metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1H-imidazol-2-yl-κN3)-1H-imidazol-3-ium]silver(I) trinitrate

aChemistry Department, Missouri University of Science and Technology, Rolla MO 65409, USA, and bWestern Michigan University, Chemistry Department, 1903 West Michigan Avenue MS 5413, Kalamazoo MI 49008, USA
*Correspondence e-mail: hcollier@mst.edu

(Received 31 March 2011; accepted 6 June 2011; online 11 June 2011)

The synthesis of the title salt, [Ag(C6H7N4)2](NO3)3, was carried out employing a 1:2 molar ratio of 2,2′-biimidazole and silver nitrate respectively. The cation has crystallographically-imposed C2 symmetry with the metal atom in an almost linear coordination environment [N—Ag—N = 177.01 (17)°]. The crystal structure displays N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

The synthesis of the complex is described by Hester et al. (1997[Hester, C. A., Collier, H. L. & Baughman, R. G. (1997). Polyhedron, 16, 2893-2895.]). 2,2′-Biimidazole was prepared in a manner similar to Debus (1858[Debus, H. (1858). Justus Liebigs Ann. Chem. 107, 199-208.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H7N4)2](NO3)3

  • Mr = 564.21

  • Monoclinic, C 2/c

  • a = 24.095 (6) Å

  • b = 12.037 (3) Å

  • c = 6.8262 (18) Å

  • β = 91.319 (6)°

  • V = 1979.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.735, Tmax = 0.811

  • 9412 measured reflections

  • 2275 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 0.99

  • 2275 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4i 0.86 1.94 2.792 (4) 173
N3—H3⋯O1ii 0.86 1.92 2.765 (4) 166
N4—H4⋯O4 0.86 1.93 2.758 (4) 160
C1—H1⋯O3ii 0.93 2.49 3.179 (5) 131
C2—H2⋯O5iii 0.93 2.60 3.331 (5) 136
C5—H5⋯O3iv 0.93 2.55 3.340 (6) 144
C6—H6⋯O2v 0.93 2.55 3.376 (6) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound, silver bis (1H-imidazolium) trinitrate [Ag(biimH)2(NO3)3] crystallizes in the monoclinic crystal system in space group C2/c. The Ag atom is coordinated to N atoms on two different 2,2'-biimidazole entities in an almost linear geometry where the biimidazole acts as a monodentate ligand. The Ag—N distance is 2.118 (3) Å and the N—Ag—N bond angle is 177.01 (17)°. There are one and one half crystallographically independent nitrate anions in the asymmetric unit (Figure 1). The nearest contacts of Ag with O atoms from one of the nitrate groups are in the range 3.026 (3)–3.070 (3) Å. The other nitrate is hydrogen-bonded to the other side of the uncoordinated ring of 2,2'-bimidazole (Figure 2). The two imidazole rings in 2,2'-biimidazole are no longer in one plane when coordinated to Ag as in [Ag(biimH)2(NO3)3] but are twisted with a N1—C3—C4—N4 torsion angle of 33.5 (6)°. A very similar torsion angle [34.30 (7)°] has been observed in another silver complex of 2,2'-biimidazole (Hester et al. (1997)) where such a torsion angle between the imidazole rings is responsible for the helicity of the complex. However, in contrast to the present structure, in the Ag-biimidazole complex reported by Hester the biimidazole binds to Ag atoms in a bis-monodentate fashion bridging two Ag atoms with a very close Ag—Ag contact distance of 3.003 (3)Å and an N—Ag—N bond angle of 162.36 (2)°. This contrasts with the nearest Ag—Ag contact distance in the present complex which is considerably greater at 3.5473 (9) Å.

Related literature top

The synthesis of the complex is described by Hester et al. (1997). 2,2'-Biimidazole was prepared in a manner similar to Debus (1858).

Experimental top

2,2'-Biimidazole was prepared in a manner similar to Debus (1858), using equal portions of 40% glyoxal and concentrated ammonium hydroxide (28–30%). Silver nitrate was used as received and concentrated nitric acid was diluted to 0.1 M. The synthesis of silver bis(1H-imidazolium) trinitrate used a procedure similar to that reported by Hester et al. (1997), using 0.1 M HNO3. A mass of 1.343 g (1.001 x 10 -2 mol) of 2,2'-biimidazole was dissolved in 15 ml of 0.1M HNO3 using heat. Silver nitrate (3.410 g, 2.007 x 10 -2 mol) was then added to the solution as a solid. A precipitate formed upon mixing and a few drops of 0.1 M HNO3 were added to resolubilize the precipitate. Colourless crystals formed as the solution was allowed to slowly evaporate.

Refinement top

Hydrogen atoms were placed geometrically and held in the riding mode during the final refinement. C—H = 0.93 Å with Uiso (H) = 1.2Ueq(C) and N—H = 0.86 Å with Uiso (H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of silver bis(1H-imidazolium) trinitrate. Thermal ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Unit cell packing of silver bis(1H-imidazolium) trinitrate shown along the c-axis. Dotted lines indicate N—H···O and C—H···O hydrogen-bonding interactions.
Bis[2-(1H-imidazol-2-yl-κN3)-1H-imidazol-3-ium]silver(I) trinitrate top
Crystal data top
[Ag(C6H7N4)2](NO3)3F(000) = 1128
Mr = 564.21Dx = 1.893 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2422 reflections
a = 24.095 (6) Åθ = 3.1–24.0°
b = 12.037 (3) ŵ = 1.09 mm1
c = 6.8262 (18) ÅT = 298 K
β = 91.319 (6)°Needle, colourless
V = 1979.3 (9) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2275 independent reflections
Radiation source: fine-focus sealed tube1723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3131
Tmin = 0.735, Tmax = 0.811k = 1515
9412 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ag(C6H7N4)2](NO3)3V = 1979.3 (9) Å3
Mr = 564.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.095 (6) ŵ = 1.09 mm1
b = 12.037 (3) ÅT = 298 K
c = 6.8262 (18) Å0.30 × 0.20 × 0.20 mm
β = 91.319 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1723 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.811Rint = 0.065
9412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.99Δρmax = 0.46 e Å3
2275 reflectionsΔρmin = 0.34 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.45986 (4)0.25000.04700 (17)
N10.58789 (12)0.4553 (3)0.2547 (4)0.0405 (7)
C10.61871 (16)0.5520 (3)0.2559 (6)0.0459 (9)
H10.60440.62350.24420.055*
C20.67332 (17)0.5259 (3)0.2768 (6)0.0510 (10)
H20.70290.57550.28320.061*
N20.67642 (13)0.4139 (3)0.2867 (5)0.0468 (8)
H2N0.70630.37530.29940.056*
C30.62405 (14)0.3734 (3)0.2730 (5)0.0379 (8)
C40.61183 (14)0.2557 (3)0.2817 (5)0.0378 (8)
N30.57064 (13)0.2026 (3)0.1904 (5)0.0440 (8)
H30.54560.23310.11650.053*
C60.57421 (18)0.0915 (3)0.2320 (6)0.0527 (10)
H60.55060.03580.18560.063*
C50.6184 (2)0.0791 (4)0.3527 (7)0.0590 (12)
H50.63100.01260.40680.071*
N40.64157 (14)0.1813 (3)0.3822 (5)0.0487 (8)
H40.67060.19520.45380.058*
O10.50331 (14)0.6989 (3)0.4067 (5)0.0721 (10)
N50.50000.7527 (5)0.25000.0511 (12)
O20.50000.8540 (4)0.25000.0879 (16)
O30.64511 (13)0.1930 (3)0.8363 (5)0.0738 (10)
N60.69447 (15)0.1706 (3)0.8314 (6)0.0541 (9)
O40.72151 (11)0.1948 (3)0.6770 (4)0.0579 (8)
O50.71807 (15)0.1225 (4)0.9651 (5)0.0968 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0336 (2)0.0475 (3)0.0597 (3)0.0000.00185 (17)0.000
N10.0385 (16)0.0417 (17)0.0412 (17)0.0022 (14)0.0010 (13)0.0016 (14)
C10.047 (2)0.042 (2)0.049 (2)0.0031 (17)0.0005 (17)0.0007 (18)
C20.048 (2)0.053 (3)0.052 (2)0.0141 (19)0.0009 (18)0.002 (2)
N20.0330 (16)0.056 (2)0.051 (2)0.0003 (14)0.0034 (14)0.0038 (16)
C30.0326 (17)0.045 (2)0.0365 (19)0.0007 (15)0.0030 (14)0.0024 (16)
C40.0351 (18)0.042 (2)0.036 (2)0.0031 (15)0.0022 (15)0.0011 (16)
N30.0427 (18)0.0475 (19)0.0416 (18)0.0023 (14)0.0009 (14)0.0004 (14)
C60.061 (3)0.042 (2)0.056 (3)0.006 (2)0.016 (2)0.007 (2)
C50.071 (3)0.041 (2)0.066 (3)0.008 (2)0.012 (2)0.007 (2)
N40.0499 (19)0.049 (2)0.047 (2)0.0066 (15)0.0035 (15)0.0055 (16)
O10.090 (2)0.073 (2)0.0526 (19)0.0163 (19)0.0198 (17)0.0118 (16)
N50.047 (3)0.052 (3)0.054 (3)0.0000.005 (2)0.000
O20.095 (4)0.046 (3)0.122 (5)0.0000.009 (3)0.000
O30.053 (2)0.078 (2)0.091 (3)0.0165 (17)0.0225 (17)0.0085 (19)
N60.049 (2)0.054 (2)0.059 (2)0.0017 (17)0.0028 (18)0.0014 (18)
O40.0448 (16)0.076 (2)0.0532 (18)0.0034 (14)0.0059 (13)0.0107 (15)
O50.074 (2)0.149 (4)0.067 (2)0.007 (3)0.0109 (19)0.039 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.118 (3)N3—C61.370 (5)
Ag1—N12.118 (3)N3—H30.8600
N1—C31.319 (4)C6—C51.340 (6)
N1—C11.381 (5)C6—H60.9300
C1—C21.357 (6)C5—N41.365 (5)
C1—H10.9300C5—H50.9300
C2—N21.351 (5)N4—H40.8600
C2—H20.9300O1—N51.251 (4)
N2—C31.354 (5)N5—O21.220 (7)
N2—H2N0.8600N5—O1i1.251 (4)
C3—C41.449 (5)O3—N61.221 (4)
C4—N31.324 (5)N6—O51.211 (5)
C4—N41.328 (5)N6—O41.285 (4)
N1i—Ag1—N1177.01 (17)C4—N3—C6109.3 (3)
C3—N1—C1106.0 (3)C4—N3—H3125.3
C3—N1—Ag1132.8 (2)C6—N3—H3125.3
C1—N1—Ag1121.0 (2)C5—C6—N3106.4 (4)
C2—C1—N1109.0 (4)C5—C6—H6126.8
C2—C1—H1125.5N3—C6—H6126.8
N1—C1—H1125.5C6—C5—N4107.8 (4)
N2—C2—C1106.8 (4)C6—C5—H5126.1
N2—C2—H2126.6N4—C5—H5126.1
C1—C2—H2126.6C4—N4—C5108.6 (3)
C2—N2—C3107.8 (3)C4—N4—H4125.7
C2—N2—H2N126.1C5—N4—H4125.7
C3—N2—H2N126.1O2—N5—O1i121.2 (3)
N1—C3—N2110.5 (3)O2—N5—O1121.2 (3)
N1—C3—C4126.9 (3)O1i—N5—O1117.6 (5)
N2—C3—C4122.6 (3)O5—N6—O3121.7 (4)
N3—C4—N4107.9 (3)O5—N6—O4119.2 (4)
N3—C4—C3127.1 (3)O3—N6—O4119.0 (4)
N4—C4—C3125.0 (3)
C3—N1—C1—C20.5 (4)N2—C3—C4—N3147.8 (4)
Ag1—N1—C1—C2174.5 (3)N1—C3—C4—N4148.0 (4)
N1—C1—C2—N20.6 (5)N2—C3—C4—N430.8 (6)
C1—C2—N2—C30.4 (4)N4—C4—N3—C60.4 (4)
C1—N1—C3—N20.3 (4)C3—C4—N3—C6178.3 (4)
Ag1—N1—C3—N2173.9 (2)C4—N3—C6—C50.6 (5)
C1—N1—C3—C4179.2 (4)N3—C6—C5—N40.6 (5)
Ag1—N1—C3—C45.0 (6)N3—C4—N4—C50.0 (4)
C2—N2—C3—N10.0 (4)C3—C4—N4—C5178.7 (4)
C2—N2—C3—C4178.9 (3)C6—C5—N4—C40.3 (5)
N1—C3—C4—N333.5 (6)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4ii0.861.942.792 (4)173
N3—H3···O1iii0.861.922.765 (4)166
N4—H4···O40.861.932.758 (4)160
C1—H1···O3iii0.932.493.179 (5)131
C2—H2···O5iv0.932.603.331 (5)136
C5—H5···O3v0.932.553.340 (6)144
C6—H6···O2vi0.932.553.376 (6)148
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x, y+1, z1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x, y, z1/2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ag(C6H7N4)2](NO3)3
Mr564.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.095 (6), 12.037 (3), 6.8262 (18)
β (°) 91.319 (6)
V3)1979.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.735, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
9412, 2275, 1723
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 0.99
No. of reflections2275
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.861.942.792 (4)173
N3—H3···O1ii0.861.922.765 (4)166
N4—H4···O40.861.932.758 (4)160
C1—H1···O3ii0.932.493.179 (5)131
C2—H2···O5iii0.932.603.331 (5)136
C5—H5···O3iv0.932.553.340 (6)144
C6—H6···O2v0.932.553.376 (6)148
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y+1, z1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y, z1/2; (v) x, y1, z.
 

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebus, H. (1858). Justus Liebigs Ann. Chem. 107, 199–208.  CrossRef Google Scholar
First citationHester, C. A., Collier, H. L. & Baughman, R. G. (1997). Polyhedron, 16, 2893–2895.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds