organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Bromo-2-oxoindolin-3-yl­­idene)thio­semicarbazide aceto­nitrile monosolvate

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96201-900 Rio Grande, RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900 Santa Maria, RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

(Received 9 June 2011; accepted 17 June 2011; online 25 June 2011)

In the crystal structure of the title compound, C9H7BrN4OS·C2H3N, the mol­ecules are connected via N—H⋯O and N—H⋯S inter­actions into zigzag chains perpendicular to [001]. The mol­ecules in these chains are additionally linked to acetonitrile solvent mol­ecules through N—H⋯N hydrogen bonding. The mol­ecules are arranged in layers and are stacked in the direction of the c axis indicative of ππ inter­actions, with distance = 3.381 (7) Å for the C⋯C interaction parallel to [001]. An intra­molecular N—H⋯O hydrogen bond is also observed in the main mol­ecule.

Related literature

For the pharmacological properties of isatin-thio­semicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003[Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.]). For the synthesis of 5-bromo­isatin-3-thio­semicarbazone, see: Campaigne & Archer (1952[Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7BrN4OS·C2H3N

  • Mr = 340.21

  • Monoclinic, C 2/c

  • a = 20.017 (4) Å

  • b = 13.352 (2) Å

  • c = 13.190 (5) Å

  • β = 129.258 (2)°

  • V = 2729.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker CCD X8 APEXII diffractometer

  • 10884 measured reflections

  • 3377 independent reflections

  • 2754 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.09

  • 3377 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H5⋯O 0.86 2.10 2.769 (3) 134
N4—H6⋯N5 0.86 2.61 3.438 (5) 161
N4—H7⋯Oi 0.86 2.05 2.906 (4) 173
N1—H4⋯Sii 0.86 2.50 3.350 (3) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, isatin-based synthetic thiosemicarbazones show pharmacological activity against cruzain, falcipain-2 and rhodesain (Chiyanzu et al., 2003). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of 5-Bromoisatin-3-thiosemicarbazone acetonitrile solvate.

The crystal structure of the title compound is build of one-dimensional zigzag chain in which the molecules are linked by pairs of N—H···O and N—H···S hydrogen bonding. Each two molecules within these chains are additionally linked by acetonitrile molecules via N—H···N hydrogen bonding and weak C—H···S interactions. The molecules are arranged in layers and are stacked into the direction of the c-axis indicative for π-π-interactions.

Related literature top

For the pharmacological properties of isatin-thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003). For the synthesis of 5-bromoisatin-3-thiosemicarbazone, see: Campaigne & Archer (1952).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Campaigne & Archer, 1952). The hydrochloric acid catalyzed reaction of 5-bromoisatin (8,83 mmol) and thiosemicarbazide (8,83 mmol) in ethanol (50 ml) was refluxed for 6 h. After cooling and filtering, crystals suitable for X-ray diffraction were obtained from an acetonitrile solution.

Refinement top

The C-H and N-H H atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq of the parent atom (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å for aromatic), C—H = 0.96 Å for methyl and N—H = 0.86 Å for N-H H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound viewed in the direction of the crystallographic c axis. Hydrogen bonding is indicated as dashed lines.
1-(5-Bromo-2-oxoindolin-3-ylidene)thiosemicarbazide acetonitrile monosolvate top
Crystal data top
C9H7BrN4OS·C2H3NF(000) = 1360
Mr = 340.21Dx = 1.656 Mg m3
Monoclinic, C2/cMelting point: 544.15 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.017 (4) ÅCell parameters from 3718 reflections
b = 13.352 (2) Åθ = 2.6–27.6°
c = 13.190 (5) ŵ = 3.16 mm1
β = 129.258 (2)°T = 293 K
V = 2729.6 (12) Å3Block, yellow
Z = 80.22 × 0.20 × 0.16 mm
Data collection top
Bruker CCD X8 APEXII
diffractometer
2754 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Bruker CCD X8 APEXIIRint = 0.030
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 2614
10884 measured reflectionsk = 1617
3377 independent reflectionsl = 717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0396P)2 + 12.0809P]
where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C9H7BrN4OS·C2H3NV = 2729.6 (12) Å3
Mr = 340.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.017 (4) ŵ = 3.16 mm1
b = 13.352 (2) ÅT = 293 K
c = 13.190 (5) Å0.22 × 0.20 × 0.16 mm
β = 129.258 (2)°
Data collection top
Bruker CCD X8 APEXII
diffractometer
2754 reflections with I > 2σ(I)
10884 measured reflectionsRint = 0.030
3377 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0396P)2 + 12.0809P]
where P = (Fo2 + 2Fc2)/3
3377 reflectionsΔρmax = 1.03 e Å3
173 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.3611 (2)0.2695 (2)0.4897 (3)0.0175 (6)
C100.0960 (2)0.0277 (3)0.2196 (3)0.0297 (8)
H80.09670.09950.21590.045*
H90.07350.00030.13610.045*
H100.06020.00750.24100.045*
C110.1832 (2)0.0088 (3)0.3192 (4)0.0296 (8)
C60.52345 (19)0.0354 (2)0.6478 (3)0.0166 (6)
C50.4655 (2)0.1144 (2)0.5889 (3)0.0169 (6)
H30.40620.10380.53010.020*
C40.5007 (2)0.2109 (2)0.6225 (3)0.0205 (6)
C30.5890 (2)0.2282 (2)0.7097 (3)0.0214 (7)
H20.61010.29340.73000.026*
C20.6469 (2)0.1459 (3)0.7675 (3)0.0224 (7)
H10.70630.15580.82540.027*
C10.6126 (2)0.0514 (2)0.7353 (3)0.0181 (6)
C80.5995 (2)0.1188 (3)0.7243 (3)0.0191 (6)
C70.51065 (19)0.0725 (2)0.6367 (3)0.0152 (6)
Br0.42473 (2)0.32205 (3)0.54837 (4)0.02739 (12)
N20.43754 (17)0.1178 (2)0.5672 (2)0.0171 (5)
N30.43806 (16)0.2191 (2)0.5678 (2)0.0174 (5)
H50.48600.25150.61650.021*
N40.29129 (18)0.2149 (2)0.4244 (3)0.0217 (6)
H60.29510.15070.43170.026*
H70.24140.24300.37410.026*
N50.2515 (2)0.0381 (3)0.3981 (4)0.0491 (10)
N10.65560 (17)0.0418 (2)0.7786 (3)0.0197 (5)
H40.71080.04860.83290.024*
O0.61642 (14)0.20772 (17)0.7432 (2)0.0200 (5)
S0.36470 (5)0.39515 (6)0.48661 (8)0.02291 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0139 (15)0.0224 (17)0.0165 (14)0.0033 (12)0.0098 (13)0.0014 (12)
C100.0273 (19)0.0265 (19)0.0264 (18)0.0018 (15)0.0126 (16)0.0003 (15)
C110.0214 (18)0.0231 (18)0.035 (2)0.0042 (14)0.0134 (17)0.0086 (15)
C60.0129 (14)0.0219 (16)0.0136 (14)0.0017 (12)0.0077 (12)0.0009 (12)
C50.0157 (15)0.0187 (15)0.0156 (14)0.0004 (12)0.0097 (13)0.0004 (12)
C40.0239 (17)0.0175 (16)0.0227 (16)0.0048 (13)0.0160 (15)0.0041 (13)
C30.0248 (17)0.0163 (16)0.0259 (17)0.0049 (13)0.0173 (15)0.0006 (13)
C20.0138 (15)0.0238 (17)0.0244 (17)0.0037 (13)0.0096 (14)0.0032 (13)
C10.0149 (15)0.0230 (16)0.0164 (14)0.0006 (12)0.0099 (13)0.0005 (12)
C80.0124 (15)0.0271 (18)0.0147 (14)0.0001 (13)0.0072 (13)0.0000 (12)
C70.0119 (14)0.0188 (15)0.0128 (13)0.0001 (11)0.0068 (12)0.0005 (11)
Br0.0271 (2)0.01948 (18)0.0320 (2)0.00440 (14)0.01693 (16)0.00453 (14)
N20.0164 (13)0.0179 (13)0.0172 (13)0.0003 (10)0.0107 (12)0.0007 (10)
N30.0101 (12)0.0179 (13)0.0187 (13)0.0011 (10)0.0066 (11)0.0003 (10)
N40.0130 (13)0.0167 (13)0.0283 (15)0.0002 (11)0.0097 (12)0.0017 (11)
N50.0247 (19)0.046 (2)0.052 (2)0.0026 (16)0.0130 (18)0.0101 (19)
N10.0110 (12)0.0191 (14)0.0223 (13)0.0005 (10)0.0073 (11)0.0002 (11)
O0.0133 (11)0.0176 (11)0.0212 (11)0.0014 (9)0.0072 (10)0.0005 (9)
S0.0140 (4)0.0176 (4)0.0273 (4)0.0001 (3)0.0084 (3)0.0001 (3)
Geometric parameters (Å, º) top
C9—N41.305 (4)C3—C21.419 (5)
C9—N31.370 (4)C3—H20.9300
C9—S1.681 (3)C2—C11.369 (5)
C10—C111.451 (5)C2—H10.9300
C10—H80.9600C1—N11.412 (4)
C10—H90.9600C8—O1.217 (4)
C10—H100.9600C8—O1.217 (4)
C11—N51.142 (5)C8—N11.346 (4)
C11—N51.142 (5)C8—C71.510 (4)
C6—C51.386 (4)C7—N21.285 (4)
C6—C11.398 (4)N2—N31.352 (4)
C6—C71.455 (4)N3—H50.8600
C5—C41.399 (5)N4—H60.8600
C5—H30.9300N4—H70.8600
C4—C31.389 (5)N1—H40.8600
C4—Br1.894 (3)
N4—C9—N3116.5 (3)C1—C2—H1121.0
N4—C9—S125.9 (2)C3—C2—H1121.0
N3—C9—S117.6 (2)C2—C1—C6121.6 (3)
C11—C10—H8109.5C2—C1—N1129.0 (3)
C11—C10—H9109.5C6—C1—N1109.4 (3)
H8—C10—H9109.5O—C8—O0.00 (5)
C11—C10—H10109.5O—C8—N1127.3 (3)
H8—C10—H10109.5O—C8—N1127.3 (3)
H9—C10—H10109.5O—C8—C7126.6 (3)
N5—C11—N50.0 (8)O—C8—C7126.6 (3)
N5—C11—C10179.2 (5)N1—C8—C7106.1 (3)
N5—C11—C10179.2 (5)N2—C7—C6125.9 (3)
C5—C6—C1121.7 (3)N2—C7—C8127.7 (3)
C5—C6—C7131.7 (3)C6—C7—C8106.3 (3)
C1—C6—C7106.6 (3)C7—N2—N3117.8 (3)
C6—C5—C4116.6 (3)N2—N3—C9119.0 (3)
C6—C5—H3121.7N2—N3—H5120.5
C4—C5—H3121.7C9—N3—H5120.5
C3—C4—C5122.5 (3)C9—N4—H6120.0
C3—C4—Br118.8 (3)C9—N4—H7120.0
C5—C4—Br118.6 (2)H6—N4—H7120.0
C4—C3—C2119.6 (3)C8—N1—C1111.6 (3)
C4—C3—H2120.2C8—N1—H4124.2
C2—C3—H2120.2C1—N1—H4124.2
C1—C2—C3117.9 (3)
C1—C6—C5—C40.6 (4)O—C8—C7—N20.2 (5)
C7—C6—C5—C4180.0 (3)N1—C8—C7—N2178.7 (3)
C6—C5—C4—C30.3 (4)O—C8—C7—C6179.1 (3)
C6—C5—C4—Br178.6 (2)O—C8—C7—C6179.1 (3)
C5—C4—C3—C20.3 (5)N1—C8—C7—C60.2 (3)
Br—C4—C3—C2179.2 (2)C6—C7—N2—N3179.4 (3)
C4—C3—C2—C10.7 (5)C8—C7—N2—N31.9 (4)
C3—C2—C1—C60.4 (5)C7—N2—N3—C9176.9 (3)
C3—C2—C1—N1179.9 (3)N4—C9—N3—N23.6 (4)
C5—C6—C1—C20.3 (5)S—C9—N3—N2176.5 (2)
C7—C6—C1—C2179.8 (3)C10—C11—N5—N50 (12)
C5—C6—C1—N1179.3 (3)O—C8—N1—C1179.0 (3)
C7—C6—C1—N10.2 (3)O—C8—N1—C1179.0 (3)
C5—C6—C7—N21.8 (5)C7—C8—N1—C10.1 (3)
C1—C6—C7—N2178.7 (3)C2—C1—N1—C8179.6 (3)
C5—C6—C7—C8179.2 (3)C6—C1—N1—C80.0 (3)
C1—C6—C7—C80.2 (3)N1—C8—O—O0.0 (2)
O—C8—C7—N20.2 (5)C7—C8—O—O0.00 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O0.862.102.769 (3)134
N4—H6···N50.862.613.438 (5)161
N4—H7···Oi0.862.052.906 (4)173
N1—H4···Sii0.862.503.350 (3)169
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H7BrN4OS·C2H3N
Mr340.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.017 (4), 13.352 (2), 13.190 (5)
β (°) 129.258 (2)
V3)2729.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker CCD X8 APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10884, 3377, 2754
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.09
No. of reflections3377
No. of parameters173
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0396P)2 + 12.0809P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.03, 0.86

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O0.862.102.769 (3)134
N4—H6···N50.862.613.438 (5)161
N4—H7···Oi0.862.052.906 (4)173
N1—H4···Sii0.862.503.350 (3)169
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge Professor Dr Manfredo Hörner (Department of Chemistry, Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements, and CNPq/FAPERGS for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.  CrossRef Google Scholar
First citationChiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527–3530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds