metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(3-chloro­pyridine-κN)zinc

aDepartment of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China, bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and cNingbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
*Correspondence e-mail: jwzou@nit.zju.edu.cn

(Received 11 May 2011; accepted 28 May 2011; online 11 June 2011)

In the crystal structure of the title compound, [ZnCl2(C5H4ClN)2], discrete complex mol­ecules are found in which the ZnII cations are coordinated by two chloride anions and the N atoms of the two 3-chloro­pyridine ligands within a slightly distorted tetra­hedron. Moreover, inter­molecular C—Cl⋯Cl—C halogen inter­actions (Cl⋯Cl = 3.442 Å) are found between the building blocks.

Related literature

For the background of this work, see: Bertani et al. (2010[Bertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P. & Terraneo, G. (2010). Coord. Chem. Rev. 254, 677-695.]); Metrangolo & Resnati (2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-907.]); Lommerse et al. (1996[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.]). For related structures, see: Bhosekar et al. (2008[Bhosekar, G., Jess, I., Lehnert, N. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 605-611.]); Wriedt et al. (2009[Wriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. pp. 363-372.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C5H4ClN)2]

  • Mr = 363.35

  • Triclinic, [P \overline 1]

  • a = 7.3429 (15) Å

  • b = 7.9220 (16) Å

  • c = 13.259 (3) Å

  • α = 95.17 (3)°

  • β = 91.14 (3)°

  • γ = 117.37 (3)°

  • V = 680.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 298 K

  • 0.44 × 0.42 × 0.19 mm

Data collection
  • Siemens CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.398, Tmax = 0.641

  • 5839 measured reflections

  • 2640 independent reflections

  • 2066 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.147

  • S = 1.16

  • 2640 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Halogen interactions as one weak noncovalent interaction, is of importance in e.g. crystal engineering and molecular recognition processes (Metrangolo & Resnati, 2001). Such interactions are widely found in various organometallic coordination compounds like e.g. in coordination compounds built up on multidentate ligands with pyridine groups which generate networks with a variety of special functions ( Leininger et al., 2000 and Bertani et al., 2010).

As a part of our project on halogen halogen interactions the tile compound was prepared and characterized by single crystal X-ray diffraction. In the crystal structure of the title compound discrete complexes are found in which each zinc(II) cation is coordinated by two 3-chloropyridine ligands and two chloride anions. The coordination environment around the Zn cations consists of slightly distorted tetrahedra, which is typical for such complexes ( Bhosekar et al., 2008; Wriedt et al., 2009). The crystal structure is characterized by intermolecular C—Cl···Cl—C interactions with Cl···Cl separations less than the sum of Van der Waals radii (Lommerse, et al., 1996).

Related literature top

For the background of this work, see: Bertani et al.(2010); Metrangolo & Resnati (2001); Leininger et al. (2000); Lommerse et al. (1996). For related structures, see: Bhosekar et al. (2008); Wriedt et al. (2009).

Experimental top

Zinc(II) chloride (1 mmol) dissolved in 10 mL of ethanol, was added dropwise to a stirred solution of 3-chloropyridine (1 mmol) in 10 mL of ethanol. Subsequently, the mixture was refluxed for 2 h, and the resulting solution was further concentrated by the rotary evaporation at 40 Celsius degree. Finally, the concentrated solution was left to slowly evaporate at room temperature until the crystal formed.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93Å with isotropic displacement parameters 1.2 times Ueq of the parent atoms.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement elliposids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c-axis and C—Cl···Cl interactions shown as dashed lines.
Dichloridobis(3-chloropyridine-κN)zinc top
Crystal data top
[ZnCl2(C5H4ClN)2]Z = 2
Mr = 363.35F(000) = 360
Triclinic, P1Dx = 1.773 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3429 (15) ÅCell parameters from 2456 reflections
b = 7.9220 (16) Åθ = 2.1–19.6°
c = 13.259 (3) ŵ = 2.57 mm1
α = 95.17 (3)°T = 298 K
β = 91.14 (3)°Prism, colorless
γ = 117.37 (3)°0.44 × 0.42 × 0.19 mm
V = 680.5 (2) Å3
Data collection top
Bruker P4
diffractometer
2640 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.398, Tmax = 0.641k = 99
5839 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.051P)2 + 1.6856P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[ZnCl2(C5H4ClN)2]γ = 117.37 (3)°
Mr = 363.35V = 680.5 (2) Å3
Triclinic, P1Z = 2
a = 7.3429 (15) ÅMo Kα radiation
b = 7.9220 (16) ŵ = 2.57 mm1
c = 13.259 (3) ÅT = 298 K
α = 95.17 (3)°0.44 × 0.42 × 0.19 mm
β = 91.14 (3)°
Data collection top
Bruker P4
diffractometer
2640 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2066 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.641Rint = 0.044
5839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.16Δρmax = 0.82 e Å3
2640 reflectionsΔρmin = 1.24 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13903 (9)0.76409 (9)0.24334 (5)0.0394 (2)
Cl40.9010 (2)1.1496 (2)0.46968 (12)0.0522 (4)
Cl20.1747 (3)0.5228 (2)0.29582 (12)0.0544 (4)
Cl30.6030 (3)0.6881 (3)0.08020 (13)0.0623 (5)
Cl10.1516 (2)0.7837 (3)0.24273 (13)0.0620 (5)
N10.2137 (7)0.7713 (6)0.0913 (3)0.0399 (10)
N20.3755 (7)1.0102 (6)0.3193 (3)0.0373 (10)
C70.6947 (7)1.1654 (7)0.4135 (4)0.0357 (11)
C60.5425 (8)1.0075 (8)0.3607 (4)0.0394 (12)
H6A0.55360.89480.35290.047*
C20.4034 (9)0.7317 (8)0.0417 (4)0.0417 (12)
C10.3685 (8)0.7401 (7)0.0598 (4)0.0404 (12)
H1A0.45330.72410.10690.048*
C100.3626 (9)1.1745 (8)0.3302 (4)0.0404 (12)
H10A0.24661.17680.30240.049*
C80.6861 (9)1.3362 (8)0.4244 (5)0.0483 (14)
H8A0.79121.44580.45970.058*
C30.2782 (10)0.7512 (9)0.1128 (4)0.0530 (15)
H3A0.29750.73880.18170.064*
C50.0957 (9)0.7987 (9)0.0231 (4)0.0488 (14)
H5A0.00880.82480.04570.059*
C90.5139 (10)1.3371 (8)0.3805 (5)0.0510 (15)
H9A0.50211.44950.38560.061*
C40.1231 (10)0.7898 (11)0.0794 (5)0.0623 (18)
H4A0.03890.80940.12510.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0408 (4)0.0457 (4)0.0344 (4)0.0230 (3)0.0014 (3)0.0013 (3)
Cl40.0480 (8)0.0630 (9)0.0488 (9)0.0289 (7)0.0058 (6)0.0059 (7)
Cl20.0670 (10)0.0490 (8)0.0522 (9)0.0309 (7)0.0005 (7)0.0082 (6)
Cl30.0603 (10)0.0855 (12)0.0581 (10)0.0463 (9)0.0203 (8)0.0154 (8)
Cl10.0484 (8)0.0895 (12)0.0586 (10)0.0424 (9)0.0047 (7)0.0018 (8)
N10.048 (3)0.048 (2)0.030 (2)0.028 (2)0.0003 (19)0.0024 (18)
N20.043 (2)0.039 (2)0.028 (2)0.018 (2)0.0044 (18)0.0022 (17)
C70.029 (2)0.040 (3)0.035 (3)0.013 (2)0.000 (2)0.006 (2)
C60.047 (3)0.049 (3)0.032 (3)0.029 (3)0.006 (2)0.008 (2)
C20.047 (3)0.044 (3)0.041 (3)0.026 (3)0.010 (2)0.006 (2)
C10.046 (3)0.044 (3)0.039 (3)0.029 (3)0.002 (2)0.003 (2)
C100.047 (3)0.050 (3)0.035 (3)0.031 (3)0.006 (2)0.007 (2)
C80.049 (3)0.039 (3)0.046 (3)0.014 (3)0.004 (3)0.005 (2)
C30.053 (3)0.072 (4)0.029 (3)0.025 (3)0.005 (2)0.005 (3)
C50.049 (3)0.068 (4)0.041 (3)0.037 (3)0.002 (3)0.005 (3)
C90.060 (4)0.043 (3)0.055 (4)0.029 (3)0.001 (3)0.003 (3)
C40.060 (4)0.101 (5)0.037 (3)0.046 (4)0.002 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—N22.072 (4)C2—C31.372 (8)
Zn1—N12.098 (4)C2—C11.376 (8)
Zn1—Cl12.2099 (17)C1—H1A0.9300
Zn1—Cl22.2130 (16)C10—C91.356 (8)
Cl4—C71.736 (5)C10—H10A0.9300
Cl3—C21.730 (6)C8—C91.385 (9)
N1—C11.336 (7)C8—H8A0.9300
N1—C51.340 (7)C3—C41.379 (9)
N2—C101.342 (7)C3—H3A0.9300
N2—C61.344 (7)C5—C41.378 (9)
C7—C61.352 (7)C5—H5A0.9300
C7—C81.378 (8)C9—H9A0.9300
C6—H6A0.9300C4—H4A0.9300
N2—Zn1—N1104.62 (18)N1—C1—C2120.5 (5)
N2—Zn1—Cl1110.33 (14)N1—C1—H1A119.7
N1—Zn1—Cl1104.81 (14)C2—C1—H1A119.7
N2—Zn1—Cl2105.93 (14)N2—C10—C9121.9 (5)
N1—Zn1—Cl2105.50 (13)N2—C10—H10A119.1
Cl1—Zn1—Cl2124.03 (8)C9—C10—H10A119.1
C1—N1—C5119.1 (5)C7—C8—C9117.0 (5)
C1—N1—Zn1122.1 (4)C7—C8—H8A121.5
C5—N1—Zn1118.7 (4)C9—C8—H8A121.5
C10—N2—C6118.7 (5)C2—C3—C4118.2 (6)
C10—N2—Zn1120.6 (4)C2—C3—H3A120.9
C6—N2—Zn1120.7 (4)C4—C3—H3A120.9
C6—C7—C8121.0 (5)N1—C5—C4122.5 (6)
C6—C7—Cl4119.0 (4)N1—C5—H5A118.7
C8—C7—Cl4120.0 (4)C4—C5—H5A118.7
N2—C6—C7121.3 (5)C10—C9—C8120.1 (5)
N2—C6—H6A119.4C10—C9—H9A120.0
C7—C6—H6A119.4C8—C9—H9A120.0
C3—C2—C1120.9 (5)C5—C4—C3118.6 (6)
C3—C2—Cl3119.6 (5)C5—C4—H4A120.7
C1—C2—Cl3119.4 (4)C3—C4—H4A120.7

Experimental details

Crystal data
Chemical formula[ZnCl2(C5H4ClN)2]
Mr363.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3429 (15), 7.9220 (16), 13.259 (3)
α, β, γ (°)95.17 (3), 91.14 (3), 117.37 (3)
V3)680.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.44 × 0.42 × 0.19
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.398, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
5839, 2640, 2066
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.147, 1.16
No. of reflections2640
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.24

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (grant No. Y4110066) for financial support.

References

First citationBertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P. & Terraneo, G. (2010). Coord. Chem. Rev. 254, 677–695.  CrossRef CAS Google Scholar
First citationBhosekar, G., Jess, I., Lehnert, N. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 605–611.  CrossRef Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CrossRef CAS Web of Science Google Scholar
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. pp. 363–372.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds