inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A-type Ce2NCl3

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

(Received 24 May 2011; accepted 14 June 2011; online 18 June 2011)

Cerium(III) nitride chloride, Ce2NCl3, contains trans-edge connected [NCe4]9+ tetra­hedra (222 symmetry) forming chains parallel to the c axis that are separated by Cl anions. The Ce3+ cations (..m symmetry) are each surrounded by two N3− and six Cl anions in a bicapped trigonal prismatic coordination geometry (CN = 8).

Related literature

For isotypic A-type M2NCl3 structures, see: Schurz & Schleid (2009[Schurz, C. M. & Schleid, Th. (2009). J. Alloys Compd, 485, 110-118.]) for La; Uhrlandt & Meyer (1995[Uhrlandt, S. & Meyer, G. (1995). J. Alloys Compd, 225, 171-173.]) for Pr. For a comparison of A-, B-, and C-type structures, see: Schurz & Schleid (2009[Schurz, C. M. & Schleid, Th. (2009). J. Alloys Compd, 485, 110-118.]); Schurz (2011[Schurz, C. M. (2011). Dissertation, Universität Stuttgart, Germany.]).

Experimental

Crystal data
  • Ce2NCl3

  • Mr = 400.60

  • Orthorhombic, I b a m

  • a = 13.6021 (9) Å

  • b = 6.8903 (5) Å

  • c = 6.1396 (4) Å

  • V = 575.42 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 16.86 mm−1

  • T = 293 K

  • 0.19 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.085, Tmax = 0.198

  • 4016 measured reflections

  • 385 independent reflections

  • 329 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.061

  • S = 1.12

  • 385 reflections

  • 20 parameters

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected bond lengths (Å)

Ce—Ni 2.3414 (4)
Ce—N 2.3414 (4)
Ce—Cl2ii 2.873 (3)
Ce—Cl2 2.969 (3)
Ce—Cl1 2.9876 (5)
Ce—Cl1iii 2.9876 (5)
Ce—Cl2iv 3.3896 (11)
Ce—Cl2v 3.3896 (11)
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lanthanide nitride chlorides M2NCl3 adopt A-, B-, or C-type structures (Schurz & Schleid, 2009; Schurz, 2011). Ce2NCl3 belongs to the short series of orthorhombic A-type structures formed for M = La–Pr (Uhrlandt & Meyer, 1995; Schurz & Schleid, 2009). The structure features trans-edge connected [NCe4]9+ tetrahedra (222 symmetry) forming straight infinite chains running parallel to the c-axis (Fig. 1). These chains are bundled in a hexagonal arrangement and are interconnected by (Cl1) anions (222 symmetry) along [110] and [110], and by (Cl2) anions (..m symmetry) along [010] (Fig. 2). Both types of chloride anions show a fourfold surrounding of cerium cations, while the coordination geometry of the trivalent cerium cations (..m symmetry) can be described as bicapped trigonal prismatic (CN = 8) with two Ce–N and six Ce–Cl contacts (Fig. 3).

Related literature top

For isotypic A-type M2NCl3 structures, see: Schurz & Schleid (2009) for La; Uhrlandt & Meyer (1995) for Pr. For a comparison of A-, B-, and C-type structures, see: Schurz & Schleid (2009); Schurz (2011).

Experimental top

Light yellow, transparent, needle-shaped crystals of Ce2NCl3 were obtained as the main product after a mixture of 0.06 g Ce, 0.13 g CeCl3, and 0.01 g NaN3, along with 0.30 g NaCl added as a flux, was heated at 850 °C for 7 days in a sealed, evacuated fused-silica vessel.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Chains of trans-edge connected [NCe4]9+ tetrahedra in A-type Ce2NCl3.
[Figure 2] Fig. 2. Polyhedral representation of A-type Ce2NCl3.
[Figure 3] Fig. 3. Coordination sphere of Ce atoms in A-type Ce2NCl3. Displacement ellipsoids are drawn at 90% probability level. Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y - 1/2, z; (iii) -x, -y + 1, -z; (iv) -x + 1/2, -y + 1/2, -z + 1/2; (v) -x + 1/2, -y + 1/2, z + 1/2.
Cerium(III) nitride trichloride top
Crystal data top
Ce2NCl3F(000) = 696
Mr = 400.60Dx = 4.624 Mg m3
Orthorhombic, IbamMo Kα radiation, λ = 0.71069 Å
Hall symbol: -I 2 2cCell parameters from 19363 reflections
a = 13.6021 (9) Åθ = 0.4–28.3°
b = 6.8903 (5) ŵ = 16.86 mm1
c = 6.1396 (4) ÅT = 293 K
V = 575.42 (7) Å3Needle, light yellow
Z = 40.19 × 0.14 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
385 independent reflections
Radiation source: fine-focus sealed tube329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω and ϕ scansθmax = 28.1°, θmin = 3.0°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 1818
Tmin = 0.085, Tmax = 0.198k = 99
4016 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0169P)2 + 3.8817P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.12Δρmax = 1.06 e Å3
385 reflectionsΔρmin = 1.09 e Å3
20 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0006 (3)
Crystal data top
Ce2NCl3V = 575.42 (7) Å3
Mr = 400.60Z = 4
Orthorhombic, IbamMo Kα radiation
a = 13.6021 (9) ŵ = 16.86 mm1
b = 6.8903 (5) ÅT = 293 K
c = 6.1396 (4) Å0.19 × 0.14 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
385 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
329 reflections with I > 2σ(I)
Tmin = 0.085, Tmax = 0.198Rint = 0.082
4016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03520 parameters
wR(F2) = 0.0610 restraints
S = 1.12Δρmax = 1.06 e Å3
385 reflectionsΔρmin = 1.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.09389 (4)0.17747 (9)0.00000.0243 (3)
N0.00000.00000.25000.028 (3)
Cl10.00000.50000.25000.0330 (8)
Cl20.30050 (19)0.3163 (4)0.00000.0390 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.0238 (3)0.0259 (4)0.0231 (3)0.0019 (3)0.0000.000
N0.026 (6)0.038 (8)0.022 (6)0.0000.0000.000
Cl10.056 (2)0.0229 (19)0.0199 (15)0.0000.0000.000
Cl20.0319 (14)0.0361 (15)0.0489 (15)0.0092 (12)0.0000.000
Geometric parameters (Å, º) top
Ce—Ni2.3414 (4)Ce—Ceviii3.9934 (7)
Ce—N2.3414 (4)Ce—Ceix3.9934 (7)
Ce—Cl2ii2.873 (3)N—Cei2.3414 (4)
Ce—Cl22.969 (3)N—Ceix2.3414 (4)
Ce—Cl12.9876 (5)N—Cevii2.3414 (4)
Ce—Cl1iii2.9876 (5)Cl1—Cex2.9876 (5)
Ce—Cl2iv3.3896 (11)Cl1—Ceix2.9876 (5)
Ce—Cl2v3.3896 (11)Cl1—Ceiii2.9876 (5)
Ce—Cei3.5362 (12)Cl2—Cexi2.873 (3)
Ce—Cevi3.9249 (8)Cl2—Ce2.969 (3)
Ce—Cevii3.9249 (8)Cl2—Cev3.3896 (11)
Ni—Ce—N81.923 (19)Cei—Ce—Cevii64.473 (17)
Ni—Ce—Cl2ii79.66 (4)Cevi—Ce—Cevii102.91 (3)
N—Ce—Cl2ii79.66 (4)Ni—Ce—Ceviii31.484 (13)
Ni—Ce—Cl2133.21 (3)N—Ce—Ceviii98.92 (2)
N—Ce—Cl2133.21 (3)Cl2ii—Ce—Ceviii108.65 (3)
Cl2ii—Ce—Cl278.80 (4)Cl2—Ce—Ceviii127.261 (18)
Ni—Ce—Cl1119.48 (2)Cl1—Ce—Ceviii96.980 (16)
N—Ce—Cl179.545 (12)Cl1iii—Ce—Ceviii48.061 (9)
Cl2ii—Ce—Cl1149.085 (6)Cei—Ce—Ceviii62.486 (16)
Cl2—Ce—Cl199.49 (5)Cevi—Ce—Ceviii53.041 (12)
Ni—Ce—Cl1iii79.545 (12)Cevii—Ce—Ceviii126.959 (11)
N—Ce—Cl1iii119.48 (2)Ni—Ce—Ceix98.92 (2)
Cl2ii—Ce—Cl1iii149.085 (6)N—Ce—Ceix31.484 (13)
Cl2—Ce—Cl1iii99.49 (5)Cl2ii—Ce—Ceix108.65 (3)
Cl1—Ce—Cl1iii61.829 (12)Cl2—Ce—Ceix127.261 (18)
Ni—Ce—Cei40.961 (9)Cl1—Ce—Ceix48.061 (9)
N—Ce—Cei40.961 (9)Cl1iii—Ce—Ceix96.980 (16)
Cl2ii—Ce—Cei76.24 (6)Cei—Ce—Ceix62.486 (15)
Cl2—Ce—Cei155.05 (6)Cevi—Ce—Ceix126.959 (11)
Cl1—Ce—Cei101.87 (2)Cevii—Ce—Ceix53.041 (11)
Cl1iii—Ce—Cei101.87 (2)Ceviii—Ce—Ceix100.48 (2)
Ni—Ce—Cevi33.054 (12)Cei—N—Ceix113.89 (2)
N—Ce—Cevi100.80 (2)Cei—N—Cevii117.03 (3)
Cl2ii—Ce—Cevi57.34 (2)Ceix—N—Cevii98.077 (19)
Cl2—Ce—Cevi101.59 (3)Cei—N—Ce98.077 (19)
Cl1—Ce—Cevi149.920 (11)Ceix—N—Ce117.03 (3)
Cl1iii—Ce—Cevi93.536 (8)Cevii—N—Ce113.89 (2)
Cei—Ce—Cevi64.473 (17)Cex—Cl1—Ceix118.171 (12)
Ni—Ce—Cevii100.80 (2)Cex—Cl1—Ceiii83.877 (19)
N—Ce—Cevii33.054 (12)Ceix—Cl1—Ceiii129.39 (2)
Cl2ii—Ce—Cevii57.34 (2)Cex—Cl1—Ce129.39 (2)
Cl2—Ce—Cevii101.59 (3)Ceix—Cl1—Ce83.877 (19)
Cl1—Ce—Cevii93.536 (8)Ceiii—Cl1—Ce118.171 (13)
Cl1iii—Ce—Cevii149.920 (11)Cexi—Cl2—Ce138.81 (11)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z1/2; (vii) x, y, z+1/2; (viii) x, y, z1/2; (ix) x, y, z+1/2; (x) x, y+1, z+1/2; (xi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaCe2NCl3
Mr400.60
Crystal system, space groupOrthorhombic, Ibam
Temperature (K)293
a, b, c (Å)13.6021 (9), 6.8903 (5), 6.1396 (4)
V3)575.42 (7)
Z4
Radiation typeMo Kα
µ (mm1)16.86
Crystal size (mm)0.19 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.085, 0.198
No. of measured, independent and
observed [I > 2σ(I)] reflections
4016, 385, 329
Rint0.082
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.061, 1.12
No. of reflections385
No. of parameters20
Δρmax, Δρmin (e Å3)1.06, 1.09

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Ce—Ni2.3414 (4)Ce—Cl12.9876 (5)
Ce—N2.3414 (4)Ce—Cl1iii2.9876 (5)
Ce—Cl2ii2.873 (3)Ce—Cl2iv3.3896 (11)
Ce—Cl22.969 (3)Ce—Cl2v3.3896 (11)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the State of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft (DFG; Frankfurt/Main). We thank Dr Falk Lissner for the data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchurz, C. M. (2011). Dissertation, Universität Stuttgart, Germany.  Google Scholar
First citationSchurz, C. M. & Schleid, Th. (2009). J. Alloys Compd, 485, 110–118.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUhrlandt, S. & Meyer, G. (1995). J. Alloys Compd, 225, 171–173.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds