inorganic compounds
Disilver(I) tricobalt(II) hydrogenphosphate bis(phosphate), Ag2Co3(HPO4)(PO4)2
aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr
Ag2Co3(HPO4)(PO4)2 contains CoO6 octahedra and phosphate groups linked to form a three-dimensional network defining tunnels parallel to the a axis that are occupied by Ag+ ions.
Related literature
Compounds prepared hydrothermally in the Ag2O–MO–P2O5 (M = divalent cation) system include AgMg3(PO4)(HPO4)2 (Assani et al., 2011a), AgMn3(PO4)(HPO4)2 (Leroux et al., 1995), AgCo3(PO4)(HPO4)2 (Guesmi & Driss, 2002), AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini, 2002), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b) and γ-AgZnPO4 (Assani et al., 2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811022598/mg2119sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022598/mg2119Isup2.hkl
A mixture of 0.0849 g AgNO3, 0.0529 g CoCO3.Co(OH)2, 10 mL of 85 wt.% H3PO4, and 10 mL of distilled water was placed in a 23-mL Teflon-lined autoclave, which was heated at 468 K under autogeneous pressure for two days. Pink crystals of the title compound were obtained after the product was filtered, washed with deionized water, and dried in air.
The O-bound H atom was initially located in a difference map and refined with O—H distance restraints of 0.86 (1) in a riding model approximation with Uiso(H) set to 1.2Ueq(O). The highest and deepest hole in the final difference Fourier map are located at 0.70 Å and 0.51 Å, respectively, from Ag1.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Ag2Co3(HPO4)(PO4)2 | F(000) = 1268 |
Mr = 678.44 | Dx = 4.917 Mg m−3 |
Orthorhombic, Ima2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: I 2 -2a | Cell parameters from 1388 reflections |
a = 12.9814 (4) Å | θ = 3.1–30.0° |
b = 6.5948 (2) Å | µ = 10.11 mm−1 |
c = 10.7062 (3) Å | T = 296 K |
V = 916.55 (5) Å3 | Prism, pink |
Z = 4 | 0.26 × 0.12 × 0.09 mm |
Bruker X8 APEX diffractometer | 1388 independent reflections |
Radiation source: fine-focus sealed tube | 1368 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: multi-scan (MULABS; Blessing, 1995) | h = −17→18 |
Tmin = 0.365, Tmax = 0.424 | k = −3→9 |
3966 measured reflections | l = −14→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.036P)2 + 2.5641P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1388 reflections | Δρmax = 1.81 e Å−3 |
99 parameters | Δρmin = −1.54 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 653 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.55 (3) |
Ag2Co3(HPO4)(PO4)2 | V = 916.55 (5) Å3 |
Mr = 678.44 | Z = 4 |
Orthorhombic, Ima2 | Mo Kα radiation |
a = 12.9814 (4) Å | µ = 10.11 mm−1 |
b = 6.5948 (2) Å | T = 296 K |
c = 10.7062 (3) Å | 0.26 × 0.12 × 0.09 mm |
Bruker X8 APEX diffractometer | 1388 independent reflections |
Absorption correction: multi-scan (MULABS; Blessing, 1995) | 1368 reflections with I > 2σ(I) |
Tmin = 0.365, Tmax = 0.424 | Rint = 0.021 |
3966 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.064 | Δρmax = 1.81 e Å−3 |
S = 1.05 | Δρmin = −1.54 e Å−3 |
1388 reflections | Absolute structure: Flack (1983), 653 Friedel pairs |
99 parameters | Absolute structure parameter: 0.55 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.2500 | 0.61215 (8) | −0.01381 (7) | 0.03097 (16) | |
Ag2 | 0.0000 | 0.5000 | −0.03770 (5) | 0.0448 (2) | |
Co1 | 0.13632 (3) | 0.24907 (9) | 0.20816 (6) | 0.00759 (11) | |
Co2 | 0.0000 | 0.5000 | 0.45678 (7) | 0.00474 (13) | |
P1 | −0.07308 (7) | 0.25700 (17) | 0.20656 (12) | 0.00728 (17) | |
P2 | 0.2500 | 0.40742 (18) | 0.45614 (14) | 0.0051 (2) | |
O1 | −0.1344 (3) | 0.4442 (5) | 0.1740 (3) | 0.0117 (6) | |
O2 | 0.0039 (3) | 0.2072 (5) | 0.1002 (3) | 0.0084 (6) | |
O3 | 0.0017 (3) | 0.2766 (5) | 0.3204 (3) | 0.0078 (6) | |
O4 | −0.1489 (3) | 0.0787 (5) | 0.2349 (3) | 0.0116 (7) | |
O5 | 0.15460 (18) | 0.5409 (4) | 0.4551 (3) | 0.0102 (5) | |
O6 | 0.2500 | 0.2616 (7) | 0.3410 (4) | 0.0109 (11) | |
O7 | 0.2500 | 0.2663 (7) | 0.5736 (4) | 0.0083 (10) | |
H4 | −0.2103 | 0.0633 | 0.2635 | 0.010* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0498 (3) | 0.0187 (2) | 0.0244 (3) | 0.000 | 0.000 | 0.0049 (2) |
Ag2 | 0.1126 (6) | 0.0094 (2) | 0.0124 (3) | −0.0022 (2) | 0.000 | 0.000 |
Co1 | 0.00546 (19) | 0.0103 (2) | 0.0070 (2) | 0.0005 (2) | 0.0001 (2) | −0.00120 (18) |
Co2 | 0.0051 (2) | 0.0051 (3) | 0.0040 (3) | 0.00074 (19) | 0.000 | 0.000 |
P1 | 0.0069 (3) | 0.0078 (4) | 0.0071 (4) | 0.0000 (4) | −0.0003 (5) | 0.0005 (4) |
P2 | 0.0043 (5) | 0.0066 (5) | 0.0044 (6) | 0.000 | 0.000 | −0.0005 (5) |
O1 | 0.0133 (15) | 0.0094 (14) | 0.0124 (14) | 0.0018 (11) | −0.0027 (10) | 0.0002 (11) |
O2 | 0.0096 (17) | 0.0072 (12) | 0.0083 (14) | −0.0004 (13) | −0.0014 (11) | −0.0031 (13) |
O3 | 0.0080 (17) | 0.0091 (14) | 0.0063 (13) | 0.0030 (12) | −0.0020 (10) | −0.0015 (12) |
O4 | 0.0107 (17) | 0.0083 (15) | 0.0159 (18) | −0.0018 (11) | 0.0039 (10) | 0.0001 (10) |
O5 | 0.0067 (9) | 0.0115 (10) | 0.0123 (13) | 0.0014 (9) | 0.0003 (12) | 0.0000 (12) |
O6 | 0.011 (3) | 0.014 (2) | 0.008 (2) | 0.000 | 0.000 | −0.0033 (15) |
O7 | 0.007 (3) | 0.010 (2) | 0.0083 (19) | 0.000 | 0.000 | 0.0021 (15) |
Ag1—O1i | 2.537 (3) | Co2—O2xi | 2.056 (3) |
Ag1—O1ii | 2.537 (3) | Co2—O3i | 2.074 (3) |
Ag1—O5iii | 2.623 (3) | Co2—O3 | 2.074 (3) |
Ag1—O5iv | 2.623 (3) | P1—O1 | 1.510 (3) |
Ag1—O7v | 2.666 (4) | P1—O2 | 1.550 (4) |
Ag1—O6v | 2.914 (5) | P1—O4 | 1.563 (3) |
Ag1—O4vi | 3.001 (3) | P1—O3 | 1.563 (4) |
Ag1—O4vii | 3.001 (3) | P2—O5 | 1.519 (3) |
Ag1—Ag2 | 3.3384 (2) | P2—O5xii | 1.520 (3) |
Ag2—O3viii | 2.374 (3) | P2—O6 | 1.563 (5) |
Ag2—O3vi | 2.374 (3) | P2—O7 | 1.564 (5) |
Ag2—O2 | 2.431 (4) | O1—Co1i | 2.055 (3) |
Ag2—O2i | 2.431 (4) | O1—O4 | 2.504 (4) |
Ag2—O1 | 2.884 (3) | O1—O2 | 2.509 (5) |
Ag2—O1i | 2.884 (3) | O1—Ag1i | 2.536 (3) |
Ag2—O4viii | 3.151 (3) | O2—Co2xiii | 2.056 (3) |
Ag2—O4vi | 3.151 (3) | O3—Ag2xiv | 2.374 (3) |
Ag2—Ag1i | 3.3384 (2) | O4—Ag1xv | 3.001 (3) |
Co1—O6 | 2.051 (3) | O4—Ag2xiv | 3.151 (3) |
Co1—O1i | 2.055 (3) | O4—H4 | 0.8598 |
Co1—O7v | 2.065 (3) | O5—Ag1xvi | 2.623 (3) |
Co1—O2 | 2.090 (3) | O6—Co1xii | 2.051 (3) |
Co1—O3 | 2.128 (4) | O6—Ag1xvii | 2.914 (5) |
Co1—O4ix | 2.187 (3) | O7—Co1xi | 2.065 (3) |
Co2—O5i | 2.025 (2) | O7—Co1xvii | 2.065 (3) |
Co2—O5 | 2.025 (2) | O7—Ag1xvii | 2.666 (4) |
Co2—O2x | 2.056 (3) | ||
O1i—Ag1—O1ii | 72.52 (15) | O2—Ag2—O4vi | 125.96 (10) |
O1i—Ag1—O5iii | 87.09 (10) | O2i—Ag2—O4vi | 110.56 (10) |
O1ii—Ag1—O5iii | 120.52 (10) | O1—Ag2—O4vi | 177.68 (9) |
O1i—Ag1—O5iv | 120.52 (10) | O1i—Ag2—O4vi | 102.42 (8) |
O1ii—Ag1—O5iv | 87.09 (10) | O4viii—Ag2—O4vi | 78.84 (11) |
O5iii—Ag1—O5iv | 56.35 (11) | Ag1i—Ag2—Ag1 | 171.21 (3) |
O1i—Ag1—O7v | 65.44 (10) | O6—Co1—O1i | 95.28 (16) |
O1ii—Ag1—O7v | 65.44 (10) | O6—Co1—O7v | 88.38 (11) |
O5iii—Ag1—O7v | 149.47 (7) | O1i—Co1—O7v | 86.15 (16) |
O5iv—Ag1—O7v | 149.47 (7) | O6—Co1—O2 | 168.69 (14) |
O1i—Ag1—O6v | 107.39 (11) | O1i—Co1—O2 | 91.26 (14) |
O1ii—Ag1—O6v | 107.39 (11) | O7v—Co1—O2 | 101.28 (12) |
O5iii—Ag1—O6v | 132.08 (10) | O6—Co1—O3 | 101.28 (13) |
O5iv—Ag1—O6v | 132.08 (10) | O1i—Co1—O3 | 90.38 (13) |
O7v—Ag1—O6v | 52.78 (11) | O7v—Co1—O3 | 170.01 (13) |
O1i—Ag1—O4vi | 116.18 (10) | O2—Co1—O3 | 69.40 (10) |
O1ii—Ag1—O4vi | 163.45 (9) | O6—Co1—O4ix | 84.00 (15) |
O5iii—Ag1—O4vi | 75.15 (9) | O1i—Co1—O4ix | 175.52 (12) |
O5iv—Ag1—O4vi | 99.02 (9) | O7v—Co1—O4ix | 89.40 (15) |
O7v—Ag1—O4vi | 104.24 (11) | O2—Co1—O4ix | 90.18 (13) |
O6v—Ag1—O4vi | 57.31 (10) | O3—Co1—O4ix | 94.10 (13) |
O1i—Ag1—O4vii | 163.45 (9) | O5i—Co2—O5 | 178.97 (18) |
O1ii—Ag1—O4vii | 116.18 (10) | O5i—Co2—O2x | 94.06 (13) |
O5iii—Ag1—O4vii | 99.02 (9) | O5—Co2—O2x | 86.71 (13) |
O5iv—Ag1—O4vii | 75.15 (9) | O5i—Co2—O2xi | 86.71 (13) |
O7v—Ag1—O4vii | 104.24 (11) | O5—Co2—O2xi | 94.06 (13) |
O6v—Ag1—O4vii | 57.31 (10) | O2x—Co2—O2xi | 83.4 (2) |
O4vi—Ag1—O4vii | 51.87 (13) | O5i—Co2—O3i | 94.45 (13) |
O3viii—Ag2—O3vi | 100.42 (17) | O5—Co2—O3i | 84.82 (13) |
O3viii—Ag2—O2 | 77.19 (9) | O2x—Co2—O3i | 93.07 (11) |
O3vi—Ag2—O2 | 177.52 (14) | O2xi—Co2—O3i | 176.32 (16) |
O3viii—Ag2—O2i | 177.52 (14) | O5i—Co2—O3 | 84.82 (13) |
O3vi—Ag2—O2i | 77.19 (9) | O5—Co2—O3 | 94.45 (13) |
O2—Ag2—O2i | 105.21 (15) | O2x—Co2—O3 | 176.32 (16) |
O3viii—Ag2—O1 | 114.25 (11) | O2xi—Co2—O3 | 93.07 (11) |
O3vi—Ag2—O1 | 126.53 (11) | O3i—Co2—O3 | 90.51 (18) |
O2—Ag2—O1 | 55.53 (11) | O1—P1—O2 | 110.1 (2) |
O2i—Ag2—O1 | 67.13 (10) | O1—P1—O4 | 109.14 (18) |
O3viii—Ag2—O1i | 126.53 (11) | O2—P1—O4 | 112.90 (19) |
O3vi—Ag2—O1i | 114.25 (11) | O1—P1—O3 | 116.08 (18) |
O2—Ag2—O1i | 67.13 (10) | O2—P1—O3 | 100.93 (14) |
O2i—Ag2—O1i | 55.53 (11) | O4—P1—O3 | 107.57 (19) |
O1—Ag2—O1i | 76.38 (13) | O1—P1—Co1 | 122.99 (14) |
O3viii—Ag2—O4viii | 52.04 (11) | O5—P2—O5xii | 109.2 (2) |
O3vi—Ag2—O4viii | 68.06 (10) | O5—P2—O6 | 110.52 (15) |
O2—Ag2—O4viii | 110.56 (10) | O5xii—P2—O6 | 110.52 (15) |
O2i—Ag2—O4viii | 125.96 (10) | O5—P2—O7 | 110.52 (15) |
O1—Ag2—O4viii | 102.42 (8) | O5xii—P2—O7 | 110.53 (15) |
O1i—Ag2—O4viii | 177.68 (9) | O6—P2—O7 | 105.5 (2) |
O3viii—Ag2—O4vi | 68.06 (10) | P1—O4—H4 | 137.9 |
O3vi—Ag2—O4vi | 52.04 (11) |
Symmetry codes: (i) −x, −y+1, z; (ii) x+1/2, −y+1, z; (iii) x, −y+3/2, z−1/2; (iv) −x+1/2, −y+3/2, z−1/2; (v) −x+1/2, −y+1/2, z−1/2; (vi) −x, y+1/2, z−1/2; (vii) x+1/2, y+1/2, z−1/2; (viii) x, −y+1/2, z−1/2; (ix) −x, −y, z; (x) −x, y+1/2, z+1/2; (xi) x, −y+1/2, z+1/2; (xii) −x+1/2, y, z; (xiii) −x, y−1/2, z−1/2; (xiv) −x, y−1/2, z+1/2; (xv) x−1/2, y−1/2, z+1/2; (xvi) −x+1/2, −y+3/2, z+1/2; (xvii) −x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O4xviii | 0.86 | 1.86 | 2.626 (7) | 148 |
Symmetry code: (xviii) −x−1/2, y, z. |
Experimental details
Crystal data | |
Chemical formula | Ag2Co3(HPO4)(PO4)2 |
Mr | 678.44 |
Crystal system, space group | Orthorhombic, Ima2 |
Temperature (K) | 296 |
a, b, c (Å) | 12.9814 (4), 6.5948 (2), 10.7062 (3) |
V (Å3) | 916.55 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.11 |
Crystal size (mm) | 0.26 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Bruker X8 APEX diffractometer |
Absorption correction | Multi-scan (MULABS; Blessing, 1995) |
Tmin, Tmax | 0.365, 0.424 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3966, 1388, 1368 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.064, 1.05 |
No. of reflections | 1388 |
No. of parameters | 99 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.81, −1.54 |
Absolute structure | Flack (1983), 653 Friedel pairs |
Absolute structure parameter | 0.55 (3) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O4i | 0.86 | 1.86 | 2.626 (7) | 148.0 |
Symmetry code: (i) −x−1/2, y, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74. Web of Science CrossRef IUCr Journals Google Scholar
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5. Web of Science CrossRef IUCr Journals Google Scholar
Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. Web of Science CrossRef IUCr Journals Google Scholar
Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. Web of Science CrossRef CAS IUCr Journals Google Scholar
Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds prepared hydrothermally in the Ag2O–MO–P2O5 (M = divalent cation) systems include AgMg3(PO4)(HPO4)2 (Assani et al., 2011a), AgMn3(PO4)(HPO4)2 (Leroux et al., 1995), AgCo3(PO4)(HPO4)2 (Guesmi & Driss, 2002), AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini, 2002), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b), and γ-AgZnPO4 (Assani et al., 2010). Ag2Co3(HPO4)(PO4)2, isostructural to the Ni analogue, contains CoO6 octahedra and PO4 and PO3(OH) tetrahedra which share corners and edges to form a three-dimensional framework (Fig. 1). Two types of tunnels aligned parallel to the a-direction accommodate Ag+ cations (Fig. 2).