metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m855-m856

Aqua­bis­­(4-chloro-2-hy­dr­oxy­benzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II)

aDepartment of Chemistry, Zhejiang University, People's Republic of China, and bDepartment of Electrical Engineering and Information Technology, Faculty of Engineering, Kyushu Sangyo University, Japan
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 27 May 2011; accepted 28 May 2011; online 4 June 2011)

In the title compound, [Zn(C7H4ClO3)2(C12H8N2)(H2O)], the ZnII cation is coordinated by two 4-chloro-2-salicylate anions, one 1,10-phenanthroline ligand and one water mol­ecule in a square-pyramidal coordination geometry; the Zn cation lies 0.4591 (11) Å from the basal plane. The benzene rings of the anions are involved in ππ stacking. The centroid–centroid distance between parallel benzene rings of adjacent mol­ecules is 3.9017 (17) Å, and the centroid–centroid distance between benzene and pyridine rings of adjacent mol­ecules is 3.584 (2) Å. Intra­molecular O—H⋯O hydrogen bonding is present.

Related literature

For general background on ππ stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]). For ππ stacking in dihy­droxy­benzoate complexes, see: Yang et al. (2006[Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678-m2680.]); Zhang et al. (2008[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m937.]). For ππ stacking found in chloro­benzoate complexes, see: Maroszová et al. (2006[Maroszová, J., Martiška, L., Valigura, D., Koman, M. & Glowiak, T. (2006). Acta Cryst. E62, m1164-m1166.]); Malamatari et al. (1995[Malamatari, D. A., Hitou, P., Hatzidimitriou, A. G., Inscore, F. E., Gourdon, A., Kirk, M. L. & Kessissoglou, D. P. (1995). Inorg. Chem. 34, 2493-2494.]); Wen & Ying (2007[Wen, D. & Ying, S. (2007). Acta Cryst. E63, m2407-m2408.]); Wen et al. (2007[Wen, D., Ta, H., Zhong, C., Xie, T. & Wu, L. (2007). Acta Cryst. E63, m2446-m2447.]). For centroid-to-centroid distances between benzene rings in salicylate complexes, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4ClO3)2(C12H8N2)(H2O)]

  • Mr = 606.69

  • Triclinic, [P \overline 1]

  • a = 8.2611 (12) Å

  • b = 11.0124 (16) Å

  • c = 14.654 (2) Å

  • α = 100.534 (7)°

  • β = 94.360 (8)°

  • γ = 111.315 (5)°

  • V = 1206.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 294 K

  • 0.28 × 0.20 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.86, Tmax = 0.92

  • 13131 measured reflections

  • 4275 independent reflections

  • 3695 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.05

  • 4274 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 2.0155 (18)
Zn—O4 2.0325 (19)
Zn—O7 2.109 (2)
Zn—N1 2.130 (2)
Zn—N2 2.126 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.95 1.66 2.559 (3) 155
O6—H6A⋯O5 0.95 1.72 2.595 (3) 151
O7—H7A⋯O2 0.86 1.93 2.707 (3) 150
O7—H7B⋯O5 0.96 1.75 2.674 (3) 163

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings plays an important role in the electron transfer process in some biological system (Deisenhofer & Michel, 1989), the π-π stacking has attracted our much attention in past years. In order to understand the nature of π-π stacking between aromatic rings, we have determined crystal structures of metal complexes with aromatic ligands to investigate the factors controlling aromatic stacking.

Our previous studies on dihydroxybenzoate complexes has revealed that hydroxy-substitution of the aromatic ring may be an effective factor for π-π stacking (Yang et al., 2006; Zhang et al., 2008). As a continued investigation, the title chlorine-substituted salicylate complex has been prepared in the laboratory and its crystal structure is presented here to show the effect of chlorine-substitution on π-π stacking between benzene rings of chlorine-substituted salicylates.

The molecular structure of the title compound is shown in Fig. 1. The Zn(II) cation is coordinated by one phenanthroline (phen) ligand, two chloro-salicylate (chls) anions and one water molecule in a distorted square-pyramidal coordination geometry (Table 1). The Zn atom is 0.4591 (12) Å deviated from the basal plane towards the apical O1 atom. Uncoordinated carboxyl oxygen atoms, O2 and O5, are simultaneously hydrogen bonded to the coordinated water molecule and hydroxyl group of the same chls anion (Table 2).

It is notable π-π stacking between benzene rings of chls anions in the crystal structure. A partially overlapped arrangement is observed between parallel chls anions of neighboring complexes (Fig. 2). The face-to-face separation between C14-benzene ring C14i-benzene ring is 3.449 (3) Å, and the centroid-to-centroid distance is 3.9003 (17) Å [symmetry code: (i) 1 - x, 1 - y, 2 - z]. These facts clearly indicate the existence of aromatic stacking between benzene rings of chls anions.

A partially overlapped arrangement is also observed between nearly parallel chls anion and phen ligands of neighboring complexes (Fig. 3). The centroid-to-centroid separation between C26-benzene and N1ii-phen is 3.5841 (18) Å [symmetry code: (ii) 2 - x, 1 - y, 1 - z], and that between C26-benznen and N2iii-phen is 3.584 (2) Å [symmetry code: (iii) 1 - x, 1 - y, 1 - z]. These findings also suggest that the chls is involved in π-π stacking in the crystal structure; similar to that found in reported metal complexes with chls ligands (Maroszová et al., 2006; Malamatari et al., 1995; Wen & Ying, 2007; Wen et al., 2007).

As π-π stacking interaction does not occur between benzene ring in salicylate complexes (Allen, 2002), but occurs in the chloro-salicylate complex. This reveals the effect of chloro-substitution on aromatic π-π stacking.

Related literature top

For general background on ππ stacking, see: Deisenhofer & Michel (1989). For ππ stacking in dihydroxybenzoate complexes, see: Yang et al. (2006); Zhang et al. (2008). For ππ stacking found in chlorobenzoate complexes, see: Maroszová et al. (2006); Malamatari et al. (1995); Wen & Ying (2007); Wen et al. (2007). For centroid-to-centroid distances between benzene rings in salicylate complexes, see: Allen (2002).

Experimental top

An ethanol solution (10 ml) of 1,10-phenanthroline (0.200 g, 1 mmol) was slowly added to an aqueous solution (5 ml) containing Zn(NO3)2.6H2O (0.300 g, 1 mmol), 4-chloro-salicylic acid (0.170 g, 1 mmol) and Na2CO3 (0.053 g, 0.5 mmol) with continuous stirring. The above reaction mixture was refluxed for 4 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate by slow vaporization of solvent after 3 d.

Refinement top

In the final cycles of refinement, a reflection (001) was omitted. Water and hydroxyl H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate O—H···O hydrogen bonds.
[Figure 2] Fig. 2. A diagram showing π-π stacking between parallel chls ligands, [symmetry code: (i) 1 - x, 1 - y, 2 - z].
[Figure 3] Fig. 3. A diagram showing π-π stacking between chls and phen ligands [symmetry codes: (ii) 2 - x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z].
Aquabis(4-chloro-2-hydroxybenzoato-κO)(1,10-phenanthroline- κ2N,N')zinc(II) top
Crystal data top
[Zn(C7H4ClO3)2(C12H8N2)(H2O)]Z = 2
Mr = 606.69F(000) = 616
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2611 (12) ÅCell parameters from 4275 reflections
b = 11.0124 (16) Åθ = 1.4–25.2°
c = 14.654 (2) ŵ = 1.29 mm1
α = 100.534 (7)°T = 294 K
β = 94.360 (8)°Prism, yellow
γ = 111.315 (5)°0.28 × 0.20 × 0.12 mm
V = 1206.1 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4275 independent reflections
Radiation source: fine-focus sealed tube3695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 1.4°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.86, Tmax = 0.92l = 1717
13131 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2083P]
where P = (Fo2 + 2Fc2)/3
4274 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C7H4ClO3)2(C12H8N2)(H2O)]γ = 111.315 (5)°
Mr = 606.69V = 1206.1 (3) Å3
Triclinic, P1Z = 2
a = 8.2611 (12) ÅMo Kα radiation
b = 11.0124 (16) ŵ = 1.29 mm1
c = 14.654 (2) ÅT = 294 K
α = 100.534 (7)°0.28 × 0.20 × 0.12 mm
β = 94.360 (8)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4275 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3695 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.92Rint = 0.027
13131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
4274 reflectionsΔρmin = 0.29 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.82980 (4)0.50277 (3)0.61362 (2)0.03699 (12)
Cl10.11084 (11)0.33056 (8)1.01904 (6)0.0632 (2)
Cl20.18339 (13)0.01494 (10)0.08427 (6)0.0760 (3)
N11.0170 (3)0.6673 (2)0.71593 (15)0.0386 (5)
N20.8102 (3)0.6686 (2)0.56568 (14)0.0345 (5)
O10.6382 (2)0.44332 (18)0.69227 (12)0.0418 (4)
O20.7884 (3)0.3686 (2)0.78612 (13)0.0474 (5)
O30.6810 (3)0.3089 (2)0.93748 (14)0.0553 (5)
H3A0.74370.32010.88550.083*
O40.7237 (3)0.39070 (18)0.48131 (13)0.0505 (5)
O50.7478 (3)0.1972 (2)0.48595 (15)0.0586 (6)
O60.5411 (4)0.0177 (2)0.36472 (17)0.0726 (7)
H6A0.60980.04070.42190.109*
O70.9615 (3)0.3763 (2)0.63633 (14)0.0550 (5)
H7A0.91240.34670.68150.082*
H7B0.89860.30230.58460.082*
C11.1169 (4)0.6657 (3)0.7912 (2)0.0468 (7)
H11.11550.58360.79960.056*
C21.2232 (4)0.7806 (3)0.8579 (2)0.0513 (8)
H21.29030.77480.90960.062*
C31.2277 (4)0.9020 (3)0.8463 (2)0.0484 (7)
H31.29900.97970.89010.058*
C41.1245 (3)0.9098 (3)0.76815 (18)0.0398 (6)
C51.1198 (4)1.0317 (3)0.7507 (2)0.0472 (7)
H51.18911.11220.79230.057*
C61.0167 (4)1.0327 (3)0.6750 (2)0.0469 (7)
H61.01611.11370.66530.056*
C70.9084 (3)0.9110 (3)0.60930 (18)0.0376 (6)
C80.7985 (4)0.9050 (3)0.5286 (2)0.0440 (7)
H80.79300.98310.51570.053*
C90.7007 (4)0.7849 (3)0.46974 (19)0.0438 (7)
H90.62920.78050.41600.053*
C100.7084 (4)0.6680 (3)0.49066 (18)0.0398 (6)
H100.63940.58630.45030.048*
C110.9101 (3)0.7889 (2)0.62411 (17)0.0321 (5)
C121.0201 (3)0.7880 (2)0.70504 (17)0.0335 (6)
C130.6586 (4)0.3973 (2)0.76426 (18)0.0369 (6)
C140.5204 (3)0.3775 (2)0.82579 (17)0.0339 (6)
C150.5405 (4)0.3348 (3)0.90948 (18)0.0380 (6)
C160.4128 (4)0.3204 (3)0.96834 (19)0.0435 (7)
H160.42650.29341.02400.052*
C170.2668 (4)0.3462 (3)0.9437 (2)0.0434 (7)
C180.2414 (4)0.3856 (3)0.8610 (2)0.0471 (7)
H180.14100.40140.84480.056*
C190.3681 (4)0.4009 (3)0.8035 (2)0.0424 (6)
H190.35210.42760.74800.051*
C200.6860 (4)0.2680 (3)0.44804 (19)0.0404 (6)
C210.5611 (4)0.2044 (3)0.35760 (18)0.0398 (6)
C220.4962 (4)0.0653 (3)0.3208 (2)0.0469 (7)
C230.3784 (4)0.0078 (3)0.2366 (2)0.0529 (8)
H230.33480.08410.21250.063*
C240.3277 (4)0.0890 (3)0.1900 (2)0.0494 (7)
C250.3862 (4)0.2253 (3)0.2244 (2)0.0488 (7)
H250.34820.27810.19250.059*
C260.5025 (4)0.2811 (3)0.30724 (18)0.0435 (7)
H260.54380.37320.33060.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0433 (2)0.03601 (18)0.03246 (19)0.01538 (14)0.00390 (13)0.01019 (13)
Cl10.0549 (5)0.0669 (5)0.0653 (5)0.0179 (4)0.0281 (4)0.0126 (4)
Cl20.0702 (6)0.0862 (6)0.0459 (5)0.0146 (5)0.0049 (4)0.0093 (4)
N10.0374 (12)0.0438 (12)0.0362 (12)0.0151 (10)0.0039 (9)0.0149 (10)
N20.0395 (12)0.0365 (11)0.0283 (11)0.0144 (9)0.0053 (9)0.0100 (9)
O10.0449 (11)0.0473 (10)0.0343 (10)0.0153 (8)0.0057 (8)0.0172 (8)
O20.0484 (12)0.0651 (12)0.0400 (11)0.0298 (10)0.0115 (9)0.0202 (9)
O30.0556 (13)0.0830 (15)0.0450 (12)0.0379 (11)0.0118 (10)0.0319 (11)
O40.0734 (14)0.0374 (10)0.0352 (10)0.0190 (10)0.0022 (9)0.0048 (8)
O50.0758 (15)0.0501 (11)0.0541 (13)0.0339 (11)0.0017 (11)0.0066 (10)
O60.0979 (19)0.0536 (13)0.0698 (16)0.0384 (13)0.0042 (14)0.0101 (12)
O70.0637 (14)0.0658 (13)0.0455 (12)0.0378 (11)0.0081 (10)0.0099 (10)
C10.0446 (17)0.0557 (17)0.0445 (16)0.0189 (14)0.0037 (13)0.0240 (14)
C20.0445 (17)0.073 (2)0.0372 (16)0.0203 (15)0.0019 (13)0.0206 (14)
C30.0428 (16)0.0593 (17)0.0341 (15)0.0121 (13)0.0033 (12)0.0059 (13)
C40.0359 (14)0.0481 (15)0.0326 (14)0.0140 (12)0.0069 (11)0.0061 (11)
C50.0472 (17)0.0373 (14)0.0472 (17)0.0105 (12)0.0018 (13)0.0004 (12)
C60.0507 (18)0.0360 (14)0.0527 (18)0.0137 (12)0.0106 (14)0.0120 (12)
C70.0374 (15)0.0397 (13)0.0389 (14)0.0156 (11)0.0095 (11)0.0137 (11)
C80.0483 (17)0.0454 (15)0.0453 (16)0.0220 (13)0.0079 (13)0.0186 (13)
C90.0470 (16)0.0533 (16)0.0353 (15)0.0226 (13)0.0025 (12)0.0149 (12)
C100.0450 (16)0.0419 (14)0.0305 (14)0.0165 (12)0.0009 (11)0.0060 (11)
C110.0328 (13)0.0339 (12)0.0311 (13)0.0123 (10)0.0077 (10)0.0108 (10)
C120.0325 (14)0.0392 (13)0.0313 (13)0.0140 (11)0.0087 (10)0.0121 (11)
C130.0411 (15)0.0335 (12)0.0311 (14)0.0101 (11)0.0032 (11)0.0053 (10)
C140.0375 (14)0.0314 (12)0.0322 (13)0.0129 (10)0.0028 (11)0.0076 (10)
C150.0393 (15)0.0395 (13)0.0335 (14)0.0145 (11)0.0019 (11)0.0073 (11)
C160.0502 (17)0.0446 (14)0.0340 (15)0.0134 (13)0.0085 (12)0.0146 (12)
C170.0439 (16)0.0373 (14)0.0450 (16)0.0111 (12)0.0139 (13)0.0062 (12)
C180.0424 (16)0.0465 (15)0.0593 (19)0.0220 (13)0.0101 (14)0.0178 (14)
C190.0480 (17)0.0418 (14)0.0414 (15)0.0178 (12)0.0073 (12)0.0178 (12)
C200.0472 (16)0.0398 (14)0.0365 (14)0.0175 (12)0.0123 (12)0.0105 (12)
C210.0436 (16)0.0379 (13)0.0368 (15)0.0152 (12)0.0128 (12)0.0042 (11)
C220.0513 (18)0.0398 (14)0.0523 (18)0.0204 (13)0.0135 (14)0.0085 (13)
C230.0539 (19)0.0403 (15)0.0510 (18)0.0095 (14)0.0103 (15)0.0047 (13)
C240.0436 (17)0.0597 (18)0.0361 (15)0.0135 (14)0.0096 (12)0.0015 (13)
C250.0532 (18)0.0582 (17)0.0360 (16)0.0221 (14)0.0096 (13)0.0108 (13)
C260.0548 (18)0.0393 (14)0.0343 (15)0.0154 (13)0.0107 (12)0.0076 (11)
Geometric parameters (Å, º) top
Zn—O12.0155 (18)C6—C71.432 (4)
Zn—O42.0325 (19)C6—H60.9300
Zn—O72.109 (2)C7—C111.405 (4)
Zn—N12.130 (2)C7—C81.412 (4)
Zn—N22.126 (2)C8—C91.358 (4)
Cl1—C171.741 (3)C8—H80.9300
Cl2—C241.743 (3)C9—C101.399 (4)
N1—C11.333 (3)C9—H90.9300
N1—C121.360 (3)C10—H100.9300
N2—C101.330 (3)C11—C121.442 (3)
N2—C111.361 (3)C13—C141.487 (4)
O1—C131.276 (3)C14—C191.400 (4)
O2—C131.259 (3)C14—C151.410 (4)
O3—C151.344 (3)C15—C161.396 (4)
O3—H3A0.9554C16—C171.373 (4)
O4—C201.261 (3)C16—H160.9300
O5—C201.258 (3)C17—C181.387 (4)
O6—C221.347 (4)C18—C191.376 (4)
O6—H6A0.9509C18—H180.9300
O7—H7A0.8559C19—H190.9300
O7—H7B0.9565C20—C211.496 (4)
C1—C21.391 (4)C21—C261.401 (4)
C1—H10.9300C21—C221.407 (4)
C2—C31.366 (4)C22—C231.397 (4)
C2—H20.9300C23—C241.376 (5)
C3—C41.410 (4)C23—H230.9300
C3—H30.9300C24—C251.378 (4)
C4—C121.408 (4)C25—C261.377 (4)
C4—C51.426 (4)C25—H250.9300
C5—C61.351 (4)C26—H260.9300
C5—H50.9300
O1—Zn—O4105.38 (8)N2—C10—H10118.6
O1—Zn—O799.35 (8)C9—C10—H10118.6
O4—Zn—O790.95 (8)N2—C11—C7123.1 (2)
O1—Zn—N2107.32 (8)N2—C11—C12117.3 (2)
O4—Zn—N287.64 (8)C7—C11—C12119.6 (2)
O7—Zn—N2152.69 (9)N1—C12—C4123.3 (2)
O1—Zn—N198.75 (8)N1—C12—C11117.3 (2)
O4—Zn—N1154.83 (9)C4—C12—C11119.4 (2)
O7—Zn—N192.12 (9)O2—C13—O1123.9 (3)
N2—Zn—N178.33 (8)O2—C13—C14118.5 (2)
C1—N1—C12117.5 (2)O1—C13—C14117.6 (2)
C1—N1—Zn128.83 (19)C19—C14—C15117.9 (2)
C12—N1—Zn113.36 (16)C19—C14—C13121.7 (2)
C10—N2—C11117.9 (2)C15—C14—C13120.3 (2)
C10—N2—Zn128.55 (17)O3—C15—C16117.1 (2)
C11—N2—Zn113.47 (16)O3—C15—C14122.9 (2)
C13—O1—Zn122.31 (18)C16—C15—C14120.0 (3)
C15—O3—H3A101.5C17—C16—C15119.7 (3)
C20—O4—Zn130.02 (18)C17—C16—H16120.1
C22—O6—H6A102.5C15—C16—H16120.1
Zn—O7—H7A99.6C16—C17—C18121.7 (3)
Zn—O7—H7B98.8C16—C17—Cl1119.1 (2)
H7A—O7—H7B100.6C18—C17—Cl1119.2 (2)
N1—C1—C2123.3 (3)C19—C18—C17118.5 (3)
N1—C1—H1118.3C19—C18—H18120.8
C2—C1—H1118.3C17—C18—H18120.8
C3—C2—C1119.1 (3)C18—C19—C14122.2 (3)
C3—C2—H2120.4C18—C19—H19118.9
C1—C2—H2120.4C14—C19—H19118.9
C2—C3—C4120.1 (3)O5—C20—O4123.9 (3)
C2—C3—H3120.0O5—C20—C21118.7 (2)
C4—C3—H3120.0O4—C20—C21117.4 (2)
C12—C4—C3116.7 (3)C26—C21—C22117.6 (3)
C12—C4—C5119.4 (2)C26—C21—C20121.1 (2)
C3—C4—C5124.0 (3)C22—C21—C20121.3 (3)
C6—C5—C4121.3 (3)O6—C22—C23117.3 (3)
C6—C5—H5119.4O6—C22—C21122.3 (3)
C4—C5—H5119.4C23—C22—C21120.4 (3)
C5—C6—C7121.0 (3)C24—C23—C22119.1 (3)
C5—C6—H6119.5C24—C23—H23120.4
C7—C6—H6119.5C22—C23—H23120.4
C11—C7—C8116.8 (2)C23—C24—C25122.3 (3)
C11—C7—C6119.3 (2)C23—C24—Cl2118.2 (2)
C8—C7—C6123.9 (2)C25—C24—Cl2119.5 (3)
C9—C8—C7119.9 (3)C26—C25—C24118.1 (3)
C9—C8—H8120.0C26—C25—H25120.9
C7—C8—H8120.0C24—C25—H25120.9
C8—C9—C10119.4 (3)C25—C26—C21122.4 (3)
C8—C9—H9120.3C25—C26—H26118.8
C10—C9—H9120.3C21—C26—H26118.8
N2—C10—C9122.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.951.662.559 (3)155
O6—H6A···O50.951.722.595 (3)151
O7—H7A···O20.861.932.707 (3)150
O7—H7B···O50.961.752.674 (3)163

Experimental details

Crystal data
Chemical formula[Zn(C7H4ClO3)2(C12H8N2)(H2O)]
Mr606.69
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.2611 (12), 11.0124 (16), 14.654 (2)
α, β, γ (°)100.534 (7), 94.360 (8), 111.315 (5)
V3)1206.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.28 × 0.20 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.86, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
13131, 4275, 3695
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.05
No. of reflections4274
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.29

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—O12.0155 (18)Zn—N12.130 (2)
Zn—O42.0325 (19)Zn—N22.126 (2)
Zn—O72.109 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.951.662.559 (3)155
O6—H6A···O50.951.722.595 (3)151
O7—H7A···O20.861.932.707 (3)150
O7—H7B···O50.961.752.674 (3)163
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 20443003).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMalamatari, D. A., Hitou, P., Hatzidimitriou, A. G., Inscore, F. E., Gourdon, A., Kirk, M. L. & Kessissoglou, D. P. (1995). Inorg. Chem. 34, 2493–2494.  CrossRef CAS Google Scholar
First citationMaroszová, J., Martiška, L., Valigura, D., Koman, M. & Glowiak, T. (2006). Acta Cryst. E62, m1164–m1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, D., Ta, H., Zhong, C., Xie, T. & Wu, L. (2007). Acta Cryst. E63, m2446–m2447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, D. & Ying, S. (2007). Acta Cryst. E63, m2407–m2408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m937.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m855-m856
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds