 4H), 6.06(1H, d, J=3.8 Hz), 5.68(1H, dd, J=6.1 Hz), 5.23(1H, d, J=3.8 Hz), 5.12(1H, d, J=4.7,6.0 Hz), 4.58(1H, dd, J=9.4,7.0 Hz), 4.27(1H, dd, J=9.4,6.0 Hz), 1.52(3H, s), 1.37 (3H, s). 13C NMR (100 MHz, CDCl3) σ: 165.9, 164.4, 133.6, 133.5, 130.0, 129.9, 129.5, 129.1, 128.5, 128.5, 113.8, 113.2, 107.4, 82.9, 81.8, 72.6, 72.2, 27.2, 27.2.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.93Å(aromatic), 0.96Å(methyl), 0.97Å(methylene) and 0.98Å(aliphatic) with Uiso(H) =1.2Ueq(C).

In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1675 sets of Friedel equivalents led to an inconclusive value of -0.10 (14). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms omitted clarity.
[Figure 2] Fig. 2. Stereoview of the chain formed by C-H···O hydrogen bonds. Hydrogen atoms not involved in the motifs are not included.
3,5-Di-O-benzoyl-1,2-O-isopropylidene- α-D-ribo-hexos-3-ulo-1,4:3,6-difuranose top
Crystal data top
C23H22O8Dx = 1.367 Mg m3
Mr = 426.41Melting point = 459–460 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
a = 6.05837 (10) ÅCell parameters from 5890 reflections
b = 8.33827 (14) Åθ = 3.2–72.3°
c = 40.9992 (7) ŵ = 0.87 mm1
V = 2071.13 (6) Å3T = 291 K
Z = 4Prism, colourless
F(000) = 8960.30 × 0.30 × 0.25 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2421 independent reflections
Radiation source: Enhance (Cu) X-ray Source2335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.2312 pixels mm-1θmax = 72.3°, θmin = 4.3°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 910
Tmin = 0.780, Tmax = 0.812l = 2150
10556 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1182P]
where P = (Fo2 + 2Fc2)/3
2421 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H22O8V = 2071.13 (6) Å3
Mr = 426.41Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.05837 (10) ŵ = 0.87 mm1
b = 8.33827 (14) ÅT = 291 K
c = 40.9992 (7) Å0.30 × 0.30 × 0.25 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2421 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2335 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.812Rint = 0.026
10556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2421 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7379 (3)1.23548 (17)0.88731 (3)0.0556 (4)
O20.8454 (3)1.07286 (15)0.84526 (3)0.0553 (4)
O30.7285 (2)0.70109 (16)0.88507 (3)0.0458 (3)
O40.4603 (2)1.04625 (17)0.88971 (3)0.0460 (3)
O50.4346 (2)0.82295 (17)0.93608 (3)0.0462 (3)
O60.1023 (3)0.9393 (3)0.94092 (4)0.0694 (5)
O70.6458 (2)0.78758 (16)0.83253 (3)0.0396 (3)
O81.0139 (2)0.75343 (19)0.82694 (3)0.0477 (3)
C10.6881 (4)1.0796 (2)0.89615 (4)0.0436 (4)
H10.72611.05860.91900.052*
C20.8210 (3)0.9737 (2)0.87294 (4)0.0388 (3)
H20.96290.94010.88220.047*
C30.6676 (3)0.8329 (2)0.86608 (4)0.0359 (3)
C40.4365 (3)0.8886 (2)0.87778 (4)0.0395 (4)
H40.33020.88550.85980.047*
C50.3748 (4)0.7633 (2)0.90435 (4)0.0469 (4)
H50.21920.73160.90320.056*
C60.5277 (4)0.6267 (2)0.89661 (5)0.0576 (6)
H6B0.55620.56280.91590.069*
H6A0.46470.55810.87990.069*
C70.8226 (4)1.2368 (2)0.85457 (4)0.0457 (4)
C80.6599 (5)1.3136 (4)0.83165 (6)0.0666 (6)
H8C0.63631.42310.83800.100*
H8B0.52251.25640.83250.100*
H8A0.71701.31020.80980.100*
C91.0429 (4)1.3199 (3)0.85511 (7)0.0701 (6)
H9B1.14201.26230.86910.105*
H9C1.02481.42730.86310.105*
H9A1.10251.32320.83340.105*
C100.8314 (3)0.7426 (2)0.81616 (4)0.0361 (3)
C110.7740 (3)0.6775 (2)0.78333 (4)0.0369 (3)
C120.9415 (4)0.6641 (3)0.76038 (4)0.0491 (4)
H121.08280.70090.76520.059*
C130.8968 (4)0.5954 (3)0.73032 (5)0.0582 (5)
H131.00800.58750.71480.070*
C140.6894 (5)0.5390 (3)0.72342 (5)0.0623 (6)
H140.66090.49220.70330.075*
C150.5228 (4)0.5511 (3)0.74619 (6)0.0621 (6)
H150.38310.51120.74150.075*
C160.5637 (3)0.6229 (3)0.77623 (5)0.0479 (4)
H160.45070.63410.79140.057*
C170.2826 (3)0.9126 (3)0.95157 (4)0.0477 (4)
C180.3653 (4)0.9719 (2)0.98356 (4)0.0475 (4)
C190.5728 (5)0.9336 (3)0.99530 (5)0.0605 (5)
H190.66850.87070.98300.073*
C200.6362 (6)0.9909 (4)1.02587 (6)0.0791 (8)
H200.77460.96531.03420.095*
C210.4942 (7)1.0852 (4)1.04379 (6)0.0831 (9)
H210.53791.12351.06410.100*
C220.2893 (6)1.1233 (4)1.03201 (6)0.0788 (8)
H220.19421.18651.04430.095*
C230.2242 (5)1.0674 (3)1.00179 (5)0.0606 (6)
H230.08561.09390.99360.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0844 (11)0.0392 (6)0.0433 (7)0.0017 (7)0.0146 (7)0.0098 (5)
O20.0874 (11)0.0392 (6)0.0392 (6)0.0010 (7)0.0204 (7)0.0044 (5)
O30.0562 (8)0.0416 (6)0.0396 (6)0.0110 (6)0.0062 (6)0.0031 (5)
O40.0521 (7)0.0434 (6)0.0424 (6)0.0123 (6)0.0078 (6)0.0030 (5)
O50.0523 (7)0.0552 (7)0.0311 (5)0.0076 (6)0.0072 (5)0.0005 (5)
O60.0528 (8)0.1047 (14)0.0508 (8)0.0200 (10)0.0035 (7)0.0178 (9)
O70.0390 (6)0.0500 (6)0.0298 (5)0.0027 (5)0.0007 (4)0.0102 (5)
O80.0401 (6)0.0607 (8)0.0424 (6)0.0043 (6)0.0024 (5)0.0143 (6)
C10.0598 (10)0.0410 (8)0.0299 (7)0.0052 (8)0.0020 (8)0.0058 (7)
C20.0439 (8)0.0417 (8)0.0307 (7)0.0037 (7)0.0010 (7)0.0056 (6)
C30.0413 (8)0.0388 (8)0.0275 (7)0.0060 (7)0.0009 (6)0.0032 (6)
C40.0408 (8)0.0491 (9)0.0286 (7)0.0049 (8)0.0027 (6)0.0056 (7)
C50.0541 (10)0.0506 (9)0.0360 (8)0.0012 (9)0.0097 (7)0.0050 (7)
C60.0780 (15)0.0425 (9)0.0523 (10)0.0011 (10)0.0217 (11)0.0001 (8)
C70.0545 (10)0.0393 (8)0.0435 (9)0.0008 (9)0.0076 (8)0.0036 (7)
C80.0701 (15)0.0739 (14)0.0559 (12)0.0172 (13)0.0006 (12)0.0003 (11)
C90.0634 (14)0.0671 (14)0.0800 (15)0.0100 (13)0.0069 (12)0.0134 (13)
C100.0408 (8)0.0361 (7)0.0315 (7)0.0021 (7)0.0025 (7)0.0039 (6)
C110.0454 (9)0.0364 (7)0.0290 (6)0.0051 (7)0.0004 (6)0.0020 (6)
C120.0515 (10)0.0567 (10)0.0391 (8)0.0000 (9)0.0066 (8)0.0065 (8)
C130.0734 (14)0.0667 (12)0.0346 (8)0.0088 (12)0.0122 (9)0.0097 (9)
C140.0805 (15)0.0693 (13)0.0370 (8)0.0155 (13)0.0122 (10)0.0208 (9)
C150.0572 (12)0.0734 (14)0.0558 (11)0.0064 (12)0.0127 (10)0.0247 (11)
C160.0473 (10)0.0549 (10)0.0414 (8)0.0027 (9)0.0010 (8)0.0117 (8)
C170.0512 (11)0.0564 (10)0.0355 (8)0.0069 (9)0.0068 (8)0.0003 (8)
C180.0607 (11)0.0502 (9)0.0315 (7)0.0008 (9)0.0058 (8)0.0047 (7)
C190.0694 (13)0.0703 (13)0.0420 (9)0.0067 (13)0.0031 (10)0.0033 (9)
C200.091 (2)0.0973 (19)0.0493 (11)0.0043 (17)0.0210 (13)0.0079 (13)
C210.123 (3)0.0871 (18)0.0391 (10)0.017 (2)0.0067 (14)0.0085 (12)
C220.114 (2)0.0735 (15)0.0488 (11)0.0001 (17)0.0131 (15)0.0166 (12)
C230.0725 (14)0.0620 (12)0.0473 (10)0.0087 (12)0.0082 (10)0.0061 (9)
Geometric parameters (Å, º) top
O1—C11.382 (2)C8—H8A0.9600
O1—C71.437 (2)C9—H9B0.9600
O2—C21.412 (2)C9—H9C0.9600
O2—C71.426 (2)C9—H9A0.9600
O3—C31.397 (2)C10—C111.492 (2)
O3—C61.445 (3)C11—C161.384 (3)
O4—C41.410 (2)C11—C121.389 (3)
O4—C11.432 (3)C12—C131.386 (3)
O5—C171.346 (2)C12—H120.9300
O5—C51.439 (2)C13—C141.371 (4)
O6—C171.197 (3)C13—H130.9300
O7—C101.362 (2)C14—C151.378 (4)
O7—C31.4328 (17)C14—H140.9300
O8—C101.194 (2)C15—C161.392 (3)
C1—C21.528 (2)C15—H150.9300
C1—H10.9800C16—H160.9300
C2—C31.523 (3)C17—C181.489 (3)
C2—H20.9800C18—C191.383 (3)
C3—C41.551 (2)C18—C231.387 (3)
C4—C51.555 (3)C19—C201.395 (3)
C4—H40.9800C19—H190.9300
C5—C61.502 (3)C20—C211.378 (5)
C5—H50.9800C20—H200.9300
C6—H6B0.9700C21—C221.369 (5)
C6—H6A0.9700C21—H210.9300
C7—C91.503 (3)C22—C231.381 (3)
C7—C81.505 (3)C22—H220.9300
C8—H8C0.9600C23—H230.9300
C8—H8B0.9600
C1—O1—C7109.27 (13)C7—C8—H8A109.5
C2—O2—C7109.65 (13)H8C—C8—H8A109.5
C3—O3—C6107.35 (16)H8B—C8—H8A109.5
C4—O4—C1110.09 (14)C7—C9—H9B109.5
C17—O5—C5116.50 (16)C7—C9—H9C109.5
C10—O7—C3118.02 (13)H9B—C9—H9C109.5
O1—C1—O4110.15 (17)C7—C9—H9A109.5
O1—C1—C2105.39 (15)H9B—C9—H9A109.5
O4—C1—C2106.30 (14)H9C—C9—H9A109.5
O1—C1—H1111.6O8—C10—O7124.12 (14)
O4—C1—H1111.6O8—C10—C11125.24 (15)
C2—C1—H1111.6O7—C10—C11110.64 (14)
O2—C2—C3111.52 (14)C16—C11—C12120.26 (16)
O2—C2—C1102.53 (14)C16—C11—C10121.59 (15)
C3—C2—C1103.82 (16)C12—C11—C10118.05 (17)
O2—C2—H2112.7C13—C12—C11119.6 (2)
C3—C2—H2112.7C13—C12—H12120.2
C1—C2—H2112.7C11—C12—H12120.2
O3—C3—O7110.60 (13)C14—C13—C12120.3 (2)
O3—C3—C2110.03 (14)C14—C13—H13119.9
O7—C3—C2115.89 (13)C12—C13—H13119.9
O3—C3—C4107.55 (14)C13—C14—C15120.39 (18)
O7—C3—C4107.02 (13)C13—C14—H14119.8
C2—C3—C4105.26 (13)C15—C14—H14119.8
O4—C4—C3107.09 (15)C14—C15—C16120.0 (2)
O4—C4—C5114.09 (13)C14—C15—H15120.0
C3—C4—C5103.45 (14)C16—C15—H15120.0
O4—C4—H4110.6C11—C16—C15119.44 (19)
C3—C4—H4110.6C11—C16—H16120.3
C5—C4—H4110.6C15—C16—H16120.3
O5—C5—C6107.33 (18)O6—C17—O5123.76 (18)
O5—C5—C4109.90 (15)O6—C17—C18124.54 (19)
C6—C5—C4102.30 (15)O5—C17—C18111.69 (17)
O5—C5—H5112.3C19—C18—C23120.3 (2)
C6—C5—H5112.3C19—C18—C17122.40 (19)
C4—C5—H5112.3C23—C18—C17117.3 (2)
O3—C6—C5105.23 (16)C18—C19—C20118.9 (3)
O3—C6—H6B110.7C18—C19—H19120.5
C5—C6—H6B110.7C20—C19—H19120.5
O3—C6—H6A110.7C21—C20—C19120.2 (3)
C5—C6—H6A110.7C21—C20—H20119.9
H6B—C6—H6A108.8C19—C20—H20119.9
O2—C7—O1106.09 (14)C22—C21—C20120.7 (2)
O2—C7—C9111.09 (19)C22—C21—H21119.7
O1—C7—C9107.87 (18)C20—C21—H21119.7
O2—C7—C8107.70 (18)C21—C22—C23119.8 (3)
O1—C7—C8110.62 (18)C21—C22—H22120.1
C9—C7—C8113.3 (2)C23—C22—H22120.1
C7—C8—H8C109.5C22—C23—C18120.1 (3)
C7—C8—H8B109.5C22—C23—H23120.0
H8C—C8—H8B109.5C18—C23—H23120.0
C7—O1—C1—O493.88 (18)O5—C5—C6—O381.08 (19)
C7—O1—C1—C220.4 (2)C4—C5—C6—O334.6 (2)
C4—O4—C1—O1141.46 (13)C2—O2—C7—O111.8 (2)
C4—O4—C1—C227.76 (18)C2—O2—C7—C9105.2 (2)
C7—O2—C2—C3133.74 (17)C2—O2—C7—C8130.29 (19)
C7—O2—C2—C123.2 (2)C1—O1—C7—O26.4 (2)
O1—C1—C2—O226.6 (2)C1—O1—C7—C9125.5 (2)
O4—C1—C2—O290.33 (18)C1—O1—C7—C8110.2 (2)
O1—C1—C2—C3142.79 (15)C3—O7—C10—O87.7 (3)
O4—C1—C2—C325.87 (18)C3—O7—C10—C11171.87 (13)
C6—O3—C3—O791.18 (17)O8—C10—C11—C16159.8 (2)
C6—O3—C3—C2139.50 (15)O7—C10—C11—C1619.8 (2)
C6—O3—C3—C425.35 (17)O8—C10—C11—C1216.5 (3)
C10—O7—C3—O366.81 (19)O7—C10—C11—C12163.94 (17)
C10—O7—C3—C259.3 (2)C16—C11—C12—C130.1 (3)
C10—O7—C3—C4176.32 (14)C10—C11—C12—C13176.24 (18)
O2—C2—C3—O3149.85 (14)C11—C12—C13—C140.9 (3)
C1—C2—C3—O3100.44 (16)C12—C13—C14—C150.5 (4)
O2—C2—C3—O723.5 (2)C13—C14—C15—C160.9 (4)
C1—C2—C3—O7133.17 (15)C12—C11—C16—C151.5 (3)
O2—C2—C3—C494.54 (16)C10—C11—C16—C15174.7 (2)
C1—C2—C3—C415.16 (17)C14—C15—C16—C111.9 (4)
C1—O4—C4—C317.61 (17)C5—O5—C17—O62.7 (3)
C1—O4—C4—C596.22 (18)C5—O5—C17—C18178.13 (16)
O3—C3—C4—O4117.80 (14)O6—C17—C18—C19177.9 (2)
O7—C3—C4—O4123.34 (14)O5—C17—C18—C191.3 (3)
C2—C3—C4—O40.50 (16)O6—C17—C18—C231.5 (3)
O3—C3—C4—C53.04 (17)O5—C17—C18—C23179.36 (19)
O7—C3—C4—C5115.82 (15)C23—C18—C19—C200.8 (4)
C2—C3—C4—C5120.34 (15)C17—C18—C19—C20178.5 (2)
C17—O5—C5—C6161.55 (18)C18—C19—C20—C210.6 (4)
C17—O5—C5—C487.9 (2)C19—C20—C21—C220.4 (5)
O4—C4—C5—O521.2 (2)C20—C21—C22—C230.4 (5)
C3—C4—C5—O594.79 (16)C21—C22—C23—C180.6 (4)
O4—C4—C5—C6134.95 (18)C19—C18—C23—C220.8 (4)
C3—C4—C5—C618.98 (19)C17—C18—C23—C22178.6 (2)
C3—O3—C6—C538.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.553.2793 (17)131
C4—H4···O8ii0.982.593.4882 (16)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H22O8
Mr426.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)6.05837 (10), 8.33827 (14), 40.9992 (7)
V3)2071.13 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.87
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.780, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
10556, 2421, 2335
Rint0.026
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.06
No. of reflections2421
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.553.2793 (17)131
C4—H4···O8ii0.982.593.4882 (16)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (grant No. 20572103).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajwanshi, V. K., Kumar, R., Kofod-Hansen, M. & Wengel, J. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1407–1414.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTronchet, J. M. J. & Bourgeois, J. M. (1971). Helv. Chim. Acta, 54, 1580–1589.  CrossRef CAS Google Scholar
First citationXavier, N. M., Madeira, P. J. A., Florêncio, M. H. & Rauter, A. P. (2009). Eur. J. Org. Chem. pp. 4983–4991.  CrossRef Google Scholar
First citationZhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds