organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-5-(4-meth­­oxy­phen­­oxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 27 April 2011; accepted 16 June 2011; online 22 June 2011)

In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic ππ stacking inter­action between the phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.772 (2) Å, inter­planar distance = 3.546 (2) Å and slippage = 1.286 (2) Å].

Related literature

For the biological activity of pyridine derivatives, see: Passannanti et al. (1998[Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229-1235.]); Jiyeon et al. (2010[Jiyeon, O., Sangseop, K., Kyu-Yang, Y., Nak-Jung, K., Hyung, S. H., Je-Yoel, C. & Kyoungho, S. (2010). Biochem. Pharmacol. 79, 596-609.]); Abdel-Alim et al. (2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]); Girgis et al. (2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]); Slominska et al. (2008[Slominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleoside Nucleotides Nucleic Acids, 27, 863-866.]); Spanka et al. (2010[Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184-188.]). For a related structure, see: Ouzidan et al. (2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]). For sp3 hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O2

  • Mr = 346.38

  • Monoclinic, P 21 /c

  • a = 13.6591 (4) Å

  • b = 13.7104 (4) Å

  • c = 9.3177 (2) Å

  • β = 98.940 (1)°

  • V = 1723.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 24827 measured reflections

  • 5887 independent reflections

  • 3938 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.140

  • S = 1.00

  • 5887 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine derivatives has numerous applications in medicinal chemistry (Passannanti et al., 1998). Furthermore, the imidazo[4,5-b]pyridine moiety is also an important heterocyclic nucleus which has been used extensively in medicinal chemistry. In fact, the heterocycles derived from these intermediates have been tested for their potential as anti-neuroinflammatory (Jiyeon et al., 2010). Pyridine-3-carboxamides have gained attention because of their diverse pharmacological properties such as anti-inflammatory (Abdel-Alim et al., 2005), anticancer (Girgis et al., 2006), cytoprotective (Slominska et al., 2008), and anxiolytic (Spanka et al., 2010) activities. Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

The bond lengths and angles in (Fig. 1) agree with those observed in other imidazopyridine derivatives (Ouzidan et al., 2010). The imidazopyridine ring system is essentially planar, with maximum deviation of 0.013 (1)° for atom C1. The sum of bond angles around N2[359.2 (9)°] of the imidazole ring is in accordance with sp3 hybridization (Beddoes et al., 1986). The imidazopyridine ring system makes dihedral angles of 35.5 (5) and 87.6 (5)°, respectively, with the pyridine and phenyl rings and also the dihedral angle between the pyridine and phenyl ring is 87.0 (6)°. It shows that the phenyl ring is perpendicular to both the imidazopyridine and pyridine rings. The atoms O1 and O2 are deviated by 0.039 (1) and - 0.021 (1)Å from the leastsquares plane of the phenyl ring.

The molecules lack hydrogen bonding functionality and pack in layers parallel to the (100) planes. The crystal structure is stabilized by an aromatic ππ stacking interaction between the phenyl rings of adjacent molecules, with a Cg···Cg distance of 3.772 (2) Å and an interplanar distance of 3.546 (3) Å resulting in a slippage of 1.286 (3) Å (Cg is the centroid of the C14–C19 phenyl ring).

Related literature top

For the biological activity of pyridine derivatives, see: Passannanti et al. (1998); Jiyeon et al. (2010); Abdel-Alim et al. (2005); Girgis et al. (2006); Slominska et al. (2008); Spanka et al. (2010). For a related structure, see: Ouzidan et al. (2010).

For sp3 hybridization, see: Beddoes et al. (1986).

Experimental top

N-ethyl-6-(4-methoxyphenoxy)pyridin-2-amine (0.23 g, 1 mmol) and amide (0.12 g, 1 mmol) successively added to Al3+–Y in xylene at 145°C. After stirring for 16 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation, the resulting crude product was finally purified by column chromatography (silica gel). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethylacetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
3-Ethyl-5-(4-methoxyphenoxy)-2-(pyridin-4-yl)-3H- imidazo[4,5-b]pyridine top
Crystal data top
C20H18N4O2F(000) = 728
Mr = 346.38Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5887 reflections
a = 13.6591 (4) Åθ = 1.5–32.0°
b = 13.7104 (4) ŵ = 0.09 mm1
c = 9.3177 (2) ÅT = 293 K
β = 98.940 (1)°Block, white crystalline
V = 1723.74 (8) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5887 independent reflections
Radiation source: fine-focus sealed tube3938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 32.1°, θmin = 1.5°
ω and ϕ scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.981, Tmax = 0.985l = 1312
24827 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2334P]
where P = (Fo2 + 2Fc2)/3
5887 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H18N4O2V = 1723.74 (8) Å3
Mr = 346.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6591 (4) ŵ = 0.09 mm1
b = 13.7104 (4) ÅT = 293 K
c = 9.3177 (2) Å0.25 × 0.22 × 0.19 mm
β = 98.940 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3938 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.027
24827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
5887 reflectionsΔρmin = 0.20 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34424 (9)0.10472 (9)0.42615 (13)0.0383 (3)
C20.34457 (9)0.18018 (9)0.52777 (14)0.0406 (3)
H20.38500.23440.52400.049*
C30.28465 (9)0.17335 (9)0.63296 (13)0.0389 (3)
H30.28340.22220.70200.047*
C40.22585 (8)0.09028 (8)0.63192 (12)0.0335 (2)
C50.23419 (8)0.02078 (8)0.52553 (12)0.0330 (2)
C60.12671 (8)0.02604 (8)0.66320 (12)0.0332 (2)
C70.16889 (10)0.14643 (8)0.46766 (13)0.0403 (3)
H7A0.13560.19520.51820.048*
H7B0.23630.16830.46700.048*
C80.11655 (12)0.13785 (11)0.31346 (15)0.0547 (4)
H8A0.04900.11860.31370.082*
H8B0.11810.19970.26550.082*
H8C0.14930.08970.26290.082*
C90.05197 (8)0.08407 (8)0.72257 (12)0.0341 (2)
C100.05089 (10)0.08248 (9)0.87147 (13)0.0427 (3)
H100.09860.04760.93290.051*
C110.02193 (11)0.13343 (10)0.92665 (15)0.0500 (3)
H110.02250.13051.02620.060*
C120.08936 (10)0.18810 (10)0.70402 (15)0.0459 (3)
H120.13700.22510.64570.055*
C130.02073 (9)0.13820 (9)0.63755 (13)0.0386 (3)
H130.02330.14090.53730.046*
C140.40351 (9)0.04175 (9)0.22118 (14)0.0425 (3)
C150.33767 (10)0.04307 (10)0.09494 (15)0.0488 (3)
H150.29130.09300.07690.059*
C160.34062 (10)0.03057 (11)0.00606 (15)0.0508 (3)
H160.29640.02990.09270.061*
C170.40900 (10)0.10480 (10)0.02181 (15)0.0479 (3)
C180.47462 (11)0.10467 (11)0.14910 (16)0.0546 (4)
H180.52110.15440.16790.066*
C190.47204 (10)0.03162 (11)0.24862 (16)0.0512 (3)
H190.51670.03180.33480.061*
C200.35584 (16)0.18189 (16)0.2055 (2)0.0799 (5)
H20A0.28780.17670.19200.120*
H20B0.36530.24160.25550.120*
H20C0.37270.12760.26210.120*
N10.29165 (7)0.02406 (7)0.42238 (11)0.0374 (2)
N20.17080 (7)0.05379 (7)0.54614 (10)0.0340 (2)
N30.15774 (7)0.05932 (7)0.71772 (10)0.0357 (2)
N40.09155 (9)0.18655 (9)0.84645 (13)0.0512 (3)
O10.40353 (7)0.11775 (7)0.32231 (11)0.0511 (2)
O20.41700 (9)0.18162 (9)0.06945 (12)0.0716 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (6)0.0366 (6)0.0433 (6)0.0005 (4)0.0079 (5)0.0034 (5)
C20.0382 (6)0.0315 (6)0.0517 (7)0.0044 (5)0.0052 (5)0.0009 (5)
C30.0407 (6)0.0313 (5)0.0433 (6)0.0008 (5)0.0022 (5)0.0056 (5)
C40.0353 (5)0.0304 (5)0.0338 (5)0.0009 (4)0.0027 (4)0.0008 (4)
C50.0350 (5)0.0299 (5)0.0338 (5)0.0000 (4)0.0042 (4)0.0004 (4)
C60.0364 (5)0.0316 (5)0.0318 (5)0.0020 (4)0.0057 (4)0.0008 (4)
C70.0471 (7)0.0287 (5)0.0468 (7)0.0017 (5)0.0128 (5)0.0070 (5)
C80.0681 (9)0.0502 (8)0.0454 (7)0.0077 (7)0.0075 (7)0.0135 (6)
C90.0375 (6)0.0297 (5)0.0360 (5)0.0038 (4)0.0084 (4)0.0031 (4)
C100.0508 (7)0.0416 (6)0.0365 (6)0.0059 (5)0.0091 (5)0.0021 (5)
C110.0647 (9)0.0483 (7)0.0403 (7)0.0071 (6)0.0187 (6)0.0014 (6)
C120.0408 (7)0.0469 (7)0.0496 (7)0.0049 (5)0.0064 (5)0.0004 (6)
C130.0394 (6)0.0402 (6)0.0357 (6)0.0012 (5)0.0044 (5)0.0025 (5)
C140.0419 (6)0.0421 (6)0.0470 (7)0.0027 (5)0.0181 (5)0.0038 (5)
C150.0454 (7)0.0443 (7)0.0571 (8)0.0077 (6)0.0097 (6)0.0095 (6)
C160.0489 (7)0.0559 (8)0.0462 (7)0.0039 (6)0.0025 (6)0.0070 (6)
C170.0490 (7)0.0491 (7)0.0473 (7)0.0052 (6)0.0129 (6)0.0019 (6)
C180.0499 (8)0.0579 (9)0.0554 (8)0.0177 (7)0.0060 (6)0.0030 (7)
C190.0466 (7)0.0594 (9)0.0468 (7)0.0080 (6)0.0045 (6)0.0042 (6)
C200.0881 (13)0.0854 (13)0.0627 (11)0.0002 (11)0.0005 (9)0.0198 (10)
N10.0399 (5)0.0342 (5)0.0396 (5)0.0011 (4)0.0109 (4)0.0010 (4)
N20.0402 (5)0.0285 (4)0.0342 (5)0.0025 (4)0.0085 (4)0.0030 (4)
N30.0396 (5)0.0329 (5)0.0346 (5)0.0001 (4)0.0060 (4)0.0017 (4)
N40.0538 (7)0.0511 (7)0.0517 (7)0.0089 (5)0.0174 (5)0.0016 (5)
O10.0557 (6)0.0447 (5)0.0585 (6)0.0112 (4)0.0262 (5)0.0036 (4)
O20.0796 (8)0.0689 (7)0.0634 (7)0.0212 (6)0.0021 (6)0.0142 (6)
Geometric parameters (Å, º) top
C1—N11.3161 (15)C10—H100.9300
C1—O11.3667 (14)C11—N41.3312 (18)
C1—C21.4020 (17)C11—H110.9300
C2—C31.3744 (17)C12—N41.3322 (17)
C2—H20.9300C12—C131.3823 (17)
C3—C41.3928 (16)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—N31.3842 (14)C14—C151.365 (2)
C4—C51.3924 (15)C14—C191.3708 (19)
C5—N11.3328 (14)C14—O11.4048 (16)
C5—N21.3724 (14)C15—C161.385 (2)
C6—N31.3192 (14)C15—H150.9300
C6—N21.3788 (13)C16—C171.3784 (19)
C6—C91.4686 (15)C16—H160.9300
C7—N21.4638 (14)C17—O21.3687 (17)
C7—C81.5066 (19)C17—C181.371 (2)
C7—H7A0.9700C18—C191.369 (2)
C7—H7B0.9700C18—H180.9300
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600C20—O21.406 (2)
C8—H8C0.9600C20—H20A0.9600
C9—C131.3857 (17)C20—H20B0.9600
C9—C101.3899 (16)C20—H20C0.9600
C10—C111.3786 (18)
N1—C1—O1118.16 (10)N4—C12—C13124.07 (13)
N1—C1—C2125.63 (11)N4—C12—H12118.0
O1—C1—C2116.21 (10)C13—C12—H12118.0
C3—C2—C1119.44 (11)C12—C13—C9118.98 (11)
C3—C2—H2120.3C12—C13—H13120.5
C1—C2—H2120.3C9—C13—H13120.5
C2—C3—C4117.22 (11)C15—C14—C19120.64 (13)
C2—C3—H3121.4C15—C14—O1119.97 (12)
C4—C3—H3121.4C19—C14—O1119.35 (13)
N3—C4—C5109.76 (10)C14—C15—C16119.40 (13)
N3—C4—C3133.26 (10)C14—C15—H15120.3
C5—C4—C3116.98 (10)C16—C15—H15120.3
N1—C5—N2125.53 (10)C17—C16—C15120.04 (13)
N1—C5—C4127.79 (10)C17—C16—H16120.0
N2—C5—C4106.68 (9)C15—C16—H16120.0
N3—C6—N2113.32 (9)O2—C17—C18115.72 (12)
N3—C6—C9122.41 (10)O2—C17—C16124.63 (13)
N2—C6—C9124.27 (10)C18—C17—C16119.66 (13)
N2—C7—C8112.19 (10)C19—C18—C17120.31 (13)
N2—C7—H7A109.2C19—C18—H18119.8
C8—C7—H7A109.2C17—C18—H18119.8
N2—C7—H7B109.2C18—C19—C14119.94 (13)
C8—C7—H7B109.2C18—C19—H19120.0
H7A—C7—H7B107.9C14—C19—H19120.0
C7—C8—H8A109.5O2—C20—H20A109.5
C7—C8—H8B109.5O2—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
C7—C8—H8C109.5O2—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C13—C9—C10117.46 (11)C1—N1—C5112.91 (10)
C13—C9—C6123.59 (10)C5—N2—C6105.53 (9)
C10—C9—C6118.91 (11)C5—N2—C7122.62 (9)
C11—C10—C9118.99 (12)C6—N2—C7131.19 (9)
C11—C10—H10120.5C6—N3—C4104.72 (9)
C9—C10—H10120.5C11—N4—C12116.31 (11)
N4—C11—C10124.17 (12)C1—O1—C14116.08 (9)
N4—C11—H11117.9C17—O2—C20117.96 (13)
C10—C11—H11117.9
N1—C1—C2—C31.3 (2)O1—C14—C19—C18178.17 (12)
O1—C1—C2—C3178.21 (11)O1—C1—N1—C5177.83 (11)
C1—C2—C3—C40.17 (18)C2—C1—N1—C51.63 (18)
C2—C3—C4—N3179.45 (12)N2—C5—N1—C1179.15 (11)
C2—C3—C4—C50.96 (16)C4—C5—N1—C10.73 (17)
N3—C4—C5—N1179.77 (11)N1—C5—N2—C6179.62 (11)
C3—C4—C5—N10.54 (18)C4—C5—N2—C60.28 (12)
N3—C4—C5—N20.12 (13)N1—C5—N2—C78.72 (18)
C3—C4—C5—N2179.56 (10)C4—C5—N2—C7171.38 (10)
N3—C6—C9—C13142.45 (12)N3—C6—N2—C50.36 (13)
N2—C6—C9—C1337.09 (17)C9—C6—N2—C5179.21 (10)
N3—C6—C9—C1035.08 (17)N3—C6—N2—C7170.30 (11)
N2—C6—C9—C10145.39 (12)C9—C6—N2—C710.13 (19)
C13—C9—C10—C110.54 (19)C8—C7—N2—C576.72 (15)
C6—C9—C10—C11177.14 (12)C8—C7—N2—C6113.98 (14)
C9—C10—C11—N41.3 (2)N2—C6—N3—C40.28 (13)
N4—C12—C13—C91.1 (2)C9—C6—N3—C4179.30 (10)
C10—C9—C13—C120.60 (17)C5—C4—N3—C60.09 (13)
C6—C9—C13—C12178.16 (11)C3—C4—N3—C6179.70 (13)
C19—C14—C15—C160.1 (2)C10—C11—N4—C120.8 (2)
O1—C14—C15—C16177.83 (11)C13—C12—N4—C110.4 (2)
C14—C15—C16—C170.6 (2)N1—C1—O1—C140.86 (17)
C15—C16—C17—O2178.89 (13)C2—C1—O1—C14179.63 (11)
C15—C16—C17—C180.7 (2)C15—C14—O1—C190.64 (14)
O2—C17—C18—C19179.25 (14)C19—C14—O1—C191.40 (14)
C16—C17—C18—C190.4 (2)C18—C17—O2—C20175.90 (15)
C17—C18—C19—C140.1 (2)C16—C17—O2—C204.5 (2)
C15—C14—C19—C180.2 (2)

Experimental details

Crystal data
Chemical formulaC20H18N4O2
Mr346.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.6591 (4), 13.7104 (4), 9.3177 (2)
β (°) 98.940 (1)
V3)1723.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
24827, 5887, 3938
Rint0.027
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.00
No. of reflections5887
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiyeon, O., Sangseop, K., Kyu-Yang, Y., Nak-Jung, K., Hyung, S. H., Je-Yoel, C. & Kyoungho, S. (2010). Biochem. Pharmacol. 79, 596–609.  Web of Science PubMed Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPassannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229–1235.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleoside Nucleotides Nucleic Acids, 27, 863–866.  CrossRef CAS Google Scholar
First citationSpanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds