metal-organic compounds
Di-μ-nitrito-κ4O:O-bis[bis(1-ethyl-1H-imidazole-κN3)(nitrito-κO)copper(II)]
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com
In the structure of the title compound, [Cu2(NO2)4(C5H8N2)4], the consists of two moieties containing one Cu ion, two nitrite ions and two 1-ethyl-1H-imidazole molecules associated via weak Cu—O interactions. Each CuII atom displays an elongted square-pyramidal CuN2O3 coordination geometry with a slight tetrahedral distortion in the basal plane. The dimeric units are linked into a three-dimensional network by C—H⋯O hydrogen bonds.
Related literature
For general background on ferroelectric metal–organic compounds with framework structures, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For a related structure, see: Costes et al. (1995).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020745/mw2004sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020745/mw2004Isup2.hkl
An aqueous solution of 1-ethyl imidazole (2.4 g, 25 mmol) and H2SO4(12.5 mmol) was treated with CuSO4 (250 g, 12.5 mmol). After the mixture was stirred for a few minutes, Ba(NO2)2 (6.18 g, 25 mmol) was added to give a blue solution. Slow evaporation of the solution following removal of the precipitated BaSO4 yielded blue crystals after a few days.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(C) for ethy H atoms.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu2(NO2)4(C5H8N2)4] | Dx = 1.522 Mg m−3 |
Mr = 695.64 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 7423 reflections |
Hall symbol: -I 4ad | θ = 2.3–27.5° |
a = 28.136 (7) Å | µ = 1.46 mm−1 |
c = 7.669 (2) Å | T = 293 K |
V = 6071 (3) Å3 | Prism, blue |
Z = 8 | 0.30 × 0.25 × 0.20 mm |
F(000) = 2864 |
Rigaku SCXmini CCD diffractometer | 3462 independent reflections |
Radiation source: fine-focus sealed tube | 3188 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 27.5°, θmin = 2.8° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −36→35 |
Tmin = 0.651, Tmax = 0.746 | k = −36→36 |
31845 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0575P)2 + 9.3008P] where P = (Fo2 + 2Fc2)/3 |
3462 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Cu2(NO2)4(C5H8N2)4] | Z = 8 |
Mr = 695.64 | Mo Kα radiation |
Tetragonal, I41/a | µ = 1.46 mm−1 |
a = 28.136 (7) Å | T = 293 K |
c = 7.669 (2) Å | 0.30 × 0.25 × 0.20 mm |
V = 6071 (3) Å3 |
Rigaku SCXmini CCD diffractometer | 3462 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3188 reflections with I > 2σ(I) |
Tmin = 0.651, Tmax = 0.746 | Rint = 0.049 |
31845 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.82 e Å−3 |
3462 reflections | Δρmin = −0.59 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.296007 (12) | 0.280780 (13) | 0.10562 (4) | 0.03905 (14) | |
O1 | 0.31265 (8) | 0.25812 (8) | −0.1376 (3) | 0.0515 (5) | |
O2 | 0.36079 (10) | 0.31480 (11) | −0.1169 (4) | 0.0703 (7) | |
O3 | 0.26607 (9) | 0.28842 (10) | 0.3494 (4) | 0.0622 (6) | |
O4 | 0.31466 (11) | 0.34387 (11) | 0.3593 (4) | 0.0786 (9) | |
N1 | 0.20821 (9) | 0.36827 (10) | −0.1798 (4) | 0.0506 (6) | |
N2 | 0.25052 (8) | 0.32796 (9) | 0.0093 (3) | 0.0429 (5) | |
N3 | 0.34610 (10) | 0.28278 (12) | −0.2076 (4) | 0.0567 (7) | |
N4 | 0.28338 (14) | 0.32269 (14) | 0.4337 (4) | 0.0726 (10) | |
N5 | 0.34476 (8) | 0.23769 (8) | 0.2053 (3) | 0.0385 (5) | |
N6 | 0.38648 (9) | 0.19735 (9) | 0.3968 (3) | 0.0423 (5) | |
C1 | 0.23921 (11) | 0.33283 (11) | −0.1568 (4) | 0.0463 (7) | |
H1 | 0.2512 | 0.3140 | −0.2462 | 0.056* | |
C2 | 0.19876 (13) | 0.38696 (13) | −0.0200 (5) | 0.0615 (9) | |
H2 | 0.1782 | 0.4120 | 0.0043 | 0.074* | |
C3 | 0.22491 (13) | 0.36229 (13) | 0.0964 (5) | 0.0597 (9) | |
H3 | 0.2255 | 0.3676 | 0.2161 | 0.072* | |
C4 | 0.2044 (3) | 0.4277 (2) | −0.4124 (8) | 0.122 (2) | |
H4A | 0.1894 | 0.4348 | −0.5217 | 0.182* | |
H4B | 0.2382 | 0.4260 | −0.4286 | 0.182* | |
H4C | 0.1971 | 0.4522 | −0.3295 | 0.182* | |
C5 | 0.18697 (14) | 0.38208 (15) | −0.3476 (5) | 0.0690 (11) | |
H5A | 0.1901 | 0.3558 | −0.4286 | 0.083* | |
H5B | 0.1533 | 0.3878 | −0.3305 | 0.083* | |
C6 | 0.35428 (10) | 0.23166 (10) | 0.3735 (4) | 0.0405 (6) | |
H6 | 0.3404 | 0.2490 | 0.4632 | 0.049* | |
C7 | 0.37254 (11) | 0.20505 (11) | 0.1186 (4) | 0.0461 (7) | |
H7 | 0.3735 | 0.2009 | −0.0016 | 0.055* | |
C8 | 0.40610 (12) | 0.18264 (12) | 0.5666 (4) | 0.0511 (7) | |
H8A | 0.4144 | 0.1492 | 0.5617 | 0.061* | |
H8B | 0.3820 | 0.1866 | 0.6558 | 0.061* | |
C9 | 0.44914 (14) | 0.21084 (15) | 0.6157 (6) | 0.0697 (11) | |
H9A | 0.4734 | 0.2065 | 0.5291 | 0.105* | |
H9B | 0.4607 | 0.2002 | 0.7268 | 0.105* | |
H9C | 0.4409 | 0.2439 | 0.6228 | 0.105* | |
C10 | 0.39807 (11) | 0.18017 (11) | 0.2355 (4) | 0.0492 (7) | |
H10 | 0.4195 | 0.1559 | 0.2113 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0390 (2) | 0.0460 (2) | 0.0321 (2) | 0.00571 (13) | 0.00052 (13) | 0.00114 (13) |
O1 | 0.0565 (13) | 0.0524 (12) | 0.0458 (12) | 0.0022 (10) | −0.0071 (10) | −0.0053 (10) |
O2 | 0.0689 (17) | 0.0750 (18) | 0.0670 (17) | −0.0149 (14) | −0.0035 (13) | 0.0023 (14) |
O3 | 0.0548 (14) | 0.0698 (16) | 0.0622 (16) | 0.0070 (12) | −0.0010 (12) | 0.0094 (13) |
O4 | 0.0654 (17) | 0.0681 (17) | 0.102 (2) | −0.0119 (14) | −0.0124 (16) | 0.0019 (16) |
N1 | 0.0453 (14) | 0.0531 (15) | 0.0533 (16) | 0.0069 (11) | −0.0072 (12) | 0.0064 (12) |
N2 | 0.0424 (13) | 0.0464 (13) | 0.0400 (13) | 0.0058 (10) | 0.0016 (10) | 0.0036 (10) |
N3 | 0.0550 (16) | 0.077 (2) | 0.0380 (14) | 0.0110 (14) | 0.0067 (12) | 0.0059 (14) |
N4 | 0.078 (2) | 0.086 (2) | 0.0532 (18) | 0.031 (2) | −0.0105 (17) | −0.0114 (17) |
N5 | 0.0373 (11) | 0.0406 (12) | 0.0377 (12) | 0.0023 (9) | 0.0004 (9) | 0.0001 (10) |
N6 | 0.0419 (13) | 0.0409 (12) | 0.0441 (13) | 0.0018 (10) | −0.0018 (10) | 0.0061 (10) |
C1 | 0.0435 (15) | 0.0509 (17) | 0.0446 (16) | 0.0051 (13) | −0.0030 (12) | 0.0010 (13) |
C2 | 0.058 (2) | 0.058 (2) | 0.068 (2) | 0.0182 (16) | 0.0029 (17) | 0.0028 (17) |
C3 | 0.065 (2) | 0.067 (2) | 0.0463 (18) | 0.0236 (17) | 0.0062 (15) | −0.0030 (16) |
C4 | 0.178 (6) | 0.091 (4) | 0.096 (4) | −0.014 (4) | −0.050 (4) | 0.042 (3) |
C5 | 0.062 (2) | 0.079 (3) | 0.067 (2) | 0.0125 (19) | −0.0202 (18) | 0.014 (2) |
C6 | 0.0411 (14) | 0.0434 (15) | 0.0370 (14) | 0.0035 (11) | −0.0009 (11) | 0.0003 (11) |
C7 | 0.0506 (17) | 0.0440 (15) | 0.0437 (16) | 0.0043 (13) | 0.0045 (13) | −0.0041 (12) |
C8 | 0.0530 (17) | 0.0497 (17) | 0.0505 (18) | 0.0039 (13) | −0.0085 (14) | 0.0125 (14) |
C9 | 0.060 (2) | 0.067 (2) | 0.082 (3) | −0.0045 (17) | −0.028 (2) | 0.011 (2) |
C10 | 0.0492 (16) | 0.0441 (16) | 0.0543 (18) | 0.0097 (12) | 0.0024 (14) | −0.0011 (14) |
Cu1—N5 | 1.984 (2) | C2—C3 | 1.350 (5) |
Cu1—N2 | 1.987 (2) | C2—H2 | 0.9300 |
Cu1—O1 | 2.026 (2) | C3—H3 | 0.9300 |
Cu1—O3 | 2.062 (3) | C4—C5 | 1.460 (7) |
O1—N3 | 1.287 (4) | C4—H4A | 0.9600 |
O2—N3 | 1.211 (4) | C4—H4B | 0.9600 |
O3—N4 | 1.259 (4) | C4—H4C | 0.9600 |
O4—N4 | 1.206 (5) | C5—H5A | 0.9705 |
N1—C1 | 1.337 (4) | C5—H5B | 0.9686 |
N1—C2 | 1.360 (5) | C6—H6 | 0.9300 |
N1—C5 | 1.471 (4) | C7—C10 | 1.345 (4) |
N2—C1 | 1.319 (4) | C7—H7 | 0.9300 |
N2—C3 | 1.378 (4) | C8—C9 | 1.496 (5) |
N5—C6 | 1.329 (4) | C8—H8A | 0.9700 |
N5—C7 | 1.377 (4) | C8—H8B | 0.9700 |
N6—C6 | 1.336 (4) | C9—H9A | 0.9600 |
N6—C10 | 1.368 (4) | C9—H9B | 0.9600 |
N6—C8 | 1.474 (4) | C9—H9C | 0.9600 |
C1—H1 | 0.9300 | C10—H10 | 0.9300 |
N5—Cu1—N2 | 175.68 (10) | C5—C4—H4B | 109.5 |
N5—Cu1—O1 | 90.14 (10) | H4A—C4—H4B | 109.5 |
N2—Cu1—O1 | 90.96 (10) | C5—C4—H4C | 109.5 |
N5—Cu1—O3 | 89.82 (10) | H4A—C4—H4C | 109.5 |
N2—Cu1—O3 | 90.25 (10) | H4B—C4—H4C | 109.5 |
O1—Cu1—O3 | 164.17 (11) | C4—C5—N1 | 113.2 (4) |
N3—O1—Cu1 | 112.57 (19) | C4—C5—H5A | 114.9 |
N4—O3—Cu1 | 112.8 (2) | N1—C5—H5A | 108.7 |
C1—N1—C2 | 107.3 (3) | C4—C5—H5B | 103.2 |
C1—N1—C5 | 125.3 (3) | N1—C5—H5B | 108.8 |
C2—N1—C5 | 127.4 (3) | H5A—C5—H5B | 107.6 |
C1—N2—C3 | 105.6 (3) | N5—C6—N6 | 111.0 (3) |
C1—N2—Cu1 | 125.7 (2) | N5—C6—H6 | 124.5 |
C3—N2—Cu1 | 128.7 (2) | N6—C6—H6 | 124.5 |
O2—N3—O1 | 114.3 (3) | C10—C7—N5 | 109.2 (3) |
O4—N4—O3 | 114.7 (3) | C10—C7—H7 | 125.4 |
C6—N5—C7 | 105.6 (2) | N5—C7—H7 | 125.4 |
C6—N5—Cu1 | 126.3 (2) | N6—C8—C9 | 112.1 (3) |
C7—N5—Cu1 | 127.9 (2) | N6—C8—H8A | 109.2 |
C6—N6—C10 | 107.2 (2) | C9—C8—H8A | 109.2 |
C6—N6—C8 | 125.1 (3) | N6—C8—H8B | 109.2 |
C10—N6—C8 | 127.6 (3) | C9—C8—H8B | 109.2 |
N2—C1—N1 | 111.3 (3) | H8A—C8—H8B | 107.9 |
N2—C1—H1 | 124.4 | C8—C9—H9A | 109.5 |
N1—C1—H1 | 124.4 | C8—C9—H9B | 109.5 |
C3—C2—N1 | 106.9 (3) | H9A—C9—H9B | 109.5 |
C3—C2—H2 | 126.5 | C8—C9—H9C | 109.5 |
N1—C2—H2 | 126.5 | H9A—C9—H9C | 109.5 |
C2—C3—N2 | 108.9 (3) | H9B—C9—H9C | 109.5 |
C2—C3—H3 | 125.5 | C7—C10—N6 | 107.0 (3) |
N2—C3—H3 | 125.5 | C7—C10—H10 | 126.5 |
C5—C4—H4A | 109.5 | N6—C10—H10 | 126.5 |
N5—Cu1—O1—N3 | −89.0 (2) | Cu1—N2—C1—N1 | −179.0 (2) |
N2—Cu1—O1—N3 | 86.8 (2) | C2—N1—C1—N2 | −0.5 (4) |
O3—Cu1—O1—N3 | −178.8 (3) | C5—N1—C1—N2 | −177.7 (3) |
N5—Cu1—O3—N4 | 90.2 (2) | C1—N1—C2—C3 | 0.5 (4) |
N2—Cu1—O3—N4 | −85.4 (2) | C5—N1—C2—C3 | 177.6 (4) |
O1—Cu1—O3—N4 | −179.9 (3) | N1—C2—C3—N2 | −0.3 (4) |
N5—Cu1—N2—C1 | 109.0 (13) | C1—N2—C3—C2 | 0.0 (4) |
O1—Cu1—N2—C1 | 4.2 (3) | Cu1—N2—C3—C2 | 179.3 (2) |
O3—Cu1—N2—C1 | −160.0 (3) | C1—N1—C5—C4 | −109.8 (5) |
N5—Cu1—N2—C3 | −70.1 (14) | C2—N1—C5—C4 | 73.6 (6) |
O1—Cu1—N2—C3 | −174.9 (3) | C7—N5—C6—N6 | 0.3 (3) |
O3—Cu1—N2—C3 | 20.9 (3) | Cu1—N5—C6—N6 | 175.07 (18) |
Cu1—O1—N3—O2 | −0.8 (3) | C10—N6—C6—N5 | −0.4 (3) |
Cu1—O3—N4—O4 | −1.6 (4) | C8—N6—C6—N5 | 178.0 (3) |
N2—Cu1—N5—C6 | 77.2 (14) | C6—N5—C7—C10 | 0.0 (3) |
O1—Cu1—N5—C6 | −178.0 (2) | Cu1—N5—C7—C10 | −174.7 (2) |
O3—Cu1—N5—C6 | −13.8 (3) | C6—N6—C8—C9 | −88.7 (4) |
N2—Cu1—N5—C7 | −109.1 (13) | C10—N6—C8—C9 | 89.4 (4) |
O1—Cu1—N5—C7 | −4.3 (2) | N5—C7—C10—N6 | −0.3 (4) |
O3—Cu1—N5—C7 | 159.9 (3) | C6—N6—C10—C7 | 0.4 (3) |
C3—N2—C1—N1 | 0.3 (4) | C8—N6—C10—C7 | −178.0 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu2(NO2)4(C5H8N2)4] |
Mr | 695.64 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 293 |
a, c (Å) | 28.136 (7), 7.669 (2) |
V (Å3) | 6071 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.651, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31845, 3462, 3188 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.127, 1.15 |
No. of reflections | 3462 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.82, −0.59 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by Southeast University.
References
Costes, J. P., Dahan, F., Ruiz, J. & Laurent, J. P. (1995). Inorg. Chim. Acta, 239, 53–59. CSD CrossRef CAS Web of Science Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing study of potential ferroelectric phase change materials we have determined the structures of several copper complexes and examined the changes in their dielectric constants with temperature. This is the usual method for detecting such behavior. (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the dielectric constant for (I) does not show any behavior indicating the onset of a ferroelectric phase change over the range 80 K to 298 K (m.p.219–229).
As shown in Fig. 1, the Cu ion adopts an elongated square pyramidal geometry with a slight tetrahedral distortion in the basal plane which is primarily associated with the coordination of the nitrite ions (O1—Cu1—O3 = 164.12 (11)°). This displaces O3 from the ideal coordination plane towards the centrosymmetrically-related copper atom (Cu1') resulting in an O3—Cu1' distance of 2.637 (2) Å. While this distance is considerably longer than the in-plane Cu1—O1 and Cu—O3 bond lengths of 2.025 (3) Å and 2.058 (5) Å, respectively, the direction of displacement of O3 and the orientations of the two nitrite ligands which place both O1 and O4 on the opposite side of the coordination plane from Cu1', suggests that there is a weak association of one Cu(NO2)2(C5H8N2)2unit with its centrosymmetrically-related counterpart. A similar weak association has been postulated to occur between two similar centrosymmetrically related Cu(NO2)(OC(CH3)CHC(CH3)N(CH2)2NH2) units (Cu—O = 2.014 (4) Å, Cu'—O = 2.634 (3) Å) (Costes, et al. 1995).