metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N-bromo-2-chloro­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 May 2011; accepted 7 June 2011; online 18 June 2011)

In the structure of the title compound, K+·C6H4BrClNO2S·1.5H2O, the K+ ion is hepta­coordinated by three O atoms from water mol­ecules and by four sulfonyl O atoms of N-bromo-2-chloro­benzene­sulfonamidate anions. The S—N distance of 1.582 (4) Å is consistent with an S=N double bond. The crystal structure is stabilized by inter­molecular O—H⋯Br and O—H⋯N hydrogen bonds. The asymmetric unit consits of one potassium cation, one N-bromo-2-chloro­benzene­sulfonamidate anion and one water mol­ecule in general positions and one water mol­ecule located on a twofold rotation axis.

Related literature

For preparation of N-haloaryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For our study of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.], 2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m870.]). For related structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4BrClNO2S·1.5H2O

  • Mr = 335.65

  • Orthorhombic, F d d 2

  • a = 12.343 (2) Å

  • b = 52.066 (6) Å

  • c = 6.942 (1) Å

  • V = 4461.3 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.244, Tmax = 0.468

  • 4075 measured reflections

  • 1909 independent reflections

  • 1841 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.06

  • 1909 reflections

  • 141 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 671 Friedel pairs

  • Flack parameter: 0.019 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.80 (2) 2.16 (2) 2.937 (4) 164 (5)
O3—H32⋯Br1ii 0.80 (2) 2.83 (3) 3.574 (3) 156 (4)
O4—H41⋯N1iii 0.82 (2) 2.13 (3) 2.905 (4) 157 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) -x, -y, z; (iii) [x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To explore the effect of replacing sodium by potassium on the solid state structures of N-haloarylsulfonamidates (Gowda et al., 2011a,b), the structure of potassium N-bromo-2-chloro-benzenesulfonamidate sesquihydrate (I) has been determined (Fig. 1). The structure of I resembles those of sodium N-bromo-2-chloro-benzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011b), sodium N-chloro-2-chloro- benzenesulfonamidate sesquihydrate (III)(Gowda et al., 2010), potassium N-chloro-4-chloro-benzenesulfonamidate monohydrate (IV)(Gowda et al., 2011a), and other sodium N-chloro- arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the structure of the title compound the K+ ion is hepta coordinated by three O atoms from water molecules and by four sulfonyl O atoms of N-bromo-2-chloro-benzenesulfonamide anions. The replacement of Na+ by K+ changes the coordination from hexa to hepta coordination (Gowda et al., 2011b).

The S—N distance of 1.582 (4)Å is consistent with an S—N double bond and is in agreement with the observed values of 1.579 (6) Å in (II), 1.588 (2) Å in (III) and 1.588 (2) Å in (IV)

In the crystal structure two-dimensional polymeric layer are found that are located parallel to the ac plane (Fig. 2). The molecular packing is stabilized by O3—H31···N1, O3—H32···Br1 and O4—H41···N1 hydrogen bonds (Table 1).

Related literature top

For preparation of N-haloarylsulfonamides, see: Usha & Gowda (2006). For our study of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2010, 2011a,b). For related structures, see: George et al. (2000); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Usha & Gowda, 2006). The purity of the compound was checked by determining its melting point (176 °). It was characterized by recording its infrared and NMR spectra. Yellow prisms of the title compound used in X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

The H atoms bound to O atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The absolute structure was determined on the basis of 671 Friedel pairs pairs.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii. Symmetry codes: (i) x +1/2, y , z -1/2; (ii) - x +1/2, - y , z -1/2".
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Potassium N-bromo-2-chlorobenzenesulfonamidate sesquihydrate top
Crystal data top
K+·C6H4BrClNO2S·1.5H2OF(000) = 2640
Mr = 335.65Dx = 1.999 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2515 reflections
a = 12.343 (2) Åθ = 2.9–27.9°
b = 52.066 (6) ŵ = 4.47 mm1
c = 6.942 (1) ÅT = 293 K
V = 4461.3 (11) Å3Prism, yellow
Z = 160.44 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1909 independent reflections
Radiation source: fine-focus sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 815
Tmin = 0.244, Tmax = 0.468k = 5664
4075 measured reflectionsl = 86
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0419P)2 + 7.9401P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
1909 reflectionsΔρmax = 0.42 e Å3
141 parametersΔρmin = 0.52 e Å3
4 restraintsAbsolute structure: Flack (1983), 671 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (9)
Crystal data top
K+·C6H4BrClNO2S·1.5H2OV = 4461.3 (11) Å3
Mr = 335.65Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 12.343 (2) ŵ = 4.47 mm1
b = 52.066 (6) ÅT = 293 K
c = 6.942 (1) Å0.44 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1909 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1841 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.468Rint = 0.026
4075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.52 e Å3
1909 reflectionsAbsolute structure: Flack (1983), 671 Friedel pairs
141 parametersAbsolute structure parameter: 0.019 (9)
4 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1277 (3)0.07221 (6)0.8359 (5)0.0279 (7)
C20.2039 (3)0.08804 (7)0.7551 (6)0.0366 (8)
C30.2302 (4)0.11022 (8)0.8473 (8)0.0527 (12)
H30.28110.12130.79350.063*
C40.1824 (4)0.11628 (8)1.0178 (9)0.0620 (14)
H40.20170.13151.07880.074*
C50.1081 (4)0.10099 (9)1.1015 (8)0.0568 (13)
H50.07660.10551.21840.068*
C60.0802 (3)0.07872 (7)1.0103 (7)0.0383 (8)
H60.02910.06781.06550.046*
Br10.06844 (3)0.067404 (8)0.49856 (7)0.04826 (13)
Cl10.26996 (9)0.08136 (2)0.54056 (16)0.0559 (3)
K10.34639 (6)0.007514 (14)0.52051 (13)0.03396 (18)
N10.0549 (2)0.04684 (5)0.5150 (5)0.0326 (6)
O10.0081 (2)0.03366 (5)0.8608 (4)0.0389 (6)
O20.1870 (2)0.02816 (5)0.7239 (5)0.0386 (6)
O30.2768 (2)0.03195 (5)0.7376 (5)0.0412 (6)
H310.315 (3)0.0386 (9)0.817 (6)0.049*
H320.247 (4)0.0416 (8)0.666 (6)0.049*
O40.50000.00000.8095 (6)0.0466 (10)
H410.505 (4)0.0112 (7)0.892 (6)0.056*
S10.09016 (6)0.043209 (13)0.73226 (12)0.02646 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (16)0.0232 (15)0.0302 (17)0.0029 (13)0.0063 (14)0.0003 (13)
C20.0397 (18)0.0328 (16)0.037 (2)0.0047 (13)0.0093 (19)0.0048 (18)
C30.060 (3)0.030 (2)0.068 (3)0.0135 (19)0.023 (2)0.004 (2)
C40.078 (3)0.032 (2)0.075 (4)0.001 (2)0.028 (3)0.019 (2)
C50.073 (3)0.044 (2)0.053 (3)0.019 (2)0.013 (2)0.022 (2)
C60.048 (2)0.0327 (17)0.035 (2)0.0119 (15)0.0027 (19)0.0056 (18)
Br10.0399 (2)0.0498 (2)0.0551 (3)0.00658 (16)0.0060 (2)0.0135 (2)
Cl10.0568 (6)0.0659 (7)0.0449 (6)0.0265 (5)0.0108 (5)0.0044 (5)
K10.0342 (4)0.0329 (4)0.0348 (4)0.0038 (3)0.0060 (3)0.0016 (3)
N10.0353 (14)0.0298 (13)0.0328 (16)0.0011 (11)0.0023 (14)0.0036 (14)
O10.0466 (15)0.0280 (12)0.0421 (16)0.0063 (11)0.0119 (12)0.0061 (11)
O20.0422 (13)0.0306 (11)0.0429 (16)0.0119 (10)0.0037 (12)0.0029 (12)
O30.0528 (16)0.0311 (13)0.0396 (16)0.0014 (11)0.0041 (15)0.0001 (13)
O40.070 (3)0.038 (2)0.031 (2)0.0152 (19)0.0000.000
S10.0315 (4)0.0186 (3)0.0293 (4)0.0007 (3)0.0042 (3)0.0006 (3)
Geometric parameters (Å, º) top
C1—C21.371 (5)K1—O3ii2.790 (3)
C1—C61.387 (6)K1—O2ii2.803 (3)
C1—S11.736 (3)K1—O1ii3.008 (3)
C2—C31.360 (6)K1—S1ii3.4047 (11)
C2—Cl11.733 (5)K1—H323.01 (4)
C3—C41.360 (8)N1—S11.582 (4)
C3—H30.9300O1—S11.438 (3)
C4—C51.346 (8)O1—K1iii2.659 (3)
C4—H40.9300O1—K1iv3.008 (3)
C5—C61.365 (6)O2—S11.431 (3)
C5—H50.9300O2—K1iv2.803 (3)
C6—H60.9300O3—K1iv2.790 (3)
Br1—N11.864 (3)O3—H310.804 (19)
K1—O22.649 (3)O3—H320.796 (19)
K1—O1i2.659 (3)O4—K1v2.788 (3)
K1—O32.689 (3)O4—H410.819 (19)
K1—O42.788 (3)S1—K1iv3.4047 (11)
C2—C1—C6120.0 (3)O1i—K1—S1ii88.82 (6)
C2—C1—S1122.4 (3)O3—K1—S1ii79.06 (7)
C6—C1—S1117.5 (3)O4—K1—S1ii99.07 (5)
C3—C2—C1118.8 (4)O3ii—K1—S1ii93.74 (7)
C3—C2—Cl1117.5 (3)O2ii—K1—S1ii24.26 (5)
C1—C2—Cl1123.6 (3)O1ii—K1—S1ii24.95 (5)
C2—C3—C4120.2 (4)O2—K1—H3282.2 (9)
C2—C3—H3119.9O1i—K1—H32151.7 (9)
C4—C3—H3119.9O3—K1—H3214.7 (6)
C5—C4—C3122.3 (4)O4—K1—H3285.2 (7)
C5—C4—H4118.9O3ii—K1—H32113.7 (7)
C3—C4—H4118.9O2ii—K1—H3267.9 (6)
C4—C5—C6118.3 (5)O1ii—K1—H3276.2 (9)
C4—C5—H5120.9S1ii—K1—H3268.4 (8)
C6—C5—H5120.9S1—N1—Br1110.60 (17)
C5—C6—C1120.4 (4)S1—O1—K1iii164.64 (17)
C5—C6—H6119.8S1—O1—K1iv93.13 (13)
C1—C6—H6119.8K1iii—O1—K1iv85.96 (7)
O2—K1—O1i124.89 (9)S1—O2—K1149.8 (2)
O2—K1—O376.94 (8)S1—O2—K1iv102.12 (15)
O1i—K1—O3149.87 (9)K1—O2—K1iv103.41 (8)
O2—K1—O4100.27 (10)K1—O3—K1iv102.72 (8)
O1i—K1—O482.02 (8)K1—O3—H31122 (4)
O3—K1—O472.95 (7)K1iv—O3—H3192 (4)
O2—K1—O3ii77.62 (10)K1—O3—H32106 (4)
O1i—K1—O3ii83.23 (9)K1iv—O3—H32118 (4)
O3—K1—O3ii124.66 (5)H31—O3—H32116 (5)
O4—K1—O3ii160.21 (6)K1—O4—K1v87.96 (13)
O2—K1—O2ii123.44 (5)K1—O4—H41117 (4)
O1i—K1—O2ii98.26 (9)K1v—O4—H41123 (4)
O3—K1—O2ii81.86 (9)O2—S1—O1115.10 (17)
O4—K1—O2ii122.39 (7)O2—S1—N1104.89 (17)
O3ii—K1—O2ii72.84 (8)O1—S1—N1116.06 (16)
O2—K1—O1ii158.24 (8)O2—S1—C1105.67 (17)
O1i—K1—O1ii76.30 (9)O1—S1—C1103.37 (17)
O3—K1—O1ii81.53 (9)N1—S1—C1111.42 (15)
O4—K1—O1ii76.07 (7)O2—S1—K1iv53.61 (12)
O3ii—K1—O1ii113.00 (8)O1—S1—K1iv61.92 (11)
O2ii—K1—O1ii49.09 (7)N1—S1—K1iv135.78 (10)
O2—K1—S1ii143.01 (7)C1—S1—K1iv111.69 (11)
C6—C1—C2—C31.1 (5)O1i—K1—O4—K1v41.28 (6)
S1—C1—C2—C3178.8 (3)O3—K1—O4—K1v121.76 (7)
C6—C1—C2—Cl1178.7 (3)O3ii—K1—O4—K1v83.5 (3)
S1—C1—C2—Cl10.9 (5)O2ii—K1—O4—K1v53.47 (8)
C1—C2—C3—C40.8 (6)O1ii—K1—O4—K1v36.50 (6)
Cl1—C2—C3—C4178.9 (3)S1ii—K1—O4—K1v46.24 (2)
C2—C3—C4—C50.2 (7)K1—O2—S1—O1139.5 (3)
C3—C4—C5—C60.2 (7)K1iv—O2—S1—O17.7 (2)
C4—C5—C6—C10.0 (6)K1—O2—S1—N110.7 (4)
C2—C1—C6—C50.7 (6)K1iv—O2—S1—N1136.49 (13)
S1—C1—C6—C5178.5 (3)K1—O2—S1—C1107.1 (3)
O1i—K1—O2—S171.6 (4)K1iv—O2—S1—C1105.67 (15)
O3—K1—O2—S1131.4 (3)K1—O2—S1—K1iv147.2 (4)
O4—K1—O2—S1159.0 (3)K1iii—O1—S1—O279.1 (7)
O3ii—K1—O2—S11.0 (3)K1iv—O1—S1—O27.01 (19)
O2ii—K1—O2—S160.5 (3)K1iii—O1—S1—N143.9 (7)
O1ii—K1—O2—S1122.9 (3)K1iv—O1—S1—N1130.04 (12)
S1ii—K1—O2—S180.6 (3)K1iii—O1—S1—C1166.2 (6)
O1i—K1—O2—K1iv141.38 (9)K1iv—O1—S1—C1107.68 (12)
O3—K1—O2—K1iv15.65 (9)K1iii—O1—S1—K1iv86.2 (6)
O4—K1—O2—K1iv53.99 (9)Br1—N1—S1—O2177.66 (15)
O3ii—K1—O2—K1iv146.08 (11)Br1—N1—S1—O154.1 (2)
O2ii—K1—O2—K1iv86.54 (16)Br1—N1—S1—C163.8 (2)
O1ii—K1—O2—K1iv24.1 (3)Br1—N1—S1—K1iv129.71 (11)
S1ii—K1—O2—K1iv66.47 (16)C2—C1—S1—O260.1 (3)
O2—K1—O3—K1iv15.68 (9)C6—C1—S1—O2117.8 (3)
O1i—K1—O3—K1iv124.69 (15)C2—C1—S1—O1178.6 (3)
O4—K1—O3—K1iv89.55 (10)C6—C1—S1—O13.6 (3)
O3ii—K1—O3—K1iv80.34 (16)C2—C1—S1—N153.3 (3)
O2ii—K1—O3—K1iv142.87 (10)C6—C1—S1—N1128.9 (3)
O1ii—K1—O3—K1iv167.49 (10)C2—C1—S1—K1iv116.6 (3)
S1ii—K1—O3—K1iv167.32 (9)C6—C1—S1—K1iv61.2 (3)
O2—K1—O4—K1v165.44 (7)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1iv0.80 (2)2.16 (2)2.937 (4)164 (5)
O3—H32···Br1vi0.80 (2)2.83 (3)3.574 (3)156 (4)
O4—H41···N1vii0.82 (2)2.13 (3)2.905 (4)157 (5)
Symmetry codes: (iv) x+1/2, y, z+1/2; (vi) x, y, z; (vii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaK+·C6H4BrClNO2S·1.5H2O
Mr335.65
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)12.343 (2), 52.066 (6), 6.942 (1)
V3)4461.3 (11)
Z16
Radiation typeMo Kα
µ (mm1)4.47
Crystal size (mm)0.44 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.244, 0.468
No. of measured, independent and
observed [I > 2σ(I)] reflections
4075, 1909, 1841
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.06
No. of reflections1909
No. of parameters141
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.52
Absolute structureFlack (1983), 671 Friedel pairs
Absolute structure parameter0.019 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.804 (19)2.16 (2)2.937 (4)164 (5)
O3—H32···Br1ii0.796 (19)2.83 (3)3.574 (3)156 (4)
O4—H41···N1iii0.819 (19)2.13 (3)2.905 (4)157 (5)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a UGC-BSR one-time grant to Faculty/Professors.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds