metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m841-m842

Poly[[aqua­tris­­(μ-benzene-1,4-di­carboxyl­ato)tricobalt(II)] methanol monosolvate monohydrate]

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bCoordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 2 May 2011; accepted 26 May 2011; online 4 June 2011)

The asymmetric unit of the title compound, {[Co3(C8H4O4)3(H2O)]·CH3OH·H2O}n, consists of four crystallographically independent Co cations, four benzene-1,4-dicarboxyl­ate (bdc) anions, two water and one methanol solvent mol­ecule. Two of the Co cations and two of the bdc anions are located on centres of inversion, whereas all other atoms are located in general positions. In the crystal, two Co atoms are only fourfold coordinated by three O atoms from three bdc ligands and by one O atom from one coordinated water mol­ecule, while a third Co atom is coordinated by four O atoms from four bdc ligands within a strongly distorted tetra­hedral geometry. The other two Co cations are octa­hedrally coordinated by six O atoms from six bdc anions. The Co cations are linked by the bdc anions into a three-dimensional framework. From this arrangement, cavities are formed in which additional methanol and water mol­ecules are embedded.

Related literature

For related structures, see: Rosi et al. (2005[Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B. L., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.]); Devic et al. (2005[Devic, T., Serre, C., Audebrand, N., Marrot, J. & Férey, G. (2005). J. Am. Chem. Soc. 127, 12788-12789.]); Humphrey et al. (2007[Humphrey, S. M., Chang, J. S., Jhung, S. H., Yoon, J. W. & Wood, P. T. (2007). Angew. Chem. Int. Ed. 46, 272-275.]); Luo et al. (2007[Luo, F., Batten, S. R., Che, Y. X. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948-5008.], 2008[Luo, F., Che, Y. X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 358-362.]). For general background to benzene-1,4-dicarb­oxy­lic acid (H2bdc), see: Férey et al. (2005[Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S. & Margiolaki, I. (2005). Science, 309, 2040-2042.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]). For background to metal-organic frameworks (MOFs), see: Long & Yaghi (2009[Long, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3(C8H4O4)3(H2O)]·CH4O·H2O

  • Mr = 737.20

  • Triclinic, [P \overline 1]

  • a = 9.8456 (11) Å

  • b = 12.0753 (15) Å

  • c = 13.0039 (16) Å

  • α = 91.842 (2)°

  • β = 100.925 (1)°

  • γ = 101.745 (1)°

  • V = 1482.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.746

  • 11744 measured reflections

  • 5751 independent reflections

  • 4241 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.110

  • S = 1.04

  • 5751 reflections

  • 392 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, research on metal-organic frameworks (MOFs) has become of increasing interest (Long et al., 2009). In this context compounds based on dicarboxylate ligands are of special importance (Férey et al., 2005; Rosi et al., 2003). In our own investigations we tried to prepare new MOFs based on benzene-1,4-dicarboxylic acid (H2bdc) and amines as ligands. Within this project we have reacted CoCl2.6H2O with H2bdc and N,N'-bis(4-pyridylmethylidine)-1,4-phenylenediamine and we have obtained crystals of the title compound by accident.

The title compound is a three-dimensional framework the form hex type (Rosi et al., 2005) built from Co cations that are linked by bdc anions. From this arrangement cavities are formed, that are filled with additional uncoordinated methanol and water molecules. Altogether there are four crystallographically independent Co cations of which two (Co2 and Co4) are located on centers of inversion. Co1 is coordinated by three oxygen atoms from three bdc ligands and one oxygen atom from one coordinated water molecule within a strongly distorted tetrahedron. Co3 is also tetrahedrally coordinated but connected only to four oxygen atoms from four bdc ligands. In contrast Co2 and Co4 are 6-fold coordinated by six oxygen atoms from bdc anions within slightly distorted octahedra. Related complexes have been reported recently (Devic et al., 2005; Humphrey et al., 2007; Luo et al., 2007; Luo et al., 2008).

Related literature top

For related structures, see: Rosi et al. (2005); Devic et al. (2005); Humphrey et al. (2007); Luo et al. (2007, 2008). For general background to benzene-1,4-dicarboxylic acid (H2bdc), see: Férey et al. (2005); Rosi et al. (2003). For background to metal-organic frameworks (MOFs), see: Long & Yaghi (2009).

Experimental top

A mixture of CoCl2.6H2O (0.0238 g, 0.1 mmol), benzene-1,4-dicarboxylic acid (0.0166 g, 0.1 mmol), N,N'-bis(4-pyridylmethylidine)-1,4-phenylenediamine (0.0290 g, 0.1 mmol) combined with 5 ml mixed solvent (DMF:CH3OH = 1:1) was stirred for 20 min at room temperature. Afterwards the solution was heated in a 25 ml Teflon-lined stainless-steel vessel at 140 oC for 72 h under autogenous pressure. Slow cooling of the resulting solution to room temperature at the rate of 10 oC.h-1 afforded purple block-shaped crystals suitable for single-crystal X-ray structure analysis. Yield based on CoCl2.6H2O: 35%.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The C-H H atoms were calculated in idealized positions with C—H = 0.95 or 0.96 Å and included in the refinement in a riding mode with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The H atoms bound to oxygen atoms from coordinated and crystallized water molecules were located from difference maps and refined as riding, with O - H restraint (O - H = 0.96 or 0.85 Å), and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at 30% probability level. Hydrogen atoms have been omitted for clarity. Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 3, -y + 2, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z - 1; (v) -x + 2, -y + 2, -z + 1; (vi) -x + 2, -y + 1, -z + 1; (vii) -x + 2, -y + 2, -z.
Poly[[aquatris(µ-benzene-1,4-dicarboxylato)tricobalt(II)] methanol monosolvate monohydrate] top
Crystal data top
[Co3(C8H4O4)3(H2O)]·CH4O·H2OZ = 2
Mr = 737.20F(000) = 742
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8456 (11) ÅCell parameters from 3571 reflections
b = 12.0753 (15) Åθ = 2.2–24.1°
c = 13.0039 (16) ŵ = 1.73 mm1
α = 91.842 (2)°T = 291 K
β = 100.925 (1)°Block, purple
γ = 101.745 (1)°0.30 × 0.26 × 0.24 mm
V = 1482.2 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5751 independent reflections
Radiation source: sealed tube4241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1112
Tmin = 0.682, Tmax = 0.746k = 1414
11744 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
5751 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co3(C8H4O4)3(H2O)]·CH4O·H2Oγ = 101.745 (1)°
Mr = 737.20V = 1482.2 (3) Å3
Triclinic, P1Z = 2
a = 9.8456 (11) ÅMo Kα radiation
b = 12.0753 (15) ŵ = 1.73 mm1
c = 13.0039 (16) ÅT = 291 K
α = 91.842 (2)°0.30 × 0.26 × 0.24 mm
β = 100.925 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4241 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.746Rint = 0.031
11744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
5751 reflectionsΔρmin = 0.70 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7655 (4)0.4662 (3)0.7910 (3)0.0345 (9)
C20.7907 (5)0.3680 (4)0.7456 (4)0.0454 (11)
H20.76280.35080.67190.054*
C30.8574 (5)0.2946 (4)0.8090 (4)0.0419 (10)
H30.87170.22620.77900.050*
C40.9021 (5)0.3234 (3)0.9161 (3)0.0398 (10)
C50.8818 (5)0.4247 (4)0.9588 (4)0.0485 (12)
H50.91570.44611.03150.058*
C60.8129 (5)0.4934 (4)0.8958 (3)0.0426 (10)
H60.79800.56150.92610.051*
C70.6950 (5)0.5449 (4)0.7247 (4)0.0412 (10)
C80.9731 (5)0.2503 (3)0.9811 (4)0.0422 (11)
C90.7203 (4)0.8267 (3)0.4169 (3)0.0301 (8)
C100.6962 (5)0.7946 (4)0.3063 (4)0.0505 (12)
H100.63230.72660.27580.061*
C110.7716 (5)0.8688 (4)0.2457 (4)0.0429 (10)
H110.75990.84860.17280.052*
C120.8616 (5)0.9694 (3)0.2872 (3)0.0400 (10)
C130.8770 (5)1.0004 (4)0.3927 (4)0.0501 (12)
H130.93241.07210.42220.060*
C140.8078 (5)0.9223 (4)0.4566 (3)0.0421 (11)
H140.82570.94010.53020.051*
C150.6447 (4)0.7483 (3)0.4814 (3)0.0317 (8)
C160.9373 (4)1.0442 (4)0.2203 (3)0.0375 (9)
C170.2859 (4)0.6297 (4)0.5711 (3)0.0371 (10)
C180.1060 (5)0.4418 (4)0.5392 (4)0.0426 (10)
H180.18030.40420.56440.051*
C190.1364 (4)0.5612 (4)0.5314 (3)0.0356 (9)
C200.0241 (4)0.6157 (4)0.4882 (3)0.0388 (10)
H200.04480.69480.47950.047*
C211.3134 (4)1.1321 (4)0.0668 (4)0.0406 (10)
C221.5397 (5)1.1132 (4)0.0081 (3)0.0443 (11)
H221.57181.19270.00990.053*
C231.4218 (5)1.0740 (3)0.0374 (3)0.0378 (9)
C241.3909 (5)0.9566 (4)0.0493 (4)0.0418 (10)
H241.31990.92620.08710.050*
C250.2871 (5)0.4940 (4)0.8243 (4)0.0463 (11)
H25A0.19550.44950.83300.069*
H25C0.33130.44800.78260.069*
H25D0.27280.56190.78810.069*
Co10.53756 (6)0.71571 (5)0.67841 (4)0.03287 (15)
Co20.50000.50000.50000.03250 (18)
Co31.15981 (5)1.21536 (4)0.17863 (4)0.02938 (14)
Co41.00001.00000.00000.03193 (18)
O10.6831 (3)0.6278 (3)0.7537 (2)0.0465 (8)
O20.6588 (3)0.5129 (3)0.6183 (2)0.0415 (7)
O30.9700 (3)0.1490 (2)0.9415 (2)0.0377 (7)
O41.0326 (3)0.2841 (2)1.0748 (2)0.0410 (7)
O50.6481 (3)0.7837 (3)0.5886 (3)0.0476 (8)
O60.5728 (3)0.6495 (2)0.4424 (2)0.0375 (7)
O70.9028 (3)1.0201 (2)0.1217 (2)0.0352 (6)
O81.0366 (3)1.1244 (3)0.2642 (2)0.0488 (8)
O90.3832 (3)0.5818 (2)0.6010 (2)0.0344 (6)
O100.3048 (3)0.7359 (3)0.5713 (3)0.0472 (8)
O111.2079 (3)1.0796 (2)0.0968 (2)0.0378 (7)
O121.3470 (3)1.2378 (3)0.0664 (2)0.0431 (7)
O130.3793 (3)0.5276 (3)0.9276 (2)0.0409 (7)
H15B0.45040.59360.92250.049*
O1W0.4003 (3)0.7587 (3)0.7928 (3)0.0458 (7)
H1X0.32460.78990.75550.055*
H1Y0.45770.81300.84740.055*
O2W0.6664 (4)0.9904 (3)0.6639 (3)0.0574 (9)
H2X0.66050.92320.63940.069*
H2Y0.70510.99750.72870.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.0287 (19)0.037 (2)0.0018 (16)0.0105 (17)0.0053 (16)
C20.052 (3)0.040 (2)0.049 (3)0.021 (2)0.007 (2)0.010 (2)
C30.043 (2)0.040 (2)0.042 (2)0.0108 (19)0.0044 (19)0.0060 (19)
C40.043 (2)0.0248 (19)0.039 (2)0.0000 (17)0.0150 (19)0.0038 (17)
C50.042 (3)0.049 (3)0.051 (3)0.015 (2)0.006 (2)0.009 (2)
C60.046 (3)0.041 (2)0.039 (2)0.014 (2)0.001 (2)0.0028 (19)
C70.048 (3)0.036 (2)0.039 (2)0.0143 (19)0.0013 (19)0.0020 (19)
C80.042 (2)0.027 (2)0.043 (2)0.0058 (17)0.0123 (19)0.0003 (18)
C90.038 (2)0.0307 (19)0.0259 (19)0.0086 (16)0.0154 (16)0.0076 (15)
C100.046 (3)0.049 (3)0.047 (3)0.014 (2)0.012 (2)0.009 (2)
C110.039 (2)0.043 (2)0.042 (2)0.0065 (19)0.0136 (19)0.0080 (19)
C120.052 (3)0.030 (2)0.038 (2)0.0021 (18)0.014 (2)0.0051 (17)
C130.039 (3)0.058 (3)0.044 (3)0.016 (2)0.017 (2)0.006 (2)
C140.045 (2)0.047 (2)0.029 (2)0.0140 (19)0.0191 (18)0.0087 (18)
C150.031 (2)0.033 (2)0.035 (2)0.0109 (17)0.0111 (17)0.0033 (16)
C160.029 (2)0.043 (2)0.037 (2)0.0043 (18)0.0010 (17)0.0074 (18)
C170.024 (2)0.047 (2)0.042 (2)0.0131 (18)0.0088 (17)0.0194 (19)
C180.039 (2)0.050 (3)0.040 (2)0.011 (2)0.0109 (19)0.009 (2)
C190.0220 (19)0.047 (2)0.040 (2)0.0097 (17)0.0076 (16)0.0106 (18)
C200.027 (2)0.047 (2)0.045 (2)0.0127 (18)0.0089 (18)0.010 (2)
C210.021 (2)0.046 (3)0.048 (3)0.0071 (18)0.0085 (18)0.012 (2)
C220.047 (3)0.038 (2)0.040 (2)0.009 (2)0.014 (2)0.0141 (19)
C230.049 (3)0.031 (2)0.039 (2)0.0132 (18)0.0160 (19)0.0091 (17)
C240.039 (2)0.046 (3)0.041 (2)0.005 (2)0.0135 (19)0.007 (2)
C250.052 (3)0.050 (3)0.042 (3)0.020 (2)0.011 (2)0.017 (2)
Co10.0347 (3)0.0324 (3)0.0326 (3)0.0089 (2)0.0080 (2)0.0003 (2)
Co20.0330 (4)0.0316 (4)0.0325 (4)0.0079 (3)0.0049 (3)0.0009 (3)
Co30.0267 (3)0.0323 (3)0.0271 (3)0.0056 (2)0.0015 (2)0.0005 (2)
Co40.0336 (4)0.0275 (4)0.0332 (4)0.0048 (3)0.0052 (3)0.0004 (3)
O10.0524 (19)0.0331 (17)0.0452 (18)0.0145 (14)0.0167 (15)0.0057 (14)
O20.0440 (17)0.0429 (17)0.0382 (16)0.0121 (14)0.0057 (13)0.0069 (13)
O30.0389 (16)0.0433 (16)0.0391 (16)0.0201 (13)0.0150 (13)0.0105 (13)
O40.0444 (17)0.0395 (16)0.0288 (15)0.0059 (13)0.0132 (13)0.0077 (12)
O50.0482 (18)0.0426 (17)0.0477 (18)0.0097 (14)0.0222 (15)0.0115 (14)
O60.0356 (15)0.0306 (15)0.0393 (16)0.0071 (12)0.0088 (12)0.0015 (12)
O70.0272 (14)0.0441 (16)0.0321 (16)0.0020 (12)0.0061 (12)0.0048 (12)
O80.0491 (19)0.0430 (18)0.0435 (18)0.0162 (15)0.0123 (15)0.0080 (14)
O90.0275 (14)0.0438 (16)0.0333 (15)0.0138 (12)0.0038 (11)0.0045 (12)
O100.0519 (19)0.0427 (18)0.0460 (18)0.0149 (15)0.0051 (15)0.0127 (14)
O110.0399 (17)0.0416 (16)0.0320 (15)0.0062 (13)0.0105 (13)0.0001 (12)
O120.0432 (17)0.0422 (17)0.0427 (17)0.0040 (14)0.0142 (14)0.0160 (14)
O130.0421 (17)0.0412 (17)0.0441 (17)0.0105 (13)0.0165 (14)0.0129 (13)
O1W0.0454 (18)0.0419 (17)0.0494 (18)0.0047 (14)0.0156 (14)0.0145 (14)
O2W0.058 (2)0.051 (2)0.053 (2)0.0121 (16)0.0132 (17)0.0059 (16)
Geometric parameters (Å, º) top
C1—C61.360 (6)C21—O111.239 (5)
C1—C21.395 (6)C21—O121.252 (5)
C1—C71.491 (6)C21—C231.489 (6)
C2—C31.405 (6)C22—C24ii1.345 (6)
C2—H20.9500C22—C231.406 (6)
C3—C41.388 (6)C22—H220.9500
C3—H30.9500C23—C241.408 (6)
C4—C51.393 (6)C24—C22ii1.345 (6)
C4—C81.435 (6)C24—H240.9500
C5—C61.372 (6)C25—O131.465 (5)
C5—H50.9500C25—H25A0.9800
C6—H60.9500C25—H25C0.9800
C7—O11.095 (5)C25—H25D0.9800
C7—O21.383 (5)Co1—O51.845 (3)
C8—O41.262 (5)Co1—O92.062 (3)
C8—O31.305 (5)Co1—O12.072 (3)
C9—C141.315 (6)Co1—O1W2.304 (3)
C9—C101.440 (6)Co2—O21.952 (3)
C9—C151.468 (5)Co2—O2iii1.952 (3)
C10—C111.404 (6)Co2—O62.024 (3)
C10—H100.9500Co2—O6iii2.024 (3)
C11—C121.376 (6)Co2—O92.230 (3)
C11—H110.9500Co2—O9iii2.230 (3)
C12—C131.381 (6)Co3—O4iv1.984 (3)
C12—C161.467 (6)Co3—O81.990 (3)
C13—C141.431 (6)Co3—O112.107 (3)
C13—H130.9500Co3—O1v2.222 (3)
C14—H140.9500Co4—O3iv2.030 (3)
C15—O61.289 (5)Co4—O3vi2.030 (3)
C15—O51.437 (5)Co4—O72.030 (3)
C16—O81.260 (5)Co4—O7vii2.030 (3)
C16—O71.271 (5)Co4—O112.201 (3)
C17—O91.226 (5)Co4—O11vii2.201 (3)
C17—O101.258 (5)O1—Co3v2.222 (3)
C17—C191.519 (6)O3—Co4viii2.030 (3)
C18—C20i1.304 (6)O4—Co3viii1.984 (3)
C18—C191.422 (6)O13—H15B0.9600
C18—H180.9500O1W—H1X0.9601
C19—C201.434 (5)O1W—H1Y0.9600
C20—C18i1.304 (6)O2W—H2X0.8501
C20—H200.9500O2W—H2Y0.8500
C6—C1—C2119.5 (4)C23—C24—H24119.4
C6—C1—C7119.8 (4)O13—C25—H25A109.5
C2—C1—C7120.6 (4)O13—C25—H25C109.5
C1—C2—C3120.0 (4)H25A—C25—H25C109.5
C1—C2—H2120.0O13—C25—H25D109.5
C3—C2—H2120.0H25A—C25—H25D109.5
C4—C3—C2119.1 (4)H25C—C25—H25D109.5
C4—C3—H3120.5O5—Co1—O9110.87 (13)
C2—C3—H3120.5O5—Co1—O196.16 (16)
C3—C4—C5119.8 (4)O9—Co1—O199.86 (11)
C3—C4—C8119.5 (4)O5—Co1—O1W140.91 (13)
C5—C4—C8120.6 (4)O9—Co1—O1W93.65 (11)
C6—C5—C4120.0 (4)O1—Co1—O1W109.49 (14)
C6—C5—H5120.0O2—Co2—O2iii180.000 (1)
C4—C5—H5120.0O2—Co2—O696.10 (12)
C1—C6—C5121.5 (4)O2iii—Co2—O683.90 (12)
C1—C6—H6119.3O2—Co2—O6iii83.90 (12)
C5—C6—H6119.3O2iii—Co2—O6iii96.10 (12)
O1—C7—O2120.2 (4)O6—Co2—O6iii180.0
O1—C7—C1124.2 (4)O2—Co2—O990.15 (11)
O2—C7—C1115.2 (4)O2iii—Co2—O989.85 (11)
O4—C8—O3122.1 (4)O6—Co2—O991.77 (11)
O4—C8—C4119.7 (4)O6iii—Co2—O988.23 (11)
O3—C8—C4118.2 (4)O2—Co2—O9iii89.85 (11)
C14—C9—C10120.2 (4)O2iii—Co2—O9iii90.15 (11)
C14—C9—C15122.6 (4)O6—Co2—O9iii88.23 (11)
C10—C9—C15117.2 (4)O6iii—Co2—O9iii91.77 (11)
C11—C10—C9116.8 (4)O9—Co2—O9iii180.000 (1)
C11—C10—H10121.6O4iv—Co3—O8106.09 (14)
C9—C10—H10121.6O4iv—Co3—O11106.51 (11)
C12—C11—C10122.8 (4)O8—Co3—O1197.95 (13)
C12—C11—H11118.6O4iv—Co3—O1v98.73 (11)
C10—C11—H11118.6O8—Co3—O1v121.70 (13)
C11—C12—C13118.9 (4)O11—Co3—O1v124.18 (12)
C11—C12—C16120.6 (4)O3iv—Co4—O3vi180.00 (6)
C13—C12—C16120.4 (4)O3iv—Co4—O793.55 (11)
C12—C13—C14118.7 (4)O3vi—Co4—O786.45 (11)
C12—C13—H13120.7O3iv—Co4—O7vii86.45 (11)
C14—C13—H13120.7O3vi—Co4—O7vii93.55 (11)
C9—C14—C13122.3 (4)O7—Co4—O7vii180.000 (1)
C9—C14—H14118.8O3iv—Co4—O1192.68 (12)
C13—C14—H14118.8O3vi—Co4—O1187.32 (12)
O6—C15—O5119.8 (3)O7—Co4—O1191.18 (11)
O6—C15—C9120.9 (4)O7vii—Co4—O1188.82 (11)
O5—C15—C9119.3 (3)O3iv—Co4—O11vii87.32 (12)
O8—C16—O7124.3 (4)O3vi—Co4—O11vii92.68 (12)
O8—C16—C12118.2 (4)O7—Co4—O11vii88.82 (11)
O7—C16—C12117.5 (4)O7vii—Co4—O11vii91.18 (10)
O9—C17—O10122.1 (4)O11—Co4—O11vii180.0
O9—C17—C19120.4 (4)C7—O1—Co1124.3 (3)
O10—C17—C19117.4 (4)C7—O1—Co3v132.2 (3)
C20i—C18—C19119.8 (4)Co1—O1—Co3v93.67 (12)
C20i—C18—H18120.1C7—O2—Co2140.1 (3)
C19—C18—H18120.1C8—O3—Co4viii135.7 (3)
C18—C19—C20119.3 (4)C8—O4—Co3viii130.1 (3)
C18—C19—C17119.9 (4)C15—O5—Co1128.3 (3)
C20—C19—C17120.8 (4)C15—O6—Co2136.0 (3)
C18i—C20—C19120.8 (4)C16—O7—Co4138.1 (3)
C18i—C20—H20119.6C16—O8—Co3119.8 (3)
C19—C20—H20119.6C17—O9—Co1100.9 (3)
O11—C21—O12124.7 (4)C17—O9—Co2126.7 (3)
O11—C21—C23122.0 (4)Co1—O9—Co2102.39 (11)
O12—C21—C23113.0 (4)C21—O11—Co398.8 (3)
C24ii—C22—C23123.1 (4)C21—O11—Co4127.7 (3)
C24ii—C22—H22118.5Co3—O11—Co4101.90 (12)
C23—C22—H22118.5C25—O13—H15B109.3
C22—C23—C24115.3 (4)Co1—O1W—H1X109.6
C22—C23—C21131.7 (4)Co1—O1W—H1Y109.4
C24—C23—C21112.7 (4)H1X—O1W—H1Y109.5
C22ii—C24—C23121.1 (4)H2X—O2W—H2Y109.5
C22ii—C24—H24119.4
C6—C1—C2—C33.6 (7)O6iii—Co2—O2—C782.0 (4)
C7—C1—C2—C3179.9 (4)O9—Co2—O2—C76.3 (4)
C1—C2—C3—C42.4 (7)O9iii—Co2—O2—C7173.7 (4)
C2—C3—C4—C50.7 (7)O4—C8—O3—Co4viii17.9 (7)
C2—C3—C4—C8178.6 (4)C4—C8—O3—Co4viii160.1 (3)
C3—C4—C5—C62.5 (7)O3—C8—O4—Co3viii11.3 (7)
C8—C4—C5—C6179.6 (5)C4—C8—O4—Co3viii170.8 (3)
C2—C1—C6—C51.8 (7)O6—C15—O5—Co111.2 (5)
C7—C1—C6—C5178.1 (4)C9—C15—O5—Co1167.2 (3)
C4—C5—C6—C11.3 (8)O9—Co1—O5—C155.8 (4)
C6—C1—C7—O13.7 (8)O1—Co1—O5—C1597.2 (3)
C2—C1—C7—O1172.6 (5)O1W—Co1—O5—C15131.1 (3)
C6—C1—C7—O2176.1 (4)O5—C15—O6—Co222.8 (6)
C2—C1—C7—O20.2 (6)C9—C15—O6—Co2158.9 (3)
C3—C4—C8—O4169.3 (4)O2—Co2—O6—C1533.7 (4)
C5—C4—C8—O48.6 (7)O2iii—Co2—O6—C15146.3 (4)
C3—C4—C8—O312.7 (7)O9—Co2—O6—C1556.6 (4)
C5—C4—C8—O3169.4 (4)O9iii—Co2—O6—C15123.4 (4)
C14—C9—C10—C111.0 (7)O8—C16—O7—Co446.4 (7)
C15—C9—C10—C11178.5 (4)C12—C16—O7—Co4129.9 (4)
C9—C10—C11—C121.9 (7)O3iv—Co4—O7—C16106.4 (4)
C10—C11—C12—C131.2 (7)O3vi—Co4—O7—C1673.6 (4)
C10—C11—C12—C16179.7 (4)O11—Co4—O7—C1613.6 (4)
C11—C12—C13—C145.1 (7)O11vii—Co4—O7—C16166.4 (4)
C16—C12—C13—C14176.4 (4)O7—C16—O8—Co34.6 (6)
C10—C9—C14—C133.0 (7)C12—C16—O8—Co3171.7 (3)
C15—C9—C14—C13177.5 (4)O4iv—Co3—O8—C1660.0 (4)
C12—C13—C14—C96.1 (8)O11—Co3—O8—C1649.8 (4)
C14—C9—C15—O6171.9 (4)O1v—Co3—O8—C16171.3 (3)
C10—C9—C15—O67.7 (6)O10—C17—O9—Co114.7 (5)
C14—C9—C15—O59.8 (6)C19—C17—O9—Co1165.7 (3)
C10—C9—C15—O5170.7 (4)O10—C17—O9—Co299.9 (4)
C11—C12—C16—O8167.5 (4)C19—C17—O9—Co279.7 (5)
C13—C12—C16—O814.1 (7)O5—Co1—O9—C1790.8 (3)
C11—C12—C16—O79.0 (6)O1—Co1—O9—C17168.6 (3)
C13—C12—C16—O7169.4 (4)O1W—Co1—O9—C1758.1 (3)
C20i—C18—C19—C203.2 (7)O5—Co1—O9—Co240.87 (17)
C20i—C18—C19—C17175.3 (4)O1—Co1—O9—Co259.66 (15)
O9—C17—C19—C186.7 (6)O1W—Co1—O9—Co2170.18 (12)
O10—C17—C19—C18173.7 (4)O2—Co2—O9—C17158.8 (4)
O9—C17—C19—C20174.8 (4)O2iii—Co2—O9—C1721.2 (4)
O10—C17—C19—C204.8 (6)O6—Co2—O9—C1762.6 (4)
C18—C19—C20—C18i3.2 (7)O6iii—Co2—O9—C17117.4 (4)
C17—C19—C20—C18i175.3 (4)O2—Co2—O9—Co144.79 (13)
C24ii—C22—C23—C247.7 (8)O2iii—Co2—O9—Co1135.21 (13)
C24ii—C22—C23—C21165.6 (5)O6—Co2—O9—Co151.32 (12)
O11—C21—C23—C22172.5 (5)O6iii—Co2—O9—Co1128.68 (12)
O12—C21—C23—C2213.3 (7)O12—C21—O11—Co315.7 (5)
O11—C21—C23—C240.9 (6)C23—C21—O11—Co3157.8 (4)
O12—C21—C23—C24173.4 (4)O12—C21—O11—Co496.9 (5)
C22—C23—C24—C22ii7.5 (7)C23—C21—O11—Co489.6 (5)
C21—C23—C24—C22ii167.0 (4)O4iv—Co3—O11—C2188.6 (3)
O2—C7—O1—Co127.2 (7)O8—Co3—O11—C21161.9 (3)
C1—C7—O1—Co1160.8 (3)O1v—Co3—O11—C2124.5 (3)
O2—C7—O1—Co3v109.1 (4)O4iv—Co3—O11—Co443.08 (15)
C1—C7—O1—Co3v63.0 (7)O8—Co3—O11—Co466.39 (14)
O5—Co1—O1—C784.9 (5)O1v—Co3—O11—Co4156.19 (11)
O9—Co1—O1—C727.6 (5)O3iv—Co4—O11—C2158.9 (4)
O1W—Co1—O1—C7125.1 (4)O3vi—Co4—O11—C21121.1 (4)
O5—Co1—O1—Co3v64.22 (14)O7—Co4—O11—C21152.6 (4)
O9—Co1—O1—Co3v176.70 (12)O7vii—Co4—O11—C2127.4 (4)
O1W—Co1—O1—Co3v85.82 (14)O3iv—Co4—O11—Co352.20 (13)
O1—C7—O2—Co253.0 (7)O3vi—Co4—O11—Co3127.80 (13)
C1—C7—O2—Co2134.3 (4)O7—Co4—O11—Co341.41 (13)
O6—Co2—O2—C798.0 (4)O7vii—Co4—O11—Co3138.59 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+3, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z1; (v) x+2, y+2, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y+2, z; (viii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Co3(C8H4O4)3(H2O)]·CH4O·H2O
Mr737.20
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.8456 (11), 12.0753 (15), 13.0039 (16)
α, β, γ (°)91.842 (2), 100.925 (1), 101.745 (1)
V3)1482.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.682, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11744, 5751, 4241
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 1.04
No. of reflections5751
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.70

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The work was supported by the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Project of Jiangsu University of Science and Technology (2009 C L152J).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevic, T., Serre, C., Audebrand, N., Marrot, J. & Férey, G. (2005). J. Am. Chem. Soc. 127, 12788–12789.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFérey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S. & Margiolaki, I. (2005). Science, 309, 2040–2042.  Web of Science PubMed Google Scholar
First citationHumphrey, S. M., Chang, J. S., Jhung, S. H., Yoon, J. W. & Wood, P. T. (2007). Angew. Chem. Int. Ed. 46, 272–275.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, F., Batten, S. R., Che, Y. X. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948–5008.  CrossRef PubMed CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 358–362.  CrossRef CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosi, N. L., Kim, J., Eddaoudi, M., Chen, B. L., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m841-m842
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds