inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disilver(I) tricobalt(II) hydrogenphos­phate bis­­(phosphate), Ag2Co3(HPO4)(PO4)2

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr

(Received 30 April 2011; accepted 10 June 2011; online 18 June 2011)

Ag2Co3(HPO4)(PO4)2 contains CoO6 octa­hedra and phosphate groups linked to form a three-dimensional network defining tunnels parallel to the a axis that are occupied by Ag+ ions.

Related literature

Compounds prepared hydro­thermally in the Ag2O–MO–P2O5 (M = divalent cation) system include AgMg3(PO4)(HPO4)2 (Assani et al., 2011a[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5.]), AgMn3(PO4)(HPO4)2 (Leroux et al., 1995[Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206-212.]), AgCo3(PO4)(HPO4)2 (Guesmi & Driss, 2002[Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16-i17.]), AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini, 2002[Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61-i62.]), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.]) and γ-AgZnPO4 (Assani et al., 2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.]).

Experimental

Crystal data
  • Ag2Co3(HPO4)(PO4)2

  • Mr = 678.44

  • Orthorhombic, I m a 2

  • a = 12.9814 (4) Å

  • b = 6.5948 (2) Å

  • c = 10.7062 (3) Å

  • V = 916.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.11 mm−1

  • T = 296 K

  • 0.26 × 0.12 × 0.09 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (MULABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.365, Tmax = 0.424

  • 3966 measured reflections

  • 1388 independent reflections

  • 1368 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.05

  • 1388 reflections

  • 99 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.81 e Å−3

  • Δρmin = −1.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 653 Friedel pairs

  • Flack parameter: 0.55 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O4i 0.86 1.86 2.626 (7) 148
Symmetry code: (i) [-x-{\script{1\over 2}}, y, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds prepared hydrothermally in the Ag2O–MO–P2O5 (M = divalent cation) systems include AgMg3(PO4)(HPO4)2 (Assani et al., 2011a), AgMn3(PO4)(HPO4)2 (Leroux et al., 1995), AgCo3(PO4)(HPO4)2 (Guesmi & Driss, 2002), AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini, 2002), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b), and γ-AgZnPO4 (Assani et al., 2010). Ag2Co3(HPO4)(PO4)2, isostructural to the Ni analogue, contains CoO6 octahedra and PO4 and PO3(OH) tetrahedra which share corners and edges to form a three-dimensional framework (Fig. 1). Two types of tunnels aligned parallel to the a-direction accommodate Ag+ cations (Fig. 2).

Related literature top

Compounds prepared hydrothermally in the Ag2O–MO–P2O5 (M = divalent cation) system include AgMg3(PO4)(HPO4)2 (Assani et al., 2011a), AgMn3(PO4)(HPO4)2 (Leroux et al., 1995), AgCo3(PO4)(HPO4)2 (Guesmi & Driss, 2002), AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini, 2002), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b) and γ-AgZnPO4 (Assani et al., 2010).

Experimental top

A mixture of 0.0849 g AgNO3, 0.0529 g CoCO3.Co(OH)2, 10 mL of 85 wt.% H3PO4, and 10 mL of distilled water was placed in a 23-mL Teflon-lined autoclave, which was heated at 468 K under autogeneous pressure for two days. Pink crystals of the title compound were obtained after the product was filtered, washed with deionized water, and dried in air.

Refinement top

The O-bound H atom was initially located in a difference map and refined with O—H distance restraints of 0.86 (1) in a riding model approximation with Uiso(H) set to 1.2Ueq(O). The highest and deepest hole in the final difference Fourier map are located at 0.70 Å and 0.51 Å, respectively, from Ag1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Connectivity of metal-centred coordination polyhedra in Ag2Co3(HPO4)(PO4)2. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y + 1, z; (ii) x + 1/2, -y+ 1, z; (iii) x, -y + 3/2, z - 1/2; (iv) -x + 1/2, -y + 3/2, z - 1/2; (v) -x + 1/2, -y + 1/2, z - 1/2; (vi) -x, y + 1/2, z - 1/2; (vii) x + 1/2, y + 1/2, z - 1/2; (viii) x, -y + 1/2, z - 1/2; (ix) -x, -y, z; (x) -x, y + 1/2, z + 1/2; (xi) x, -y + 1/2, z + 1/2; (xii) -x + 1/2, y, z.
[Figure 2] Fig. 2. Polyhedral representation of Ag2Co3(HPO4)(PO4)2, showing tunnels running along the a direction at x 1/2 0 and x 0 1/2.
Disilver(I) tricobalt(II) hydrogenphosphate bis(phosphate) top
Crystal data top
Ag2Co3(HPO4)(PO4)2F(000) = 1268
Mr = 678.44Dx = 4.917 Mg m3
Orthorhombic, Ima2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2aCell parameters from 1388 reflections
a = 12.9814 (4) Åθ = 3.1–30.0°
b = 6.5948 (2) ŵ = 10.11 mm1
c = 10.7062 (3) ÅT = 296 K
V = 916.55 (5) Å3Prism, pink
Z = 40.26 × 0.12 × 0.09 mm
Data collection top
Bruker X8 APEX
diffractometer
1388 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
h = 1718
Tmin = 0.365, Tmax = 0.424k = 39
3966 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.036P)2 + 2.5641P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1388 reflectionsΔρmax = 1.81 e Å3
99 parametersΔρmin = 1.54 e Å3
1 restraintAbsolute structure: Flack (1983), 653 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.55 (3)
Crystal data top
Ag2Co3(HPO4)(PO4)2V = 916.55 (5) Å3
Mr = 678.44Z = 4
Orthorhombic, Ima2Mo Kα radiation
a = 12.9814 (4) ŵ = 10.11 mm1
b = 6.5948 (2) ÅT = 296 K
c = 10.7062 (3) Å0.26 × 0.12 × 0.09 mm
Data collection top
Bruker X8 APEX
diffractometer
1388 independent reflections
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
1368 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.424Rint = 0.021
3966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064Δρmax = 1.81 e Å3
S = 1.05Δρmin = 1.54 e Å3
1388 reflectionsAbsolute structure: Flack (1983), 653 Friedel pairs
99 parametersAbsolute structure parameter: 0.55 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.25000.61215 (8)0.01381 (7)0.03097 (16)
Ag20.00000.50000.03770 (5)0.0448 (2)
Co10.13632 (3)0.24907 (9)0.20816 (6)0.00759 (11)
Co20.00000.50000.45678 (7)0.00474 (13)
P10.07308 (7)0.25700 (17)0.20656 (12)0.00728 (17)
P20.25000.40742 (18)0.45614 (14)0.0051 (2)
O10.1344 (3)0.4442 (5)0.1740 (3)0.0117 (6)
O20.0039 (3)0.2072 (5)0.1002 (3)0.0084 (6)
O30.0017 (3)0.2766 (5)0.3204 (3)0.0078 (6)
O40.1489 (3)0.0787 (5)0.2349 (3)0.0116 (7)
O50.15460 (18)0.5409 (4)0.4551 (3)0.0102 (5)
O60.25000.2616 (7)0.3410 (4)0.0109 (11)
O70.25000.2663 (7)0.5736 (4)0.0083 (10)
H40.21030.06330.26350.010*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0498 (3)0.0187 (2)0.0244 (3)0.0000.0000.0049 (2)
Ag20.1126 (6)0.0094 (2)0.0124 (3)0.0022 (2)0.0000.000
Co10.00546 (19)0.0103 (2)0.0070 (2)0.0005 (2)0.0001 (2)0.00120 (18)
Co20.0051 (2)0.0051 (3)0.0040 (3)0.00074 (19)0.0000.000
P10.0069 (3)0.0078 (4)0.0071 (4)0.0000 (4)0.0003 (5)0.0005 (4)
P20.0043 (5)0.0066 (5)0.0044 (6)0.0000.0000.0005 (5)
O10.0133 (15)0.0094 (14)0.0124 (14)0.0018 (11)0.0027 (10)0.0002 (11)
O20.0096 (17)0.0072 (12)0.0083 (14)0.0004 (13)0.0014 (11)0.0031 (13)
O30.0080 (17)0.0091 (14)0.0063 (13)0.0030 (12)0.0020 (10)0.0015 (12)
O40.0107 (17)0.0083 (15)0.0159 (18)0.0018 (11)0.0039 (10)0.0001 (10)
O50.0067 (9)0.0115 (10)0.0123 (13)0.0014 (9)0.0003 (12)0.0000 (12)
O60.011 (3)0.014 (2)0.008 (2)0.0000.0000.0033 (15)
O70.007 (3)0.010 (2)0.0083 (19)0.0000.0000.0021 (15)
Geometric parameters (Å, º) top
Ag1—O1i2.537 (3)Co2—O2xi2.056 (3)
Ag1—O1ii2.537 (3)Co2—O3i2.074 (3)
Ag1—O5iii2.623 (3)Co2—O32.074 (3)
Ag1—O5iv2.623 (3)P1—O11.510 (3)
Ag1—O7v2.666 (4)P1—O21.550 (4)
Ag1—O6v2.914 (5)P1—O41.563 (3)
Ag1—O4vi3.001 (3)P1—O31.563 (4)
Ag1—O4vii3.001 (3)P2—O51.519 (3)
Ag1—Ag23.3384 (2)P2—O5xii1.520 (3)
Ag2—O3viii2.374 (3)P2—O61.563 (5)
Ag2—O3vi2.374 (3)P2—O71.564 (5)
Ag2—O22.431 (4)O1—Co1i2.055 (3)
Ag2—O2i2.431 (4)O1—O42.504 (4)
Ag2—O12.884 (3)O1—O22.509 (5)
Ag2—O1i2.884 (3)O1—Ag1i2.536 (3)
Ag2—O4viii3.151 (3)O2—Co2xiii2.056 (3)
Ag2—O4vi3.151 (3)O3—Ag2xiv2.374 (3)
Ag2—Ag1i3.3384 (2)O4—Ag1xv3.001 (3)
Co1—O62.051 (3)O4—Ag2xiv3.151 (3)
Co1—O1i2.055 (3)O4—H40.8598
Co1—O7v2.065 (3)O5—Ag1xvi2.623 (3)
Co1—O22.090 (3)O6—Co1xii2.051 (3)
Co1—O32.128 (4)O6—Ag1xvii2.914 (5)
Co1—O4ix2.187 (3)O7—Co1xi2.065 (3)
Co2—O5i2.025 (2)O7—Co1xvii2.065 (3)
Co2—O52.025 (2)O7—Ag1xvii2.666 (4)
Co2—O2x2.056 (3)
O1i—Ag1—O1ii72.52 (15)O2—Ag2—O4vi125.96 (10)
O1i—Ag1—O5iii87.09 (10)O2i—Ag2—O4vi110.56 (10)
O1ii—Ag1—O5iii120.52 (10)O1—Ag2—O4vi177.68 (9)
O1i—Ag1—O5iv120.52 (10)O1i—Ag2—O4vi102.42 (8)
O1ii—Ag1—O5iv87.09 (10)O4viii—Ag2—O4vi78.84 (11)
O5iii—Ag1—O5iv56.35 (11)Ag1i—Ag2—Ag1171.21 (3)
O1i—Ag1—O7v65.44 (10)O6—Co1—O1i95.28 (16)
O1ii—Ag1—O7v65.44 (10)O6—Co1—O7v88.38 (11)
O5iii—Ag1—O7v149.47 (7)O1i—Co1—O7v86.15 (16)
O5iv—Ag1—O7v149.47 (7)O6—Co1—O2168.69 (14)
O1i—Ag1—O6v107.39 (11)O1i—Co1—O291.26 (14)
O1ii—Ag1—O6v107.39 (11)O7v—Co1—O2101.28 (12)
O5iii—Ag1—O6v132.08 (10)O6—Co1—O3101.28 (13)
O5iv—Ag1—O6v132.08 (10)O1i—Co1—O390.38 (13)
O7v—Ag1—O6v52.78 (11)O7v—Co1—O3170.01 (13)
O1i—Ag1—O4vi116.18 (10)O2—Co1—O369.40 (10)
O1ii—Ag1—O4vi163.45 (9)O6—Co1—O4ix84.00 (15)
O5iii—Ag1—O4vi75.15 (9)O1i—Co1—O4ix175.52 (12)
O5iv—Ag1—O4vi99.02 (9)O7v—Co1—O4ix89.40 (15)
O7v—Ag1—O4vi104.24 (11)O2—Co1—O4ix90.18 (13)
O6v—Ag1—O4vi57.31 (10)O3—Co1—O4ix94.10 (13)
O1i—Ag1—O4vii163.45 (9)O5i—Co2—O5178.97 (18)
O1ii—Ag1—O4vii116.18 (10)O5i—Co2—O2x94.06 (13)
O5iii—Ag1—O4vii99.02 (9)O5—Co2—O2x86.71 (13)
O5iv—Ag1—O4vii75.15 (9)O5i—Co2—O2xi86.71 (13)
O7v—Ag1—O4vii104.24 (11)O5—Co2—O2xi94.06 (13)
O6v—Ag1—O4vii57.31 (10)O2x—Co2—O2xi83.4 (2)
O4vi—Ag1—O4vii51.87 (13)O5i—Co2—O3i94.45 (13)
O3viii—Ag2—O3vi100.42 (17)O5—Co2—O3i84.82 (13)
O3viii—Ag2—O277.19 (9)O2x—Co2—O3i93.07 (11)
O3vi—Ag2—O2177.52 (14)O2xi—Co2—O3i176.32 (16)
O3viii—Ag2—O2i177.52 (14)O5i—Co2—O384.82 (13)
O3vi—Ag2—O2i77.19 (9)O5—Co2—O394.45 (13)
O2—Ag2—O2i105.21 (15)O2x—Co2—O3176.32 (16)
O3viii—Ag2—O1114.25 (11)O2xi—Co2—O393.07 (11)
O3vi—Ag2—O1126.53 (11)O3i—Co2—O390.51 (18)
O2—Ag2—O155.53 (11)O1—P1—O2110.1 (2)
O2i—Ag2—O167.13 (10)O1—P1—O4109.14 (18)
O3viii—Ag2—O1i126.53 (11)O2—P1—O4112.90 (19)
O3vi—Ag2—O1i114.25 (11)O1—P1—O3116.08 (18)
O2—Ag2—O1i67.13 (10)O2—P1—O3100.93 (14)
O2i—Ag2—O1i55.53 (11)O4—P1—O3107.57 (19)
O1—Ag2—O1i76.38 (13)O1—P1—Co1122.99 (14)
O3viii—Ag2—O4viii52.04 (11)O5—P2—O5xii109.2 (2)
O3vi—Ag2—O4viii68.06 (10)O5—P2—O6110.52 (15)
O2—Ag2—O4viii110.56 (10)O5xii—P2—O6110.52 (15)
O2i—Ag2—O4viii125.96 (10)O5—P2—O7110.52 (15)
O1—Ag2—O4viii102.42 (8)O5xii—P2—O7110.53 (15)
O1i—Ag2—O4viii177.68 (9)O6—P2—O7105.5 (2)
O3viii—Ag2—O4vi68.06 (10)P1—O4—H4137.9
O3vi—Ag2—O4vi52.04 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z; (iii) x, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1/2, z1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x, y+1/2, z1/2; (ix) x, y, z; (x) x, y+1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y, z; (xiii) x, y1/2, z1/2; (xiv) x, y1/2, z+1/2; (xv) x1/2, y1/2, z+1/2; (xvi) x+1/2, y+3/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O4xviii0.861.862.626 (7)148
Symmetry code: (xviii) x1/2, y, z.

Experimental details

Crystal data
Chemical formulaAg2Co3(HPO4)(PO4)2
Mr678.44
Crystal system, space groupOrthorhombic, Ima2
Temperature (K)296
a, b, c (Å)12.9814 (4), 6.5948 (2), 10.7062 (3)
V3)916.55 (5)
Z4
Radiation typeMo Kα
µ (mm1)10.11
Crystal size (mm)0.26 × 0.12 × 0.09
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(MULABS; Blessing, 1995)
Tmin, Tmax0.365, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
3966, 1388, 1368
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.05
No. of reflections1388
No. of parameters99
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.81, 1.54
Absolute structureFlack (1983), 653 Friedel pairs
Absolute structure parameter0.55 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O4i0.861.862.626 (7)148.0
Symmetry code: (i) x1/2, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBen Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds