organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[7-Eth­­oxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elmostapha1@ymail.com

(Received 11 May 2011; accepted 23 May 2011; online 4 June 2011)

In the title compound, C19H21N3O3S, the C—SO2—NH—C torsion angle is 103.72 (11)°. The almost planar indazole ring [r.m.s. deviation = 0.0202 (14) Å] is twisted away from the methyl­benzene ring by 76.87 (7)°. The vinyl group is disordered over two orientations with site occupancies of 0.622 (10) and 0.378 (10). The S atom has a distorted tetra­hedral geometry [maximum deviation: O—S—O = 119.18 (11)°]. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, two mol­ecules are linked about a center of inversion by pairs of N—H⋯O hydrogen bonds, generating a dimer. C—H⋯π inter­actions are also observed.

Related literature

For a related structure, see: Abbassi et al. (2011b[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1354.]). For the biological activity of sulfonamides, see: Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]). For the synthesis of 7-eth­oxy-N-alkyl­indazole derivatives, see: Abbassi et al. (2011a[Abbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011a). Heterocycles, 83, 891-900.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O3S

  • Mr = 371.45

  • Triclinic, [P \overline 1]

  • a = 8.2208 (3) Å

  • b = 10.4985 (4) Å

  • c = 11.9655 (5) Å

  • α = 108.814 (2)°

  • β = 92.346 (2)°

  • γ = 107.500 (2)°

  • V = 921.33 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.32 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 23139 measured reflections

  • 3629 independent reflections

  • 3281 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.08

  • 3629 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 (2) 2.15 (2) 3.002 (2) 171 (2)
C14—H14B⋯O1 0.97 2.35 2.974 (2) 121
C19—H19CCg1ii 0.96 2.87 3.622 (2) 136
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Various sulfonamides are widely used as anti-hypertensive [Soledade et al., 2006; Lee & Lee, 2002]. In a former paper, we reported the crystal structure of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide [Abbassi et al., 2011b]. In this communication, the crystal structure of N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide is reported.

The title heterocyclic compound, C19H21N3O3S, is a new synthetic molecule whish is bent at the S atom with an C—SO~2~—NH—C torsion angle of 103.72 (11)°. The indazol planar ring [r.m.s. deviation: 0.0202 (14) Å] is twisted away from the methylbenzene ring by 76.87 (7)°. The vinyl group is disordered over two positions with site occupancies of 0.622 (10) and 0.378 (10). The S atom has a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.17 (10)°].

In the crystal structure, the molecules are linked by N—H···O hydrogen bonds together with weak C—H···O interactions. There also exist C—H···Cg contacts between the methyl groups of the methylbenzene and the indazol rings. The crystal structure is further stabilized by intermolecular ππ stacking interactions [centroid–centroid distances = 3.6673 (9)–3.8109 (10) A °].

Related literature top

For a related structure, see: Abbassi et al. (2011b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002). For the synthesis of 7-ethoxy-N-alkylindazole derivatives, see: Abbassi et al. (2011a).

Experimental top

A mixture of 1-allyl-4-nitro-1H-indazole [Abbassi et al., 2011a] (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 60 °C for 2 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Refinement top

The H atoms bound to C were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups, and the N3—H3 atoms were refined with restraints (dN–H = 0.86 (2) Å) and then were treated as riding in the last cycles of refinement. The vinyl group is disordered over two positions with site occupancies of 0.622 (10) and 0.378 (10), the corresponding C—C and C==C distances in the major and minor conformers were refined with distance restraints of: 1.54 (2) Å and 1.35 (2) Å, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by N—H···O. H atoms not involved in hydrogen bonds have been omitted for clarity.
N-[7-Ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4- methylbenzenesulfonamide top
Crystal data top
C19H21N3O3SZ = 2
Mr = 371.45F(000) = 392
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2208 (3) ÅCell parameters from 341 reflections
b = 10.4985 (4) Åθ = 2.5–27.9°
c = 11.9655 (5) ŵ = 0.20 mm1
α = 108.814 (2)°T = 296 K
β = 92.346 (2)°Prism, colourless
γ = 107.500 (2)°0.32 × 0.17 × 0.12 mm
V = 921.33 (6) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
3281 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω and ϕ scansh = 109
23139 measured reflectionsk = 1212
3629 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4364P]
where P = (Fo2 + 2Fc2)/3
3629 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.39 e Å3
6 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H21N3O3Sγ = 107.500 (2)°
Mr = 371.45V = 921.33 (6) Å3
Triclinic, P1Z = 2
a = 8.2208 (3) ÅMo Kα radiation
b = 10.4985 (4) ŵ = 0.20 mm1
c = 11.9655 (5) ÅT = 296 K
α = 108.814 (2)°0.32 × 0.17 × 0.12 mm
β = 92.346 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3281 reflections with I > 2σ(I)
23139 measured reflectionsRint = 0.023
3629 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.39 e Å3
3629 reflectionsΔρmin = 0.32 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1369 (3)0.4744 (3)0.2566 (2)0.0518 (6)
C100.4698 (3)0.9705 (2)0.33160 (18)0.0362 (4)
C110.5617 (2)0.8894 (2)0.36197 (17)0.0345 (4)
C120.4804 (3)0.7709 (2)0.39361 (17)0.0346 (4)
C130.6165 (3)0.7239 (3)0.4207 (2)0.0444 (5)
C140.8737 (3)1.0072 (3)0.3443 (2)0.0574 (7)
C150.4773 (4)1.1700 (3)0.2738 (3)0.0595 (7)
C160.4069 (5)1.1104 (4)0.1447 (3)0.0873 (10)
C17A0.8898 (7)0.9302 (9)0.2134 (5)0.0553 (16)0.622 (10)
C17B0.9147 (12)1.0054 (12)0.2270 (8)0.057 (3)0.378 (10)
C18A0.8938 (10)0.9902 (9)0.1303 (6)0.101 (3)0.622 (10)
C18B0.8493 (13)0.8767 (12)0.1399 (10)0.079 (4)0.378 (10)
C190.3856 (5)0.3527 (4)0.0543 (3)0.0891 (11)
C20.2614 (4)0.4503 (3)0.1640 (2)0.0587 (7)
C30.2476 (4)0.3819 (3)0.0462 (2)0.0596 (7)
C40.1046 (4)0.3413 (3)0.0237 (2)0.0697 (8)
C50.0215 (4)0.3650 (3)0.1146 (2)0.0595 (7)
C60.0038 (3)0.4302 (2)0.2315 (2)0.0422 (5)
C70.3012 (3)0.7306 (2)0.39635 (17)0.0348 (4)
C80.2116 (3)0.8081 (2)0.36507 (19)0.0395 (5)
C90.2950 (3)0.9261 (2)0.3323 (2)0.0408 (5)
H10.14780.52010.33520.062*
H130.60200.64590.44480.053*
H14A0.98001.03180.39690.069*
H14B0.84791.09370.35230.069*
H15A0.55641.26640.29330.071*
H15B0.38351.17470.31990.071*
H16A0.49811.09990.09870.131*
H16B0.35711.17380.12510.131*
H16C0.31981.01890.12660.131*
H17A0.89700.83880.19180.066*0.622 (10)
H17B0.98071.08640.21320.069*0.378 (10)
H18A0.88681.08140.15030.121*0.622 (10)
H18B0.90360.94070.05230.121*0.622 (10)
H18C0.78400.79840.15770.095*0.378 (10)
H18D0.86940.86590.06200.095*0.378 (10)
H19A0.33600.34740.12630.134*
H19B0.43410.42830.03460.134*
H19C0.47460.26380.06620.134*
H20.35590.48050.18100.070*
H30.146 (3)0.630 (3)0.484 (2)0.049*
H40.09270.29680.05490.084*
H50.11760.33720.09730.071*
H80.09310.78220.36550.047*
H90.22980.97530.31050.049*
N10.7663 (2)0.8046 (2)0.40729 (19)0.0497 (5)
N20.7338 (2)0.9065 (2)0.37229 (17)0.0424 (4)
N30.2190 (2)0.61730 (19)0.43869 (17)0.0405 (4)
O10.5640 (2)1.08767 (18)0.30610 (17)0.0553 (4)
O20.3035 (2)0.42371 (19)0.29865 (18)0.0590 (5)
O30.0727 (2)0.37090 (18)0.41924 (17)0.0571 (5)
S10.15828 (7)0.45175 (6)0.34923 (5)0.04300 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0504 (13)0.0580 (14)0.0400 (12)0.0181 (11)0.0053 (10)0.0081 (10)
C100.0355 (10)0.0370 (10)0.0364 (10)0.0126 (8)0.0059 (8)0.0128 (8)
C110.0286 (9)0.0394 (10)0.0318 (9)0.0119 (8)0.0019 (7)0.0076 (8)
C120.0331 (10)0.0369 (10)0.0316 (9)0.0140 (8)0.0005 (8)0.0076 (8)
C130.0416 (12)0.0485 (12)0.0483 (12)0.0224 (10)0.0022 (9)0.0177 (10)
C140.0285 (11)0.0816 (18)0.0628 (15)0.0110 (11)0.0078 (10)0.0330 (14)
C150.0690 (17)0.0516 (14)0.0642 (16)0.0189 (13)0.0112 (13)0.0293 (13)
C160.105 (3)0.093 (3)0.071 (2)0.032 (2)0.0053 (19)0.0394 (19)
C17A0.038 (2)0.072 (4)0.064 (4)0.016 (3)0.014 (2)0.037 (4)
C17B0.059 (5)0.059 (5)0.073 (6)0.024 (5)0.023 (4)0.043 (5)
C18A0.117 (6)0.114 (6)0.070 (4)0.022 (4)0.018 (3)0.044 (4)
C18B0.074 (6)0.114 (9)0.049 (5)0.037 (6)0.013 (5)0.021 (6)
C190.099 (3)0.098 (3)0.0555 (17)0.038 (2)0.0175 (17)0.0068 (17)
C20.0527 (14)0.0640 (16)0.0520 (14)0.0207 (12)0.0015 (11)0.0103 (12)
C30.0698 (17)0.0534 (14)0.0446 (13)0.0157 (13)0.0038 (12)0.0089 (11)
C40.088 (2)0.0736 (19)0.0408 (13)0.0338 (17)0.0084 (13)0.0049 (13)
C50.0667 (17)0.0604 (16)0.0495 (14)0.0285 (13)0.0133 (12)0.0093 (12)
C60.0446 (12)0.0341 (10)0.0426 (11)0.0087 (9)0.0063 (9)0.0107 (9)
C70.0329 (10)0.0345 (10)0.0337 (10)0.0099 (8)0.0028 (8)0.0090 (8)
C80.0285 (10)0.0442 (11)0.0453 (11)0.0129 (8)0.0052 (8)0.0146 (9)
C90.0354 (11)0.0448 (11)0.0488 (12)0.0200 (9)0.0048 (9)0.0190 (10)
N10.0374 (10)0.0607 (12)0.0561 (12)0.0245 (9)0.0037 (8)0.0201 (10)
N20.0287 (9)0.0521 (11)0.0468 (10)0.0156 (8)0.0046 (7)0.0160 (8)
N30.0408 (10)0.0393 (10)0.0401 (10)0.0109 (8)0.0068 (8)0.0144 (8)
O10.0415 (9)0.0510 (10)0.0749 (12)0.0130 (7)0.0121 (8)0.0259 (9)
O20.0538 (10)0.0526 (10)0.0732 (12)0.0269 (8)0.0122 (9)0.0164 (9)
O30.0664 (11)0.0446 (9)0.0658 (11)0.0143 (8)0.0097 (9)0.0303 (8)
S10.0451 (3)0.0360 (3)0.0494 (3)0.0139 (2)0.0067 (2)0.0166 (2)
Geometric parameters (Å, º) top
C1—H10.9300C18B—C17B1.345 (12)
C1—C21.382 (4)C19—H19C0.9600
C10—O11.376 (3)C19—H19B0.9600
C10—C91.372 (3)C19—H19A0.9600
C11—C101.412 (3)C2—H20.9300
C11—C121.401 (3)C2—C31.388 (4)
C11—N21.366 (3)C3—C191.506 (4)
C12—C131.417 (3)C3—C41.374 (4)
C13—H130.9300C4—H40.9300
C13—N11.317 (3)C5—H50.9300
C14—H14B0.9700C5—C41.378 (4)
C14—H14A0.9700C6—C11.381 (3)
C14—C17A1.546 (7)C6—C51.380 (3)
C14—C17B1.453 (8)C7—N31.436 (3)
C15—H15B0.9700C7—C121.410 (3)
C15—H15A0.9700C7—C81.370 (3)
C15—C161.483 (4)C8—H80.9300
C16—H16C0.9600C8—C91.408 (3)
C16—H16B0.9600C9—H90.9300
C16—H16A0.9600N2—C141.443 (3)
C17A—H17A0.9300N2—N11.358 (3)
C17A—C18A1.335 (8)N3—H30.84 (3)
C17B—H17B0.9300O1—C151.403 (3)
C18A—H18B0.9300S1—C61.767 (2)
C18A—H18A0.9300S1—N31.6280 (19)
C18B—H18D0.9300S1—O31.4369 (17)
C18B—H18C0.9300S1—O21.4260 (18)
C2—C1—H1120.3C17A—C18A—H18B120.0
C6—C1—H1120.3C17A—C18A—H18A120.0
C6—C1—C2119.5 (2)H18C—C18B—H18D120.0
O1—C10—C11117.06 (18)C17B—C18B—H18D120.0
C9—C10—C11116.67 (19)C17B—C18B—H18C120.0
C9—C10—O1126.26 (19)C3—C2—H2119.5
C12—C11—C10122.13 (18)C1—C2—H2119.5
N2—C11—C10131.2 (2)C1—C2—C3121.1 (3)
N2—C11—C12106.64 (18)C2—C3—C19120.9 (3)
C7—C12—C13136.1 (2)C4—C3—C19120.9 (3)
C11—C12—C13104.30 (18)C4—C3—C2118.2 (3)
C11—C12—C7119.59 (18)C5—C4—H4119.1
C12—C13—H13124.3C3—C4—H4119.1
N1—C13—H13124.3C3—C4—C5121.7 (3)
N1—C13—C12111.4 (2)C6—C5—H5120.3
H14A—C14—H14B108.8C4—C5—H5120.3
C17A—C14—H14B110.7C4—C5—C6119.4 (3)
C17B—C14—H14B86.7C1—C6—S1120.01 (17)
N2—C14—H14B110.7C5—C6—S1119.80 (19)
C17A—C14—H14A110.7C5—C6—C1120.2 (2)
C17B—C14—H14A108.8C12—C7—N3120.09 (18)
N2—C14—H14A110.7C8—C7—N3121.55 (18)
C17B—C14—C17A27.3 (3)C8—C7—C12118.23 (19)
N2—C14—C17A105.1 (3)C9—C8—H8119.3
N2—C14—C17B127.8 (5)C7—C8—H8119.3
H15A—C15—H15B107.9C7—C8—C9121.47 (19)
C16—C15—H15B109.2C8—C9—H9119.1
O1—C15—H15B109.2C10—C9—H9119.1
C16—C15—H15A109.2C10—C9—C8121.89 (19)
O1—C15—H15A109.2C13—N1—N2106.45 (17)
O1—C15—C16112.1 (3)C11—N2—C14129.6 (2)
H16B—C16—H16C109.5N1—N2—C14119.12 (19)
H16A—C16—H16C109.5N1—N2—C11111.18 (18)
C15—C16—H16C109.5S1—N3—H3110.4 (19)
H16A—C16—H16B109.5C7—N3—H3116.7 (18)
C15—C16—H16B109.5C7—N3—S1120.46 (15)
C15—C16—H16A109.5C10—O1—C15118.87 (19)
C14—C17A—H17A118.9N3—S1—C6107.93 (10)
C18A—C17A—H17A118.9O3—S1—C6108.09 (11)
C18A—C17A—C14122.3 (7)O2—S1—C6107.73 (11)
C14—C17B—H17B122.8O3—S1—N3104.80 (10)
C18B—C17B—H17B122.8O2—S1—N3108.66 (11)
C18B—C17B—C14114.3 (9)O2—S1—O3119.18 (11)
H18A—C18A—H18B120.0
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.86 (2)2.15 (2)3.002 (2)171 (2)
C5—H5···O20.932.532.908 (3)104
C14—H14B···O10.972.352.974 (2)121
C19—H19C···Cg1ii0.962.873.622 (2)136
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O3S
Mr371.45
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2208 (3), 10.4985 (4), 11.9655 (5)
α, β, γ (°)108.814 (2), 92.346 (2), 107.500 (2)
V3)921.33 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23139, 3629, 3281
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.08
No. of reflections3629
No. of parameters259
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.86 (2)2.15 (2)3.002 (2)171 (2)
C14—H14B···O10.972.352.974 (2)121
C19—H19C···Cg1ii0.962.873.622 (2)136
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011a). Heterocycles, 83, 891–900.  CAS Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds