metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N-chloro-o-toluene­sulfonamidate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 June 2011; accepted 16 June 2011; online 22 June 2011)

In the crystal structure of the title compound, K+·C7H7ClNO2S·H2O, the K+ ion is hepta­coordinated by two O atoms from water mol­ecules, four sulfonyl O atoms and the Cl atom of the anion. The S—N distance of 1.584 (3) Å is consistent with an S—N double bond. In the crystal, anions are connected by K+ cations into layers parallel to the ab plane. The water mol­ecules are coordinated to the K+ cations and are additionally linked by inter­molecular O—H⋯Cl and O—H⋯N hydrogen bonding.

Related literature

For our studies of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.], 2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m914.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E66, submitted.]); and on the oxidative strengths of N-halolaryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For similar structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For the preparation of the title compound, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C7H7ClNO2S·H2O

  • Mr = 261.76

  • Orthorhombic, P b c a

  • a = 11.4968 (9) Å

  • b = 6.7990 (5) Å

  • c = 26.883 (2) Å

  • V = 2101.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.42 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.694, Tmax = 0.766

  • 4396 measured reflections

  • 2150 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 0.92

  • 2150 reflections

  • 134 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯Cl1i 0.85 (1) 2.74 (2) 3.568 (3) 166 (4)
O3—H32⋯N1ii 0.85 (1) 2.08 (1) 2.909 (4) 167 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) -x+1, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound (I) was determined as a part of a project to explore the substituent effects and the effect of replacing sodium ions by potassium ions on the solid state structures of N-halo-arylsulfonamides (Gowda & Kumar, 2003; Usha & Gowda, 2006, Gowda et al., 2009, 2011a,b). The structure resembles those of potassium N, 2-dichloro-benzenesulfonamidate sesquihydrate (II)(Gowda et al., 2011a), potassium N-bromo, o-toluenesulfonamidate sesquihydrate (Gowda et al., 2011b) and sodium N-chloro, o-toluenesulfonamidate sesquihydrate (IV) (Gowda et al., 2009) and other sodium N-chloro-aryl- sulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the crystal structure of the title compound the K+ ion is hepta coordinated by two O atoms from water molecules, four sulfonyl O atoms and one Cl atom of the N-chloro,o-toluenesulfonamidate anions (Fig. 1). This coordination geometry is different from that in II and III, in which the potassium cations are hepta coordinated by three O atoms from water molecules and by four sulfonyl O atoms and and in III, in which the cations are octahedral coordinated.

The S—N distance of 1.584 (3)Å is consistent with an S—N double bond and is in agreement with the observed values of 1.582 (2)Å in II, 1.577 (5)Å in III and 1.590 (2) Å in IV.

The crystal structure comprises sheets parallel to the ab plane (Fig. 2). The molecular packing is additionally stabilized by O—H···Cl and O—H···N hydrogen bonds (Table 1).

Related literature top

For our studies of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2009, 2011a,b); and on the oxidative strengths of N-halolarylsulfonamides, see: Gowda & Kumar (2003); Usha & Gowda (2006). For similar structures, see: George et al. (2000); Olmstead & Power (1986). For the preparation of the title compound, see: Jyothi & Gowda (2004).

Experimental top

The title compound was prepared by the method similar to that reported in literature (Jyothi & Gowda, 2004). o-Toluenesulfonamide (2 g) was dissolved in hot aqueous solution (70° C) of 5 M KOH (40 ml). The resulting solution was filtered and Chlorine gas was passed through the clear solution of o-toluenesulfonamide in KOH to obtain the title compound. It was filtered under suction, quickly washed with a minimum quantity of ice cold water and dried. The purity of the compound was checked by determining its melting point (155° C). Colourless prisms of the compound were obtained from its aqueous solution at room temperature.

Refinement top

The water H atoms were located in difference map and were refined with O—H distance restrained to 0.85 (2) Å and H—H distance restrained to 1.365 Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the coordination geometry of the K+ cations with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) -x + 3/2, y + 1/2, z; (ii) -x + 1, -y + 2, -z; (iii) x, y + 1, z.
[Figure 2] Fig. 2. Crystal structure of the title compound with view in the direction of the a axis and hydrogen bonding drawn as dashed lines.
Potassium N-chloro-o-toluenesulfonamidate monohydrate top
Crystal data top
K+·C7H7ClNO2S·H2OF(000) = 1072
Mr = 261.76Dx = 1.655 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2737 reflections
a = 11.4968 (9) Åθ = 3.0–27.7°
b = 6.7990 (5) ŵ = 0.94 mm1
c = 26.883 (2) ÅT = 293 K
V = 2101.4 (3) Å3Prism, colourless
Z = 80.42 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2150 independent reflections
Radiation source: fine-focus sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 214
Tmin = 0.694, Tmax = 0.766k = 85
4396 measured reflectionsl = 3314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0717P)2 + 5.301P]
where P = (Fo2 + 2Fc2)/3
2150 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.59 e Å3
Crystal data top
K+·C7H7ClNO2S·H2OV = 2101.4 (3) Å3
Mr = 261.76Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4968 (9) ŵ = 0.94 mm1
b = 6.7990 (5) ÅT = 293 K
c = 26.883 (2) Å0.42 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2150 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1992 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.766Rint = 0.017
4396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.42 e Å3
2150 reflectionsΔρmin = 0.59 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.63387 (6)1.33711 (10)0.02856 (2)0.0327 (2)
Cl10.47408 (9)1.20077 (12)0.12455 (3)0.0481 (3)
S10.55243 (6)0.85908 (10)0.08371 (2)0.0260 (2)
O10.5175 (2)0.6996 (3)0.05138 (8)0.0412 (5)
N10.4458 (2)1.0067 (4)0.08324 (10)0.0368 (6)
O30.7703 (2)1.1144 (4)0.03605 (9)0.0494 (6)
H310.817 (3)1.179 (6)0.0541 (12)0.059*
H320.713 (2)1.084 (7)0.0541 (12)0.059*
O20.66241 (18)0.9505 (3)0.07163 (8)0.0367 (5)
C10.5708 (2)0.7601 (4)0.14466 (10)0.0251 (5)
C20.4782 (3)0.6704 (4)0.17010 (11)0.0305 (6)
C30.5030 (3)0.5932 (5)0.21709 (12)0.0426 (8)
H30.44410.53010.23460.051*
C40.6116 (4)0.6073 (5)0.23828 (12)0.0492 (9)
H40.62490.55480.26970.059*
C50.7001 (3)0.6985 (5)0.21318 (13)0.0466 (8)
H50.77320.70960.22770.056*
C60.6803 (3)0.7742 (5)0.16600 (11)0.0348 (6)
H60.74060.83450.14870.042*
C70.3566 (3)0.6577 (5)0.15053 (14)0.0427 (8)
H7A0.35820.61440.11650.051*
H7B0.32050.78490.15240.051*
H7C0.31290.56570.17010.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0370 (4)0.0316 (4)0.0294 (3)0.0002 (3)0.0028 (2)0.0026 (3)
Cl10.0630 (6)0.0315 (4)0.0497 (5)0.0118 (4)0.0137 (4)0.0022 (3)
S10.0319 (4)0.0261 (4)0.0199 (3)0.0016 (3)0.0016 (2)0.0001 (2)
O10.0564 (14)0.0378 (12)0.0293 (11)0.0012 (11)0.0026 (10)0.0105 (10)
N10.0396 (14)0.0365 (14)0.0344 (13)0.0095 (11)0.0050 (10)0.0007 (11)
O30.0535 (15)0.0560 (16)0.0387 (12)0.0129 (13)0.0017 (11)0.0097 (12)
O20.0377 (10)0.0383 (12)0.0340 (11)0.0015 (8)0.0096 (9)0.0056 (9)
C10.0325 (13)0.0201 (12)0.0228 (12)0.0029 (11)0.0005 (10)0.0009 (10)
C20.0406 (15)0.0216 (13)0.0293 (14)0.0025 (11)0.0092 (12)0.0011 (11)
C30.062 (2)0.0311 (16)0.0344 (16)0.0036 (15)0.0161 (15)0.0062 (13)
C40.079 (3)0.0414 (18)0.0274 (15)0.0164 (18)0.0037 (16)0.0082 (14)
C50.057 (2)0.0455 (19)0.0377 (17)0.0096 (16)0.0175 (15)0.0012 (15)
C60.0377 (15)0.0324 (15)0.0343 (15)0.0002 (13)0.0037 (12)0.0013 (12)
C70.0375 (16)0.0408 (18)0.0499 (19)0.0067 (14)0.0107 (14)0.0013 (15)
Geometric parameters (Å, º) top
K1—O2i2.724 (2)O3—H310.848 (10)
K1—O1ii2.777 (2)O3—H320.847 (10)
K1—O32.788 (3)O2—K1v2.724 (2)
K1—O3i2.790 (3)C1—C61.386 (4)
K1—O1iii2.870 (2)C1—C21.405 (4)
K1—O22.891 (2)C2—C31.397 (4)
K1—Cl13.3006 (11)C2—C71.497 (5)
K1—N13.447 (3)C3—C41.375 (6)
K1—H313.25 (4)C3—H30.9300
K1—H322.95 (4)C4—C51.369 (6)
Cl1—N11.755 (3)C4—H40.9300
S1—O11.446 (2)C5—C61.388 (4)
S1—O21.446 (2)C5—H50.9300
S1—N11.584 (3)C6—H60.9300
S1—C11.784 (3)C7—H7A0.9600
O1—K1ii2.777 (2)C7—H7B0.9600
O1—K1iv2.870 (2)C7—H7C0.9600
O3—K1v2.790 (3)
O2i—K1—O1ii153.30 (7)O1—S1—O2115.46 (14)
O2i—K1—O386.25 (8)O1—S1—N1104.81 (15)
O1ii—K1—O379.74 (8)O2—S1—N1113.75 (14)
O2i—K1—O3i74.57 (7)O1—S1—C1107.58 (13)
O1ii—K1—O3i80.01 (7)O2—S1—C1105.34 (13)
O3—K1—O3i75.94 (5)N1—S1—C1109.75 (13)
O2i—K1—O1iii93.83 (7)S1—O1—K1ii134.92 (14)
O1ii—K1—O1iii87.16 (6)S1—O1—K1iv130.02 (14)
O3—K1—O1iii149.53 (7)K1ii—O1—K1iv92.84 (6)
O3i—K1—O1iii74.75 (8)S1—N1—Cl1109.14 (15)
O2i—K1—O289.39 (6)S1—N1—K186.03 (11)
O1ii—K1—O2107.42 (7)Cl1—N1—K170.34 (10)
O3—K1—O272.04 (7)K1—O3—K1v101.62 (8)
O3i—K1—O2144.97 (8)K1—O3—H31116 (3)
O1iii—K1—O2138.41 (7)K1v—O3—H31117 (3)
O2i—K1—Cl1103.04 (5)K1—O3—H3293 (3)
O1ii—K1—Cl1103.35 (6)K1v—O3—H32120 (3)
O3—K1—Cl1130.37 (6)H31—O3—H32107.3 (16)
O3i—K1—Cl1153.67 (7)S1—O2—K1v136.54 (13)
O1iii—K1—Cl179.32 (5)S1—O2—K1112.42 (12)
O2—K1—Cl159.65 (4)K1v—O2—K1100.64 (7)
O2i—K1—N1122.85 (7)C6—C1—C2121.1 (3)
O1ii—K1—N183.01 (7)C6—C1—S1117.5 (2)
O3—K1—N1105.34 (8)C2—C1—S1121.4 (2)
O3i—K1—N1162.46 (7)C3—C2—C1116.6 (3)
O1iii—K1—N1100.15 (7)C3—C2—C7119.1 (3)
O2—K1—N146.20 (6)C1—C2—C7124.2 (3)
Cl1—K1—N130.05 (5)C4—C3—C2122.2 (3)
O2i—K1—H3180.0 (6)C4—C3—H3118.9
O1ii—K1—H3181.2 (6)C2—C3—H3118.9
O3—K1—H3113.6 (5)C3—C4—C5120.1 (3)
O3i—K1—H3162.7 (6)C3—C4—H4119.9
O1iii—K1—H31137.2 (6)C5—C4—H4119.9
O2—K1—H3184.2 (6)C4—C5—C6119.8 (3)
Cl1—K1—H31143.4 (6)C4—C5—H5120.1
N1—K1—H31118.9 (5)C6—C5—H5120.1
O2i—K1—H32102.8 (3)C5—C6—C1120.1 (3)
O1ii—K1—H3263.8 (5)C5—C6—H6120.0
O3—K1—H3216.6 (3)C1—C6—H6120.0
O3i—K1—H3278.7 (8)C2—C7—H7A109.5
O1iii—K1—H32143.6 (7)C2—C7—H7B109.5
O2—K1—H3274.7 (8)H7A—C7—H7B109.5
Cl1—K1—H32126.5 (7)C2—C7—H7C109.5
N1—K1—H3297.6 (6)H7A—C7—H7C109.5
H31—K1—H3224.8 (3)H7B—C7—H7C109.5
N1—Cl1—K179.61 (10)
O2i—K1—Cl1—N1135.35 (10)N1—K1—O3—K1v57.22 (10)
O1ii—K1—Cl1—N148.70 (10)O1—S1—O2—K1v29.4 (2)
O3—K1—Cl1—N139.09 (12)N1—S1—O2—K1v150.65 (16)
O3i—K1—Cl1—N1143.14 (15)C1—S1—O2—K1v89.11 (19)
O1iii—K1—Cl1—N1133.16 (10)O1—S1—O2—K1107.12 (14)
O2—K1—Cl1—N153.88 (10)N1—S1—O2—K114.13 (17)
O2—S1—O1—K1ii99.9 (2)C1—S1—O2—K1134.36 (11)
N1—S1—O1—K1ii26.1 (2)O2i—K1—O2—S1147.79 (8)
C1—S1—O1—K1ii142.86 (17)O1ii—K1—O2—S153.29 (14)
O2—S1—O1—K1iv58.3 (2)O3—K1—O2—S1125.95 (14)
N1—S1—O1—K1iv175.69 (16)O3i—K1—O2—S1150.81 (12)
C1—S1—O1—K1iv58.93 (19)O1iii—K1—O2—S152.71 (17)
O1—S1—N1—Cl1176.31 (15)Cl1—K1—O2—S142.26 (10)
O2—S1—N1—Cl156.67 (19)N1—K1—O2—S18.18 (10)
C1—S1—N1—Cl161.05 (19)O2i—K1—O2—K1v60.99 (11)
O1—S1—N1—K1116.09 (11)O1ii—K1—O2—K1v97.93 (8)
O2—S1—N1—K110.93 (13)O3—K1—O2—K1v25.27 (8)
C1—S1—N1—K1128.65 (10)O3i—K1—O2—K1v0.41 (16)
K1—Cl1—N1—S178.36 (14)O1iii—K1—O2—K1v156.08 (8)
O2i—K1—N1—S157.37 (13)Cl1—K1—O2—K1v166.52 (9)
O1ii—K1—N1—S1115.47 (11)N1—K1—O2—K1v159.39 (12)
O3—K1—N1—S138.17 (12)O1—S1—C1—C6119.2 (2)
O3i—K1—N1—S1130.0 (2)O2—S1—C1—C64.5 (3)
O1iii—K1—N1—S1158.69 (10)N1—S1—C1—C6127.3 (2)
O2—K1—N1—S16.91 (9)O1—S1—C1—C260.5 (3)
Cl1—K1—N1—S1111.95 (14)O2—S1—C1—C2175.8 (2)
O2i—K1—N1—Cl154.58 (11)N1—S1—C1—C253.0 (3)
O1ii—K1—N1—Cl1132.58 (10)C6—C1—C2—C31.4 (4)
O3—K1—N1—Cl1150.12 (9)S1—C1—C2—C3178.3 (2)
O3i—K1—N1—Cl1118.0 (3)C6—C1—C2—C7177.1 (3)
O1iii—K1—N1—Cl146.74 (10)S1—C1—C2—C73.2 (4)
O2—K1—N1—Cl1105.04 (11)C1—C2—C3—C41.5 (5)
O2i—K1—O3—K1v65.85 (9)C7—C2—C3—C4177.1 (3)
O1ii—K1—O3—K1v136.97 (10)C2—C3—C4—C50.3 (5)
O3i—K1—O3—K1v140.87 (13)C3—C4—C5—C60.9 (5)
O1iii—K1—O3—K1v157.04 (11)C4—C5—C6—C11.0 (5)
O2—K1—O3—K1v24.72 (8)C2—C1—C6—C50.2 (5)
Cl1—K1—O3—K1v38.10 (13)S1—C1—C6—C5179.5 (3)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+2, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl1vi0.85 (1)2.74 (2)3.568 (3)166 (4)
O3—H32···N1ii0.85 (1)2.08 (1)2.909 (4)167 (3)
Symmetry codes: (ii) x+1, y+2, z; (vi) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaK+·C7H7ClNO2S·H2O
Mr261.76
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.4968 (9), 6.7990 (5), 26.883 (2)
V3)2101.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.42 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.694, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
4396, 2150, 1992
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 0.92
No. of reflections2150
No. of parameters134
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.59

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl1i0.848 (10)2.740 (15)3.568 (3)166 (4)
O3—H32···N1ii0.847 (10)2.077 (12)2.909 (4)167 (3)
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1, y+2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E66, submitted.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds