organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl hydrazine-1,2-di­carboxyl­ate–tri­phenyl­phosphine oxide (1/1)

aDepartamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil, bDepartment of Chemistry, State University of New York, College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA, and cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu

(Received 11 May 2011; accepted 25 May 2011; online 4 June 2011)

In the crystal structure of the title compound, C4H8N2O4·C18H15OP, two triphenyl­phosphine oxide mol­ecules and two dimethyl hydrazine-1,2-dicarboxyl­ate mol­ecules are connected via N—H⋯O hydrogen bonds of moderate strength and are related via a twofold rotational axis. Weak Car—H⋯ O contacts strengthen the crystal structure.

Related literature

For the Mitsunobu reaction, see: Mitsunobu (1981[Mitsunobu, O. (1981). Synthesis, pp. 1-28.]); Hughes (1992[Hughes, D. L. (1992). Org. React. 42, 335-656.]), Swamy et al. (2009[Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. (2009). Chem. Rev. 109, 2551-2651.]). For the structures of analogous compounds, see: Anderson et al. (1996[Anderson, N. G., Lust, D. A., Colapret, K. A., Simpson, J. H., Malley, M. F. & Gougoutas, J. Z. (1996). J. Org. Chem. 61, 7955-7958.]); Héroux & Brisse (1997[Héroux, A. & Brisse, F. (1997). Acta Cryst. C53, 1318-1320.]); Wang et al. (2007[Wang, W., Taylor, C. M. & Fronczek, F. R. (2007). Private communication (refcode JIPFAQ). CCDC, Cambridge, England.]). For the synthesis of this and related compounds, see Doboszewski (1997[Doboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049-1052.], 2009[Doboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875-901.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N2O4·C18H15OP

  • Mr = 426.39

  • Monoclinic, C 2/c

  • a = 26.494 (3) Å

  • b = 8.5545 (9) Å

  • c = 20.4426 (19) Å

  • β = 109.090 (3)°

  • V = 4378.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 200 K

  • 0.8 × 0.7 × 0.4 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS (Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.84, Tmax = 0.93

  • 20468 measured reflections

  • 3862 independent reflections

  • 2956 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.03

  • 3862 reflections

  • 298 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.85 (2) 2.05 (2) 2.899 (2) 174.2 (19)
N2—H2⋯O5 0.83 (2) 2.05 (2) 2.833 (2) 155.9 (17)
C13—H13A⋯O2ii 0.92 2.53 3.310 (3) 143
C35—H35A⋯O3iii 0.98 2.54 3.270 (3) 131
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: GIS (Bruker, 2010[Bruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2010[Bruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT (Bruker, 2009[Bruker (2009). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2009[Bruker (2009). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The two main by-products of the Mitsunobu reaction are bis-substituted hydrazines RO2CNHNHCO2R and phosphine oxides O=PR3. Both types of compounds can interfere with the isolation of the desired products as in our work using N3-benzoylthymine. In such cases it was necessary to skip isolation of the initially formed product and to perform debenzoylation in basic medium and eventually isolate the much more polar deprotected final compound. We recently alkylated N3-benzoylthymine and uracil with allyl and propargyl alcohol, Ph3P and iPrO2CNNCO2iPr in dioxane or tetrahydrofuran for further transformations. After treatment of the crude reaction mixture with sodium methoxide in methanol, we isolated a crystalline compound identified by the present study as a 2:2 complex of the substituted hydrazine with triphenylphosphine oxide. Evidently, a transesterification occurred during the sodium methoxide treatment.

Even though the Mitsunobu reaction has been known for over 40 years, only in 1996 has an X-ray structure of a similar complex (Anderson et al., 1996, Héroux & Brisse, 1997) been published and its stability was attributed to strong association via hydrogen bonding. The present communication shows a second compound of this kind.

In the adduct the bond lengths of the hydrazine molecule are the same within 0.01 Å as in the crystal structure of pure dimethyl hydrazine-1,2-dicarboxylate (Wang et al., 2007) while the H—N—N—H torsion angle increases from 95 to 105° with adduct formation. This value is almost identical to that in the di(isopropyl) hydrazine-1,2-dicarboxylate adduct (Héroux & Brisse, 1997).

That there is little or no change in component geometry with adduct formation suggests that the hydrogen bonds formed are of only moderate strength (Table 1). This is also supported by the modest shift of the P=O stretching frequency from 1190 cm-1 in pure triphenylphosphine oxide to 1166 cm-1 in the adduct which is one property expected to be sensitive to the strength of the hydrogen bonding.

Related literature top

For the Mitsunobu reaction, see: Mitsunobu (1981); Hughes (1992), Swamy et al. (2009). For the structures of analogous compounds, see: Anderson et al. (1996); Héroux & Brisse (1997); Wang et al. (2007). For the synthesis of this and related compounds, see Doboszewski (1997, 2009).

Experimental top

The compound is a by-product of the Mitsunobu reaction: allyl alcohol was employed for alkylation of thymine using Ph3P and iPrO2CNNCO2iPr in dioxane. After treatment of the crude reaction mixture with sodium methoxide in methanol, a crystalline compound was isolated (m.p. 127–129° C). Parent peaks at 148 and 278 were clearly visible in a mass spectrum of the crystal dissolved in dichloromethane. Evidently, a transesterification occurred during a sodium methoxide treatment.

FTIR (Nicolet Nexus 470, Diamond ATR): 3229 and shoulder at 3180 (N—H), 3023 and 2952 (C—H), 1731 (C=O), 1535, 1434,1362,1263, 1225, 1165 and 1153, 116, 1068, 996,869,718, 694, 538 cm-1.

Raman (Raman Systems 2.0, 785 nm laser): 1737 (C=O), 1590, 1442, 1169, 997 (very strong), 871, 689, 618,531, 437, 300, 266 and 206 cm-1.

A comparatively large block was cut for the data collection due to the relatively low sensitivity of the CCD detector. Data collection was limited to θ=25° because of the geometry of the instrument.

Refinement top

All H atoms attached to C were positioned geometrically with Uiso(H) = 1.2 or 1.5 Ueq(C) and allowed to ride on the attached atom with C-H bond distances being free to refine (AFIX 44 and AFIX 138 constraints). The two hydrogen atoms of the hydrazine group which form hydrogen bonds with the phosphine oxide group were refined with isotropic displacement parameters. All C—H bonds are 0.90–0.98 Å, N—H bonds are 0.83 and 0.85 Å.

Computing details top

Data collection: GIS (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009) and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the dimethyl hydrazine-1,2-dicarboxylate - triphenylphosphine oxide adduct with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Two of the adducts connected via N—H···O hydrogen bonds.
[Figure 3] Fig. 3. View of the title compound showing displacement ellipsoids at the 50% probability level.
Dimethyl hydrazine-1,2-dicarboxylate–triphenylphosphine oxide (1/1) top
Crystal data top
C4H8N2O4·C18H15OPF(000) = 1792
Mr = 426.39Dx = 1.294 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3730 reflections
a = 26.494 (3) Åθ = 2.5–24.4°
b = 8.5545 (9) ŵ = 0.16 mm1
c = 20.4426 (19) ÅT = 200 K
β = 109.090 (3)°Prism, colourless
V = 4378.3 (8) Å30.8 × 0.7 × 0.4 mm
Z = 8
Data collection top
Bruker SMART X2S
diffractometer
3862 independent reflections
Radiation source: XOS X-beam microfocus source2956 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.036
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS (Sheldrick, 2008a)
h = 3131
Tmin = 0.84, Tmax = 0.93k = 1010
20468 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
3862 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C4H8N2O4·C18H15OPV = 4378.3 (8) Å3
Mr = 426.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.494 (3) ŵ = 0.16 mm1
b = 8.5545 (9) ÅT = 200 K
c = 20.4426 (19) Å0.8 × 0.7 × 0.4 mm
β = 109.090 (3)°
Data collection top
Bruker SMART X2S
diffractometer
3862 independent reflections
Absorption correction: multi-scan
(SADABS (Sheldrick, 2008a)
2956 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.93Rint = 0.036
20468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3862 reflectionsΔρmin = 0.30 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.149303 (17)0.57905 (5)0.87467 (2)0.02544 (14)
O10.00845 (5)0.79421 (15)0.65671 (7)0.0488 (4)
O20.07350 (5)0.70178 (15)0.66494 (6)0.0447 (3)
O30.08693 (5)0.23349 (15)0.65300 (7)0.0476 (4)
O40.01686 (5)0.35822 (15)0.57612 (6)0.0451 (3)
O50.10118 (4)0.50237 (13)0.82537 (5)0.0294 (3)
N10.00680 (6)0.54291 (18)0.67207 (8)0.0378 (4)
H10.0244 (8)0.535 (2)0.6754 (10)0.048 (6)*
N20.03969 (6)0.41275 (18)0.68918 (8)0.0372 (4)
H20.0640 (7)0.419 (2)0.7272 (10)0.036 (5)*
C10.00936 (10)0.9500 (2)0.65050 (13)0.0638 (7)
H1C0.0205 (4)1.0138 (9)0.6276 (8)0.096*
H1B0.0332 (6)0.9482 (3)0.6246 (8)0.096*
H1A0.0271 (6)0.9911 (9)0.6953 (6)0.096*
C20.02861 (7)0.6822 (2)0.66519 (8)0.0351 (4)
C30.05118 (7)0.3283 (2)0.63982 (9)0.0349 (4)
C40.02347 (10)0.2626 (3)0.52124 (11)0.0646 (7)
H4C0.0053 (6)0.3099 (11)0.4776 (6)0.097*
H4B0.0089 (6)0.1613 (14)0.5229 (5)0.097*
H4A0.0606 (5)0.2535 (15)0.5269 (5)0.097*
C110.16370 (7)0.50014 (18)0.96079 (8)0.0281 (4)
C120.12062 (8)0.4739 (2)0.98395 (10)0.0405 (5)
H12A0.0857 (7)0.4938 (5)0.9542 (6)0.049*
C130.12841 (9)0.4190 (2)1.04989 (10)0.0486 (5)
H13A0.0996 (6)0.4028 (4)1.0647 (3)0.058*
C140.17909 (9)0.3886 (2)1.09350 (11)0.0517 (6)
H14A0.18455 (16)0.3523 (9)1.1397 (11)0.062*
C150.22194 (9)0.4102 (3)1.07079 (11)0.0575 (6)
H15A0.2541 (8)0.3883 (6)1.0982 (7)0.069*
C160.21459 (8)0.4665 (2)1.00490 (9)0.0425 (5)
H16A0.2438 (6)0.4818 (4)0.9902 (3)0.051*
C210.14139 (6)0.78746 (18)0.88138 (8)0.0268 (4)
C220.13023 (7)0.8756 (2)0.82090 (10)0.0350 (4)
H22A0.12774 (8)0.8242 (10)0.7772 (8)0.042*
C230.12265 (8)1.0355 (2)0.82236 (11)0.0422 (5)
H23A0.11515 (17)1.0970 (12)0.7799 (9)0.051*
C240.12570 (8)1.1079 (2)0.88404 (11)0.0473 (5)
H24A0.12009 (15)1.216 (2)0.88489 (11)0.057*
C250.13689 (8)1.0227 (2)0.94401 (11)0.0457 (5)
H25A0.13925 (9)1.0737 (11)0.9865 (9)0.055*
C260.14479 (7)0.8620 (2)0.94297 (10)0.0352 (4)
H26A0.15250 (16)0.8033 (11)0.9845 (8)0.042*
C310.20790 (7)0.55624 (18)0.84924 (8)0.0276 (4)
C320.20893 (8)0.4427 (2)0.80066 (9)0.0392 (5)
H32A0.1776 (6)0.3766 (13)0.7795 (4)0.047*
C330.25459 (8)0.4243 (3)0.78255 (11)0.0515 (6)
H33A0.25523 (9)0.3520 (18)0.7511 (8)0.062*
C340.29896 (8)0.5155 (3)0.81221 (10)0.0477 (5)
H34A0.3296 (7)0.5006 (4)0.8003 (3)0.057*
C350.29792 (8)0.6288 (2)0.85965 (10)0.0423 (5)
H35A0.3295 (6)0.6949 (14)0.8805 (4)0.051*
C360.25267 (7)0.6494 (2)0.87778 (9)0.0352 (4)
H36A0.25208 (7)0.7255 (16)0.9091 (6)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0270 (2)0.0250 (2)0.0231 (3)0.00232 (18)0.00640 (19)0.00216 (18)
O10.0400 (8)0.0444 (8)0.0621 (9)0.0031 (6)0.0167 (7)0.0007 (7)
O20.0374 (8)0.0594 (9)0.0420 (8)0.0045 (6)0.0192 (6)0.0049 (6)
O30.0497 (8)0.0438 (8)0.0514 (9)0.0081 (7)0.0195 (7)0.0000 (6)
O40.0513 (8)0.0565 (9)0.0254 (7)0.0014 (7)0.0097 (6)0.0057 (6)
O50.0281 (6)0.0295 (6)0.0275 (6)0.0044 (5)0.0049 (5)0.0050 (5)
N10.0282 (9)0.0469 (10)0.0385 (10)0.0018 (7)0.0113 (7)0.0041 (7)
N20.0327 (9)0.0480 (10)0.0259 (9)0.0065 (7)0.0026 (8)0.0050 (7)
C10.0649 (16)0.0467 (14)0.0768 (17)0.0003 (11)0.0192 (13)0.0018 (12)
C20.0311 (10)0.0512 (12)0.0218 (10)0.0021 (9)0.0070 (8)0.0043 (8)
C30.0353 (10)0.0372 (11)0.0337 (11)0.0056 (9)0.0132 (9)0.0016 (8)
C40.0955 (19)0.0660 (15)0.0359 (13)0.0054 (13)0.0262 (12)0.0144 (11)
C110.0327 (10)0.0237 (9)0.0267 (10)0.0028 (7)0.0082 (8)0.0032 (7)
C120.0400 (11)0.0510 (12)0.0321 (11)0.0040 (9)0.0139 (9)0.0054 (9)
C130.0553 (14)0.0582 (14)0.0403 (13)0.0019 (10)0.0267 (11)0.0055 (10)
C140.0726 (17)0.0516 (13)0.0304 (12)0.0028 (11)0.0164 (11)0.0101 (9)
C150.0484 (13)0.0737 (16)0.0383 (13)0.0008 (11)0.0024 (10)0.0208 (11)
C160.0356 (11)0.0528 (13)0.0358 (12)0.0052 (9)0.0072 (9)0.0093 (9)
C210.0253 (9)0.0258 (9)0.0281 (10)0.0024 (7)0.0069 (7)0.0027 (7)
C220.0389 (11)0.0325 (10)0.0332 (11)0.0022 (8)0.0111 (8)0.0003 (8)
C230.0470 (12)0.0315 (10)0.0449 (12)0.0027 (8)0.0107 (9)0.0071 (9)
C240.0483 (13)0.0252 (10)0.0635 (15)0.0010 (8)0.0114 (11)0.0041 (10)
C250.0508 (13)0.0366 (11)0.0453 (12)0.0017 (9)0.0096 (10)0.0170 (10)
C260.0385 (10)0.0324 (10)0.0310 (10)0.0018 (8)0.0064 (8)0.0052 (8)
C310.0301 (9)0.0279 (9)0.0234 (9)0.0005 (7)0.0071 (7)0.0016 (7)
C320.0411 (11)0.0403 (11)0.0368 (11)0.0021 (9)0.0136 (9)0.0076 (9)
C330.0575 (14)0.0564 (14)0.0464 (13)0.0051 (11)0.0251 (11)0.0156 (10)
C340.0407 (12)0.0643 (14)0.0453 (13)0.0059 (10)0.0241 (10)0.0021 (11)
C350.0348 (11)0.0546 (12)0.0391 (12)0.0064 (9)0.0142 (9)0.0012 (10)
C360.0375 (11)0.0391 (10)0.0306 (10)0.0042 (8)0.0131 (8)0.0052 (8)
Geometric parameters (Å, º) top
P1—O51.4938 (11)C14—C151.373 (3)
P1—C311.8017 (17)C14—H14A0.9582
P1—C211.8056 (16)C15—C161.383 (3)
P1—C111.8058 (17)C15—H15A0.8729
O1—C21.342 (2)C16—H16A0.9271
O1—C11.433 (2)C21—C261.388 (2)
O2—C21.203 (2)C21—C221.395 (2)
O3—C31.209 (2)C22—C231.384 (2)
O4—C31.347 (2)C22—H22A0.9782
O4—C41.445 (2)C23—C241.383 (3)
N1—C21.352 (2)C23—H23A0.9780
N1—N21.386 (2)C24—C251.373 (3)
N1—H10.85 (2)C24—H24A0.9379
N2—C31.354 (2)C25—C261.391 (2)
N2—H20.832 (18)C25—H25A0.9546
C1—H1C0.9492C26—H26A0.9485
C1—H1B0.9492C31—C361.389 (2)
C1—H1A0.9492C31—C321.396 (2)
C4—H4C0.9539C32—C331.385 (3)
C4—H4B0.9539C32—H32A0.9810
C4—H4A0.9539C33—C341.375 (3)
C11—C161.385 (2)C33—H33A0.8962
C11—C121.389 (2)C34—C351.378 (3)
C12—C131.378 (3)C34—H34A0.9307
C12—H12A0.9422C35—C361.377 (2)
C13—C141.372 (3)C35—H35A0.9830
C13—H13A0.9187C36—H36A0.9161
O5—P1—C31112.56 (7)C15—C14—H14A120.1
O5—P1—C21112.97 (7)C14—C15—C16120.5 (2)
C31—P1—C21105.14 (7)C14—C15—H15A119.7
O5—P1—C11110.80 (7)C16—C15—H15A119.7
C31—P1—C11108.28 (8)C15—C16—C11120.22 (19)
C21—P1—C11106.73 (8)C15—C16—H16A119.9
C2—O1—C1115.29 (16)C11—C16—H16A119.9
C3—O4—C4115.36 (16)C26—C21—C22119.19 (16)
C2—N1—N2118.65 (16)C26—C21—P1123.23 (13)
C2—N1—H1122.3 (13)C22—C21—P1117.57 (13)
N2—N1—H1117.6 (13)C23—C22—C21120.35 (18)
C3—N2—N1121.10 (16)C23—C22—H22A119.8
C3—N2—H2115.9 (12)C21—C22—H22A119.8
N1—N2—H2114.3 (12)C24—C23—C22119.80 (19)
O1—C1—H1C109.5C24—C23—H23A120.1
O1—C1—H1B109.5C22—C23—H23A120.1
H1C—C1—H1B109.5C25—C24—C23120.46 (19)
O1—C1—H1A109.5C25—C24—H24A119.8
H1C—C1—H1A109.5C23—C24—H24A119.8
H1B—C1—H1A109.5C24—C25—C26120.04 (19)
O2—C2—O1125.67 (18)C24—C25—H25A120.0
O2—C2—N1125.44 (18)C26—C25—H25A120.0
O1—C2—N1108.86 (15)C21—C26—C25120.16 (18)
O3—C3—O4125.12 (17)C21—C26—H26A119.9
O3—C3—N2122.87 (17)C25—C26—H26A119.9
O4—C3—N2111.95 (16)C36—C31—C32119.02 (17)
O4—C4—H4C109.5C36—C31—P1120.98 (13)
O4—C4—H4B109.5C32—C31—P1120.00 (13)
H4C—C4—H4B109.5C33—C32—C31119.46 (18)
O4—C4—H4A109.5C33—C32—H32A120.3
H4C—C4—H4A109.5C31—C32—H32A120.3
H4B—C4—H4A109.5C34—C33—C32120.84 (19)
C16—C11—C12118.54 (16)C34—C33—H33A119.6
C16—C11—P1124.23 (14)C32—C33—H33A119.6
C12—C11—P1117.23 (13)C33—C34—C35119.90 (19)
C13—C12—C11120.77 (19)C33—C34—H34A120.0
C13—C12—H12A119.6C35—C34—H34A120.0
C11—C12—H12A119.6C36—C35—C34119.92 (19)
C14—C13—C12120.1 (2)C36—C35—H35A120.0
C14—C13—H13A119.9C34—C35—H35A120.0
C12—C13—H13A119.9C35—C36—C31120.85 (18)
C13—C14—C15119.8 (2)C35—C36—H36A119.6
C13—C14—H14A120.1C31—C36—H36A119.6
C2—N1—N2—C385.2 (2)O5—P1—C21—C2258.38 (15)
C1—O1—C2—O23.3 (3)C31—P1—C21—C2264.74 (15)
C1—O1—C2—N1178.43 (16)C11—P1—C21—C22179.61 (13)
N2—N1—C2—O28.9 (3)C26—C21—C22—C230.0 (3)
N2—N1—C2—O1172.85 (14)P1—C21—C22—C23178.68 (14)
C4—O4—C3—O32.5 (3)C21—C22—C23—C240.6 (3)
C4—O4—C3—N2174.72 (16)C22—C23—C24—C250.8 (3)
N1—N2—C3—O3165.73 (17)C23—C24—C25—C260.6 (3)
N1—N2—C3—O417.0 (2)C22—C21—C26—C250.3 (3)
O5—P1—C11—C16138.93 (15)P1—C21—C26—C25178.33 (14)
C31—P1—C11—C1615.04 (17)C24—C25—C26—C210.0 (3)
C21—P1—C11—C1697.70 (16)O5—P1—C31—C36163.98 (13)
O5—P1—C11—C1241.92 (15)C21—P1—C31—C3640.60 (16)
C31—P1—C11—C12165.81 (13)C11—P1—C31—C3673.19 (15)
C21—P1—C11—C1281.45 (14)O5—P1—C31—C3216.60 (16)
C16—C11—C12—C131.5 (3)C21—P1—C31—C32139.98 (14)
P1—C11—C12—C13177.73 (15)C11—P1—C31—C32106.23 (15)
C11—C12—C13—C140.4 (3)C36—C31—C32—C330.7 (3)
C12—C13—C14—C151.2 (3)P1—C31—C32—C33178.72 (14)
C13—C14—C15—C161.7 (3)C31—C32—C33—C340.5 (3)
C14—C15—C16—C110.7 (3)C32—C33—C34—C351.2 (3)
C12—C11—C16—C150.9 (3)C33—C34—C35—C360.7 (3)
P1—C11—C16—C15178.22 (16)C34—C35—C36—C310.5 (3)
O5—P1—C21—C26120.24 (14)C32—C31—C36—C351.2 (3)
C31—P1—C21—C26116.65 (14)P1—C31—C36—C35178.21 (13)
C11—P1—C21—C261.77 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.85 (2)2.05 (2)2.899 (2)174.2 (19)
N2—H2···O50.83 (2)2.05 (2)2.833 (2)155.9 (17)
C13—H13A···O2ii0.922.533.310 (3)143
C35—H35A···O3iii0.982.543.270 (3)131
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC4H8N2O4·C18H15OP
Mr426.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)26.494 (3), 8.5545 (9), 20.4426 (19)
β (°) 109.090 (3)
V3)4378.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.8 × 0.7 × 0.4
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS (Sheldrick, 2008a)
Tmin, Tmax0.84, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
20468, 3862, 2956
Rint0.036
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.03
No. of reflections3862
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: GIS (Bruker, 2010), APEX2 (Bruker, 2010) and SAINT (Bruker, 2009), SAINT (Bruker, 2009) and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.85 (2)2.05 (2)2.899 (2)174.2 (19)
N2—H2···O50.83 (2)2.05 (2)2.833 (2)155.9 (17)
C13—H13A···O2ii0.922.533.310 (3)143
C35—H35A···O3iii0.9842.543.270 (3)131
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This study was supported a by grant for the X-ray diffractometer and SUNY grant No. 1073053. AYN thanks Dr Bruce Noll (Bruker AXS) for useful advice on operating the X2S diffractometer and Dr David Geiger (SUNY Geneseo) for help with the experiment.

References

First citationAnderson, N. G., Lust, D. A., Colapret, K. A., Simpson, J. H., Malley, M. F. & Gougoutas, J. Z. (1996). J. Org. Chem. 61, 7955–7958.  CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoboszewski, B. (1997). Nucleosides Nucleotides, 16, 1049–1052.  CrossRef CAS Web of Science Google Scholar
First citationDoboszewski, B. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 875–901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHéroux, A. & Brisse, F. (1997). Acta Cryst. C53, 1318–1320.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHughes, D. L. (1992). Org. React. 42, 335–656.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMitsunobu, O. (1981). Synthesis, pp. 1–28.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. (2009). Chem. Rev. 109, 2551–2651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Taylor, C. M. & Fronczek, F. R. (2007). Private communication (refcode JIPFAQ). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds