metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-nitrito-κ4O:O-bis­­[bis­­(1-ethyl-1H-imidazole-κN3)(nitrito-κO)copper(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 21 March 2011; accepted 30 May 2011; online 11 June 2011)

In the structure of the title compound, [Cu2(NO2)4(C5H8N2)4], the asymmetric unit consists of two moieties containing one Cu ion, two nitrite ions and two 1-ethyl-1H-imidazole mol­ecules associated via weak Cu—O inter­actions. Each CuII atom displays an elongted square-pyramidal CuN2O3 coordination geometry with a slight tetra­hedral distortion in the basal plane. The dimeric units are linked into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For general background on ferroelectric metal–organic compounds with framework structures, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For a related structure, see: Costes et al. (1995[Costes, J. P., Dahan, F., Ruiz, J. & Laurent, J. P. (1995). Inorg. Chim. Acta, 239, 53-59.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(NO2)4(C5H8N2)4]

  • Mr = 695.64

  • Tetragonal, I 41 /a

  • a = 28.136 (7) Å

  • c = 7.669 (2) Å

  • V = 6071 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.651, Tmax = 0.746

  • 31845 measured reflections

  • 3462 independent reflections

  • 3188 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.15

  • 3462 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing study of potential ferroelectric phase change materials we have determined the structures of several copper complexes and examined the changes in their dielectric constants with temperature. This is the usual method for detecting such behavior. (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the dielectric constant for (I) does not show any behavior indicating the onset of a ferroelectric phase change over the range 80 K to 298 K (m.p.219–229).

As shown in Fig. 1, the Cu ion adopts an elongated square pyramidal geometry with a slight tetrahedral distortion in the basal plane which is primarily associated with the coordination of the nitrite ions (O1—Cu1—O3 = 164.12 (11)°). This displaces O3 from the ideal coordination plane towards the centrosymmetrically-related copper atom (Cu1') resulting in an O3—Cu1' distance of 2.637 (2) Å. While this distance is considerably longer than the in-plane Cu1—O1 and Cu—O3 bond lengths of 2.025 (3) Å and 2.058 (5) Å, respectively, the direction of displacement of O3 and the orientations of the two nitrite ligands which place both O1 and O4 on the opposite side of the coordination plane from Cu1', suggests that there is a weak association of one Cu(NO2)2(C5H8N2)2unit with its centrosymmetrically-related counterpart. A similar weak association has been postulated to occur between two similar centrosymmetrically related Cu(NO2)(OC(CH3)CHC(CH3)N(CH2)2NH2) units (Cu—O = 2.014 (4) Å, Cu'—O = 2.634 (3) Å) (Costes, et al. 1995).

Related literature top

For general background on ferroelectric metal–organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For a related structure, see: Costes et al. (1995).

Experimental top

An aqueous solution of 1-ethyl imidazole (2.4 g, 25 mmol) and H2SO4(12.5 mmol) was treated with CuSO4 (250 g, 12.5 mmol). After the mixture was stirred for a few minutes, Ba(NO2)2 (6.18 g, 25 mmol) was added to give a blue solution. Slow evaporation of the solution following removal of the precipitated BaSO4 yielded blue crystals after a few days.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(C) for ethy H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. The weak Cu—O interactions and the hydrogen bonds are shown as dashed lines.
Di-µ-nitrito-κ4O:O-bis[bis(1-ethyl-1H- imidazole-κN3)(nitrito-κO)copper(II)] top
Crystal data top
[Cu2(NO2)4(C5H8N2)4]Dx = 1.522 Mg m3
Mr = 695.64Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 7423 reflections
Hall symbol: -I 4adθ = 2.3–27.5°
a = 28.136 (7) ŵ = 1.46 mm1
c = 7.669 (2) ÅT = 293 K
V = 6071 (3) Å3Prism, blue
Z = 80.30 × 0.25 × 0.20 mm
F(000) = 2864
Data collection top
Rigaku SCXmini CCD
diffractometer
3462 independent reflections
Radiation source: fine-focus sealed tube3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 3635
Tmin = 0.651, Tmax = 0.746k = 3636
31845 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0575P)2 + 9.3008P]
where P = (Fo2 + 2Fc2)/3
3462 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu2(NO2)4(C5H8N2)4]Z = 8
Mr = 695.64Mo Kα radiation
Tetragonal, I41/aµ = 1.46 mm1
a = 28.136 (7) ÅT = 293 K
c = 7.669 (2) Å0.30 × 0.25 × 0.20 mm
V = 6071 (3) Å3
Data collection top
Rigaku SCXmini CCD
diffractometer
3462 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3188 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.746Rint = 0.049
31845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.15Δρmax = 0.82 e Å3
3462 reflectionsΔρmin = 0.59 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.296007 (12)0.280780 (13)0.10562 (4)0.03905 (14)
O10.31265 (8)0.25812 (8)0.1376 (3)0.0515 (5)
O20.36079 (10)0.31480 (11)0.1169 (4)0.0703 (7)
O30.26607 (9)0.28842 (10)0.3494 (4)0.0622 (6)
O40.31466 (11)0.34387 (11)0.3593 (4)0.0786 (9)
N10.20821 (9)0.36827 (10)0.1798 (4)0.0506 (6)
N20.25052 (8)0.32796 (9)0.0093 (3)0.0429 (5)
N30.34610 (10)0.28278 (12)0.2076 (4)0.0567 (7)
N40.28338 (14)0.32269 (14)0.4337 (4)0.0726 (10)
N50.34476 (8)0.23769 (8)0.2053 (3)0.0385 (5)
N60.38648 (9)0.19735 (9)0.3968 (3)0.0423 (5)
C10.23921 (11)0.33283 (11)0.1568 (4)0.0463 (7)
H10.25120.31400.24620.056*
C20.19876 (13)0.38696 (13)0.0200 (5)0.0615 (9)
H20.17820.41200.00430.074*
C30.22491 (13)0.36229 (13)0.0964 (5)0.0597 (9)
H30.22550.36760.21610.072*
C40.2044 (3)0.4277 (2)0.4124 (8)0.122 (2)
H4A0.18940.43480.52170.182*
H4B0.23820.42600.42860.182*
H4C0.19710.45220.32950.182*
C50.18697 (14)0.38208 (15)0.3476 (5)0.0690 (11)
H5A0.19010.35580.42860.083*
H5B0.15330.38780.33050.083*
C60.35428 (10)0.23166 (10)0.3735 (4)0.0405 (6)
H60.34040.24900.46320.049*
C70.37254 (11)0.20505 (11)0.1186 (4)0.0461 (7)
H70.37350.20090.00160.055*
C80.40610 (12)0.18264 (12)0.5666 (4)0.0511 (7)
H8A0.41440.14920.56170.061*
H8B0.38200.18660.65580.061*
C90.44914 (14)0.21084 (15)0.6157 (6)0.0697 (11)
H9A0.47340.20650.52910.105*
H9B0.46070.20020.72680.105*
H9C0.44090.24390.62280.105*
C100.39807 (11)0.18017 (11)0.2355 (4)0.0492 (7)
H100.41950.15590.21130.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0390 (2)0.0460 (2)0.0321 (2)0.00571 (13)0.00052 (13)0.00114 (13)
O10.0565 (13)0.0524 (12)0.0458 (12)0.0022 (10)0.0071 (10)0.0053 (10)
O20.0689 (17)0.0750 (18)0.0670 (17)0.0149 (14)0.0035 (13)0.0023 (14)
O30.0548 (14)0.0698 (16)0.0622 (16)0.0070 (12)0.0010 (12)0.0094 (13)
O40.0654 (17)0.0681 (17)0.102 (2)0.0119 (14)0.0124 (16)0.0019 (16)
N10.0453 (14)0.0531 (15)0.0533 (16)0.0069 (11)0.0072 (12)0.0064 (12)
N20.0424 (13)0.0464 (13)0.0400 (13)0.0058 (10)0.0016 (10)0.0036 (10)
N30.0550 (16)0.077 (2)0.0380 (14)0.0110 (14)0.0067 (12)0.0059 (14)
N40.078 (2)0.086 (2)0.0532 (18)0.031 (2)0.0105 (17)0.0114 (17)
N50.0373 (11)0.0406 (12)0.0377 (12)0.0023 (9)0.0004 (9)0.0001 (10)
N60.0419 (13)0.0409 (12)0.0441 (13)0.0018 (10)0.0018 (10)0.0061 (10)
C10.0435 (15)0.0509 (17)0.0446 (16)0.0051 (13)0.0030 (12)0.0010 (13)
C20.058 (2)0.058 (2)0.068 (2)0.0182 (16)0.0029 (17)0.0028 (17)
C30.065 (2)0.067 (2)0.0463 (18)0.0236 (17)0.0062 (15)0.0030 (16)
C40.178 (6)0.091 (4)0.096 (4)0.014 (4)0.050 (4)0.042 (3)
C50.062 (2)0.079 (3)0.067 (2)0.0125 (19)0.0202 (18)0.014 (2)
C60.0411 (14)0.0434 (15)0.0370 (14)0.0035 (11)0.0009 (11)0.0003 (11)
C70.0506 (17)0.0440 (15)0.0437 (16)0.0043 (13)0.0045 (13)0.0041 (12)
C80.0530 (17)0.0497 (17)0.0505 (18)0.0039 (13)0.0085 (14)0.0125 (14)
C90.060 (2)0.067 (2)0.082 (3)0.0045 (17)0.028 (2)0.011 (2)
C100.0492 (16)0.0441 (16)0.0543 (18)0.0097 (12)0.0024 (14)0.0011 (14)
Geometric parameters (Å, º) top
Cu1—N51.984 (2)C2—C31.350 (5)
Cu1—N21.987 (2)C2—H20.9300
Cu1—O12.026 (2)C3—H30.9300
Cu1—O32.062 (3)C4—C51.460 (7)
O1—N31.287 (4)C4—H4A0.9600
O2—N31.211 (4)C4—H4B0.9600
O3—N41.259 (4)C4—H4C0.9600
O4—N41.206 (5)C5—H5A0.9705
N1—C11.337 (4)C5—H5B0.9686
N1—C21.360 (5)C6—H60.9300
N1—C51.471 (4)C7—C101.345 (4)
N2—C11.319 (4)C7—H70.9300
N2—C31.378 (4)C8—C91.496 (5)
N5—C61.329 (4)C8—H8A0.9700
N5—C71.377 (4)C8—H8B0.9700
N6—C61.336 (4)C9—H9A0.9600
N6—C101.368 (4)C9—H9B0.9600
N6—C81.474 (4)C9—H9C0.9600
C1—H10.9300C10—H100.9300
N5—Cu1—N2175.68 (10)C5—C4—H4B109.5
N5—Cu1—O190.14 (10)H4A—C4—H4B109.5
N2—Cu1—O190.96 (10)C5—C4—H4C109.5
N5—Cu1—O389.82 (10)H4A—C4—H4C109.5
N2—Cu1—O390.25 (10)H4B—C4—H4C109.5
O1—Cu1—O3164.17 (11)C4—C5—N1113.2 (4)
N3—O1—Cu1112.57 (19)C4—C5—H5A114.9
N4—O3—Cu1112.8 (2)N1—C5—H5A108.7
C1—N1—C2107.3 (3)C4—C5—H5B103.2
C1—N1—C5125.3 (3)N1—C5—H5B108.8
C2—N1—C5127.4 (3)H5A—C5—H5B107.6
C1—N2—C3105.6 (3)N5—C6—N6111.0 (3)
C1—N2—Cu1125.7 (2)N5—C6—H6124.5
C3—N2—Cu1128.7 (2)N6—C6—H6124.5
O2—N3—O1114.3 (3)C10—C7—N5109.2 (3)
O4—N4—O3114.7 (3)C10—C7—H7125.4
C6—N5—C7105.6 (2)N5—C7—H7125.4
C6—N5—Cu1126.3 (2)N6—C8—C9112.1 (3)
C7—N5—Cu1127.9 (2)N6—C8—H8A109.2
C6—N6—C10107.2 (2)C9—C8—H8A109.2
C6—N6—C8125.1 (3)N6—C8—H8B109.2
C10—N6—C8127.6 (3)C9—C8—H8B109.2
N2—C1—N1111.3 (3)H8A—C8—H8B107.9
N2—C1—H1124.4C8—C9—H9A109.5
N1—C1—H1124.4C8—C9—H9B109.5
C3—C2—N1106.9 (3)H9A—C9—H9B109.5
C3—C2—H2126.5C8—C9—H9C109.5
N1—C2—H2126.5H9A—C9—H9C109.5
C2—C3—N2108.9 (3)H9B—C9—H9C109.5
C2—C3—H3125.5C7—C10—N6107.0 (3)
N2—C3—H3125.5C7—C10—H10126.5
C5—C4—H4A109.5N6—C10—H10126.5
N5—Cu1—O1—N389.0 (2)Cu1—N2—C1—N1179.0 (2)
N2—Cu1—O1—N386.8 (2)C2—N1—C1—N20.5 (4)
O3—Cu1—O1—N3178.8 (3)C5—N1—C1—N2177.7 (3)
N5—Cu1—O3—N490.2 (2)C1—N1—C2—C30.5 (4)
N2—Cu1—O3—N485.4 (2)C5—N1—C2—C3177.6 (4)
O1—Cu1—O3—N4179.9 (3)N1—C2—C3—N20.3 (4)
N5—Cu1—N2—C1109.0 (13)C1—N2—C3—C20.0 (4)
O1—Cu1—N2—C14.2 (3)Cu1—N2—C3—C2179.3 (2)
O3—Cu1—N2—C1160.0 (3)C1—N1—C5—C4109.8 (5)
N5—Cu1—N2—C370.1 (14)C2—N1—C5—C473.6 (6)
O1—Cu1—N2—C3174.9 (3)C7—N5—C6—N60.3 (3)
O3—Cu1—N2—C320.9 (3)Cu1—N5—C6—N6175.07 (18)
Cu1—O1—N3—O20.8 (3)C10—N6—C6—N50.4 (3)
Cu1—O3—N4—O41.6 (4)C8—N6—C6—N5178.0 (3)
N2—Cu1—N5—C677.2 (14)C6—N5—C7—C100.0 (3)
O1—Cu1—N5—C6178.0 (2)Cu1—N5—C7—C10174.7 (2)
O3—Cu1—N5—C613.8 (3)C6—N6—C8—C988.7 (4)
N2—Cu1—N5—C7109.1 (13)C10—N6—C8—C989.4 (4)
O1—Cu1—N5—C74.3 (2)N5—C7—C10—N60.3 (4)
O3—Cu1—N5—C7159.9 (3)C6—N6—C10—C70.4 (3)
C3—N2—C1—N10.3 (4)C8—N6—C10—C7178.0 (3)

Experimental details

Crystal data
Chemical formula[Cu2(NO2)4(C5H8N2)4]
Mr695.64
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)28.136 (7), 7.669 (2)
V3)6071 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.651, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
31845, 3462, 3188
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.15
No. of reflections3462
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.59

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Southeast University.

References

First citationCostes, J. P., Dahan, F., Ruiz, J. & Laurent, J. P. (1995). Inorg. Chim. Acta, 239, 53–59.  CSD CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds