metal-organic compounds
Aquabis(4-chloro-2-hydroxybenzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II)
aDepartment of Chemistry, Zhejiang University, People's Republic of China, and bDepartment of Electrical Engineering and Information Technology, Faculty of Engineering, Kyushu Sangyo University, Japan
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title compound, [Zn(C7H4ClO3)2(C12H8N2)(H2O)], the ZnII cation is coordinated by two 4-chloro-2-salicylate anions, one 1,10-phenanthroline ligand and one water molecule in a square-pyramidal coordination geometry; the Zn cation lies 0.4591 (11) Å from the basal plane. The benzene rings of the anions are involved in π–π stacking. The centroid–centroid distance between parallel benzene rings of adjacent molecules is 3.9017 (17) Å, and the centroid–centroid distance between benzene and pyridine rings of adjacent molecules is 3.584 (2) Å. Intramolecular O—H⋯O hydrogen bonding is present.
Related literature
For general background on π–π stacking, see: Deisenhofer & Michel (1989). For π–π stacking in dihydroxybenzoate complexes, see: Yang et al. (2006); Zhang et al. (2008). For π–π stacking found in chlorobenzoate complexes, see: Maroszová et al. (2006); Malamatari et al. (1995); Wen & Ying (2007); Wen et al. (2007). For centroid-to-centroid distances between benzene rings in salicylate complexes, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811020435/ng5174sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020435/ng5174Isup2.hkl
An ethanol solution (10 ml) of 1,10-phenanthroline (0.200 g, 1 mmol) was slowly added to an aqueous solution (5 ml) containing Zn(NO3)2.6H2O (0.300 g, 1 mmol), 4-chloro-salicylic acid (0.170 g, 1 mmol) and Na2CO3 (0.053 g, 0.5 mmol) with continuous stirring. The above reaction mixture was refluxed for 4 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate by slow vaporization of solvent after 3 d.
In the final cycles of
a reflection (001) was omitted. Water and hydroxyl H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Zn(C7H4ClO3)2(C12H8N2)(H2O)] | Z = 2 |
Mr = 606.69 | F(000) = 616 |
Triclinic, P1 | Dx = 1.671 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2611 (12) Å | Cell parameters from 4275 reflections |
b = 11.0124 (16) Å | θ = 1.4–25.2° |
c = 14.654 (2) Å | µ = 1.29 mm−1 |
α = 100.534 (7)° | T = 294 K |
β = 94.360 (8)° | Prism, yellow |
γ = 111.315 (5)° | 0.28 × 0.20 × 0.12 mm |
V = 1206.1 (3) Å3 |
Rigaku R-AXIS RAPID IP diffractometer | 4275 independent reflections |
Radiation source: fine-focus sealed tube | 3695 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.2°, θmin = 1.4° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.86, Tmax = 0.92 | l = −17→17 |
13131 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2083P] where P = (Fo2 + 2Fc2)/3 |
4274 reflections | (Δ/σ)max = 0.001 |
343 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Zn(C7H4ClO3)2(C12H8N2)(H2O)] | γ = 111.315 (5)° |
Mr = 606.69 | V = 1206.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.2611 (12) Å | Mo Kα radiation |
b = 11.0124 (16) Å | µ = 1.29 mm−1 |
c = 14.654 (2) Å | T = 294 K |
α = 100.534 (7)° | 0.28 × 0.20 × 0.12 mm |
β = 94.360 (8)° |
Rigaku R-AXIS RAPID IP diffractometer | 4275 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3695 reflections with I > 2σ(I) |
Tmin = 0.86, Tmax = 0.92 | Rint = 0.027 |
13131 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.64 e Å−3 |
4274 reflections | Δρmin = −0.29 e Å−3 |
343 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.82980 (4) | 0.50277 (3) | 0.61362 (2) | 0.03699 (12) | |
Cl1 | 0.11084 (11) | 0.33056 (8) | 1.01904 (6) | 0.0632 (2) | |
Cl2 | 0.18339 (13) | 0.01494 (10) | 0.08427 (6) | 0.0760 (3) | |
N1 | 1.0170 (3) | 0.6673 (2) | 0.71593 (15) | 0.0386 (5) | |
N2 | 0.8102 (3) | 0.6686 (2) | 0.56568 (14) | 0.0345 (5) | |
O1 | 0.6382 (2) | 0.44332 (18) | 0.69227 (12) | 0.0418 (4) | |
O2 | 0.7884 (3) | 0.3686 (2) | 0.78612 (13) | 0.0474 (5) | |
O3 | 0.6810 (3) | 0.3089 (2) | 0.93748 (14) | 0.0553 (5) | |
H3A | 0.7437 | 0.3201 | 0.8855 | 0.083* | |
O4 | 0.7237 (3) | 0.39070 (18) | 0.48131 (13) | 0.0505 (5) | |
O5 | 0.7478 (3) | 0.1972 (2) | 0.48595 (15) | 0.0586 (6) | |
O6 | 0.5411 (4) | −0.0177 (2) | 0.36472 (17) | 0.0726 (7) | |
H6A | 0.6098 | 0.0407 | 0.4219 | 0.109* | |
O7 | 0.9615 (3) | 0.3763 (2) | 0.63633 (14) | 0.0550 (5) | |
H7A | 0.9124 | 0.3467 | 0.6815 | 0.082* | |
H7B | 0.8986 | 0.3023 | 0.5846 | 0.082* | |
C1 | 1.1169 (4) | 0.6657 (3) | 0.7912 (2) | 0.0468 (7) | |
H1 | 1.1155 | 0.5836 | 0.7996 | 0.056* | |
C2 | 1.2232 (4) | 0.7806 (3) | 0.8579 (2) | 0.0513 (8) | |
H2 | 1.2903 | 0.7748 | 0.9096 | 0.062* | |
C3 | 1.2277 (4) | 0.9020 (3) | 0.8463 (2) | 0.0484 (7) | |
H3 | 1.2990 | 0.9797 | 0.8901 | 0.058* | |
C4 | 1.1245 (3) | 0.9098 (3) | 0.76815 (18) | 0.0398 (6) | |
C5 | 1.1198 (4) | 1.0317 (3) | 0.7507 (2) | 0.0472 (7) | |
H5 | 1.1891 | 1.1122 | 0.7923 | 0.057* | |
C6 | 1.0167 (4) | 1.0327 (3) | 0.6750 (2) | 0.0469 (7) | |
H6 | 1.0161 | 1.1137 | 0.6653 | 0.056* | |
C7 | 0.9084 (3) | 0.9110 (3) | 0.60930 (18) | 0.0376 (6) | |
C8 | 0.7985 (4) | 0.9050 (3) | 0.5286 (2) | 0.0440 (7) | |
H8 | 0.7930 | 0.9831 | 0.5157 | 0.053* | |
C9 | 0.7007 (4) | 0.7849 (3) | 0.46974 (19) | 0.0438 (7) | |
H9 | 0.6292 | 0.7805 | 0.4160 | 0.053* | |
C10 | 0.7084 (4) | 0.6680 (3) | 0.49066 (18) | 0.0398 (6) | |
H10 | 0.6394 | 0.5863 | 0.4503 | 0.048* | |
C11 | 0.9101 (3) | 0.7889 (2) | 0.62411 (17) | 0.0321 (5) | |
C12 | 1.0201 (3) | 0.7880 (2) | 0.70504 (17) | 0.0335 (6) | |
C13 | 0.6586 (4) | 0.3973 (2) | 0.76426 (18) | 0.0369 (6) | |
C14 | 0.5204 (3) | 0.3775 (2) | 0.82579 (17) | 0.0339 (6) | |
C15 | 0.5405 (4) | 0.3348 (3) | 0.90948 (18) | 0.0380 (6) | |
C16 | 0.4128 (4) | 0.3204 (3) | 0.96834 (19) | 0.0435 (7) | |
H16 | 0.4265 | 0.2934 | 1.0240 | 0.052* | |
C17 | 0.2668 (4) | 0.3462 (3) | 0.9437 (2) | 0.0434 (7) | |
C18 | 0.2414 (4) | 0.3856 (3) | 0.8610 (2) | 0.0471 (7) | |
H18 | 0.1410 | 0.4014 | 0.8448 | 0.056* | |
C19 | 0.3681 (4) | 0.4009 (3) | 0.8035 (2) | 0.0424 (6) | |
H19 | 0.3521 | 0.4276 | 0.7480 | 0.051* | |
C20 | 0.6860 (4) | 0.2680 (3) | 0.44804 (19) | 0.0404 (6) | |
C21 | 0.5611 (4) | 0.2044 (3) | 0.35760 (18) | 0.0398 (6) | |
C22 | 0.4962 (4) | 0.0653 (3) | 0.3208 (2) | 0.0469 (7) | |
C23 | 0.3784 (4) | 0.0078 (3) | 0.2366 (2) | 0.0529 (8) | |
H23 | 0.3348 | −0.0841 | 0.2125 | 0.063* | |
C24 | 0.3277 (4) | 0.0890 (3) | 0.1900 (2) | 0.0494 (7) | |
C25 | 0.3862 (4) | 0.2253 (3) | 0.2244 (2) | 0.0488 (7) | |
H25 | 0.3482 | 0.2781 | 0.1925 | 0.059* | |
C26 | 0.5025 (4) | 0.2811 (3) | 0.30724 (18) | 0.0435 (7) | |
H26 | 0.5438 | 0.3732 | 0.3306 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0433 (2) | 0.03601 (18) | 0.03246 (19) | 0.01538 (14) | 0.00390 (13) | 0.01019 (13) |
Cl1 | 0.0549 (5) | 0.0669 (5) | 0.0653 (5) | 0.0179 (4) | 0.0281 (4) | 0.0126 (4) |
Cl2 | 0.0702 (6) | 0.0862 (6) | 0.0459 (5) | 0.0146 (5) | −0.0049 (4) | −0.0093 (4) |
N1 | 0.0374 (12) | 0.0438 (12) | 0.0362 (12) | 0.0151 (10) | 0.0039 (9) | 0.0149 (10) |
N2 | 0.0395 (12) | 0.0365 (11) | 0.0283 (11) | 0.0144 (9) | 0.0053 (9) | 0.0100 (9) |
O1 | 0.0449 (11) | 0.0473 (10) | 0.0343 (10) | 0.0153 (8) | 0.0057 (8) | 0.0172 (8) |
O2 | 0.0484 (12) | 0.0651 (12) | 0.0400 (11) | 0.0298 (10) | 0.0115 (9) | 0.0202 (9) |
O3 | 0.0556 (13) | 0.0830 (15) | 0.0450 (12) | 0.0379 (11) | 0.0118 (10) | 0.0319 (11) |
O4 | 0.0734 (14) | 0.0374 (10) | 0.0352 (10) | 0.0190 (10) | −0.0022 (9) | 0.0048 (8) |
O5 | 0.0758 (15) | 0.0501 (11) | 0.0541 (13) | 0.0339 (11) | −0.0017 (11) | 0.0066 (10) |
O6 | 0.0979 (19) | 0.0536 (13) | 0.0698 (16) | 0.0384 (13) | −0.0042 (14) | 0.0101 (12) |
O7 | 0.0637 (14) | 0.0658 (13) | 0.0455 (12) | 0.0378 (11) | 0.0081 (10) | 0.0099 (10) |
C1 | 0.0446 (17) | 0.0557 (17) | 0.0445 (16) | 0.0189 (14) | 0.0037 (13) | 0.0240 (14) |
C2 | 0.0445 (17) | 0.073 (2) | 0.0372 (16) | 0.0203 (15) | 0.0019 (13) | 0.0206 (14) |
C3 | 0.0428 (16) | 0.0593 (17) | 0.0341 (15) | 0.0121 (13) | 0.0033 (12) | 0.0059 (13) |
C4 | 0.0359 (14) | 0.0481 (15) | 0.0326 (14) | 0.0140 (12) | 0.0069 (11) | 0.0061 (11) |
C5 | 0.0472 (17) | 0.0373 (14) | 0.0472 (17) | 0.0105 (12) | 0.0018 (13) | 0.0004 (12) |
C6 | 0.0507 (18) | 0.0360 (14) | 0.0527 (18) | 0.0137 (12) | 0.0106 (14) | 0.0120 (12) |
C7 | 0.0374 (15) | 0.0397 (13) | 0.0389 (14) | 0.0156 (11) | 0.0095 (11) | 0.0137 (11) |
C8 | 0.0483 (17) | 0.0454 (15) | 0.0453 (16) | 0.0220 (13) | 0.0079 (13) | 0.0186 (13) |
C9 | 0.0470 (16) | 0.0533 (16) | 0.0353 (15) | 0.0226 (13) | 0.0025 (12) | 0.0149 (12) |
C10 | 0.0450 (16) | 0.0419 (14) | 0.0305 (14) | 0.0165 (12) | 0.0009 (11) | 0.0060 (11) |
C11 | 0.0328 (13) | 0.0339 (12) | 0.0311 (13) | 0.0123 (10) | 0.0077 (10) | 0.0108 (10) |
C12 | 0.0325 (14) | 0.0392 (13) | 0.0313 (13) | 0.0140 (11) | 0.0087 (10) | 0.0121 (11) |
C13 | 0.0411 (15) | 0.0335 (12) | 0.0311 (14) | 0.0101 (11) | 0.0032 (11) | 0.0053 (10) |
C14 | 0.0375 (14) | 0.0314 (12) | 0.0322 (13) | 0.0129 (10) | 0.0028 (11) | 0.0076 (10) |
C15 | 0.0393 (15) | 0.0395 (13) | 0.0335 (14) | 0.0145 (11) | 0.0019 (11) | 0.0073 (11) |
C16 | 0.0502 (17) | 0.0446 (14) | 0.0340 (15) | 0.0134 (13) | 0.0085 (12) | 0.0146 (12) |
C17 | 0.0439 (16) | 0.0373 (14) | 0.0450 (16) | 0.0111 (12) | 0.0139 (13) | 0.0062 (12) |
C18 | 0.0424 (16) | 0.0465 (15) | 0.0593 (19) | 0.0220 (13) | 0.0101 (14) | 0.0178 (14) |
C19 | 0.0480 (17) | 0.0418 (14) | 0.0414 (15) | 0.0178 (12) | 0.0073 (12) | 0.0178 (12) |
C20 | 0.0472 (16) | 0.0398 (14) | 0.0365 (14) | 0.0175 (12) | 0.0123 (12) | 0.0105 (12) |
C21 | 0.0436 (16) | 0.0379 (13) | 0.0368 (15) | 0.0152 (12) | 0.0128 (12) | 0.0042 (11) |
C22 | 0.0513 (18) | 0.0398 (14) | 0.0523 (18) | 0.0204 (13) | 0.0135 (14) | 0.0085 (13) |
C23 | 0.0539 (19) | 0.0403 (15) | 0.0510 (18) | 0.0095 (14) | 0.0103 (15) | −0.0047 (13) |
C24 | 0.0436 (17) | 0.0597 (18) | 0.0361 (15) | 0.0135 (14) | 0.0096 (12) | 0.0015 (13) |
C25 | 0.0532 (18) | 0.0582 (17) | 0.0360 (16) | 0.0221 (14) | 0.0096 (13) | 0.0108 (13) |
C26 | 0.0548 (18) | 0.0393 (14) | 0.0343 (15) | 0.0154 (13) | 0.0107 (12) | 0.0076 (11) |
Zn—O1 | 2.0155 (18) | C6—C7 | 1.432 (4) |
Zn—O4 | 2.0325 (19) | C6—H6 | 0.9300 |
Zn—O7 | 2.109 (2) | C7—C11 | 1.405 (4) |
Zn—N1 | 2.130 (2) | C7—C8 | 1.412 (4) |
Zn—N2 | 2.126 (2) | C8—C9 | 1.358 (4) |
Cl1—C17 | 1.741 (3) | C8—H8 | 0.9300 |
Cl2—C24 | 1.743 (3) | C9—C10 | 1.399 (4) |
N1—C1 | 1.333 (3) | C9—H9 | 0.9300 |
N1—C12 | 1.360 (3) | C10—H10 | 0.9300 |
N2—C10 | 1.330 (3) | C11—C12 | 1.442 (3) |
N2—C11 | 1.361 (3) | C13—C14 | 1.487 (4) |
O1—C13 | 1.276 (3) | C14—C19 | 1.400 (4) |
O2—C13 | 1.259 (3) | C14—C15 | 1.410 (4) |
O3—C15 | 1.344 (3) | C15—C16 | 1.396 (4) |
O3—H3A | 0.9554 | C16—C17 | 1.373 (4) |
O4—C20 | 1.261 (3) | C16—H16 | 0.9300 |
O5—C20 | 1.258 (3) | C17—C18 | 1.387 (4) |
O6—C22 | 1.347 (4) | C18—C19 | 1.376 (4) |
O6—H6A | 0.9509 | C18—H18 | 0.9300 |
O7—H7A | 0.8559 | C19—H19 | 0.9300 |
O7—H7B | 0.9565 | C20—C21 | 1.496 (4) |
C1—C2 | 1.391 (4) | C21—C26 | 1.401 (4) |
C1—H1 | 0.9300 | C21—C22 | 1.407 (4) |
C2—C3 | 1.366 (4) | C22—C23 | 1.397 (4) |
C2—H2 | 0.9300 | C23—C24 | 1.376 (5) |
C3—C4 | 1.410 (4) | C23—H23 | 0.9300 |
C3—H3 | 0.9300 | C24—C25 | 1.378 (4) |
C4—C12 | 1.408 (4) | C25—C26 | 1.377 (4) |
C4—C5 | 1.426 (4) | C25—H25 | 0.9300 |
C5—C6 | 1.351 (4) | C26—H26 | 0.9300 |
C5—H5 | 0.9300 | ||
O1—Zn—O4 | 105.38 (8) | N2—C10—H10 | 118.6 |
O1—Zn—O7 | 99.35 (8) | C9—C10—H10 | 118.6 |
O4—Zn—O7 | 90.95 (8) | N2—C11—C7 | 123.1 (2) |
O1—Zn—N2 | 107.32 (8) | N2—C11—C12 | 117.3 (2) |
O4—Zn—N2 | 87.64 (8) | C7—C11—C12 | 119.6 (2) |
O7—Zn—N2 | 152.69 (9) | N1—C12—C4 | 123.3 (2) |
O1—Zn—N1 | 98.75 (8) | N1—C12—C11 | 117.3 (2) |
O4—Zn—N1 | 154.83 (9) | C4—C12—C11 | 119.4 (2) |
O7—Zn—N1 | 92.12 (9) | O2—C13—O1 | 123.9 (3) |
N2—Zn—N1 | 78.33 (8) | O2—C13—C14 | 118.5 (2) |
C1—N1—C12 | 117.5 (2) | O1—C13—C14 | 117.6 (2) |
C1—N1—Zn | 128.83 (19) | C19—C14—C15 | 117.9 (2) |
C12—N1—Zn | 113.36 (16) | C19—C14—C13 | 121.7 (2) |
C10—N2—C11 | 117.9 (2) | C15—C14—C13 | 120.3 (2) |
C10—N2—Zn | 128.55 (17) | O3—C15—C16 | 117.1 (2) |
C11—N2—Zn | 113.47 (16) | O3—C15—C14 | 122.9 (2) |
C13—O1—Zn | 122.31 (18) | C16—C15—C14 | 120.0 (3) |
C15—O3—H3A | 101.5 | C17—C16—C15 | 119.7 (3) |
C20—O4—Zn | 130.02 (18) | C17—C16—H16 | 120.1 |
C22—O6—H6A | 102.5 | C15—C16—H16 | 120.1 |
Zn—O7—H7A | 99.6 | C16—C17—C18 | 121.7 (3) |
Zn—O7—H7B | 98.8 | C16—C17—Cl1 | 119.1 (2) |
H7A—O7—H7B | 100.6 | C18—C17—Cl1 | 119.2 (2) |
N1—C1—C2 | 123.3 (3) | C19—C18—C17 | 118.5 (3) |
N1—C1—H1 | 118.3 | C19—C18—H18 | 120.8 |
C2—C1—H1 | 118.3 | C17—C18—H18 | 120.8 |
C3—C2—C1 | 119.1 (3) | C18—C19—C14 | 122.2 (3) |
C3—C2—H2 | 120.4 | C18—C19—H19 | 118.9 |
C1—C2—H2 | 120.4 | C14—C19—H19 | 118.9 |
C2—C3—C4 | 120.1 (3) | O5—C20—O4 | 123.9 (3) |
C2—C3—H3 | 120.0 | O5—C20—C21 | 118.7 (2) |
C4—C3—H3 | 120.0 | O4—C20—C21 | 117.4 (2) |
C12—C4—C3 | 116.7 (3) | C26—C21—C22 | 117.6 (3) |
C12—C4—C5 | 119.4 (2) | C26—C21—C20 | 121.1 (2) |
C3—C4—C5 | 124.0 (3) | C22—C21—C20 | 121.3 (3) |
C6—C5—C4 | 121.3 (3) | O6—C22—C23 | 117.3 (3) |
C6—C5—H5 | 119.4 | O6—C22—C21 | 122.3 (3) |
C4—C5—H5 | 119.4 | C23—C22—C21 | 120.4 (3) |
C5—C6—C7 | 121.0 (3) | C24—C23—C22 | 119.1 (3) |
C5—C6—H6 | 119.5 | C24—C23—H23 | 120.4 |
C7—C6—H6 | 119.5 | C22—C23—H23 | 120.4 |
C11—C7—C8 | 116.8 (2) | C23—C24—C25 | 122.3 (3) |
C11—C7—C6 | 119.3 (2) | C23—C24—Cl2 | 118.2 (2) |
C8—C7—C6 | 123.9 (2) | C25—C24—Cl2 | 119.5 (3) |
C9—C8—C7 | 119.9 (3) | C26—C25—C24 | 118.1 (3) |
C9—C8—H8 | 120.0 | C26—C25—H25 | 120.9 |
C7—C8—H8 | 120.0 | C24—C25—H25 | 120.9 |
C8—C9—C10 | 119.4 (3) | C25—C26—C21 | 122.4 (3) |
C8—C9—H9 | 120.3 | C25—C26—H26 | 118.8 |
C10—C9—H9 | 120.3 | C21—C26—H26 | 118.8 |
N2—C10—C9 | 122.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2 | 0.95 | 1.66 | 2.559 (3) | 155 |
O6—H6A···O5 | 0.95 | 1.72 | 2.595 (3) | 151 |
O7—H7A···O2 | 0.86 | 1.93 | 2.707 (3) | 150 |
O7—H7B···O5 | 0.96 | 1.75 | 2.674 (3) | 163 |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H4ClO3)2(C12H8N2)(H2O)] |
Mr | 606.69 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 8.2611 (12), 11.0124 (16), 14.654 (2) |
α, β, γ (°) | 100.534 (7), 94.360 (8), 111.315 (5) |
V (Å3) | 1206.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.28 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.86, 0.92 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13131, 4275, 3695 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.101, 1.05 |
No. of reflections | 4274 |
No. of parameters | 343 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.29 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Zn—O1 | 2.0155 (18) | Zn—N1 | 2.130 (2) |
Zn—O4 | 2.0325 (19) | Zn—N2 | 2.126 (2) |
Zn—O7 | 2.109 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2 | 0.95 | 1.66 | 2.559 (3) | 155 |
O6—H6A···O5 | 0.95 | 1.72 | 2.595 (3) | 151 |
O7—H7A···O2 | 0.86 | 1.93 | 2.707 (3) | 150 |
O7—H7B···O5 | 0.96 | 1.75 | 2.674 (3) | 163 |
Acknowledgements
This work was supported by the Natural Science Foundation of China (grant No. 20443003).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Malamatari, D. A., Hitou, P., Hatzidimitriou, A. G., Inscore, F. E., Gourdon, A., Kirk, M. L. & Kessissoglou, D. P. (1995). Inorg. Chem. 34, 2493–2494. CrossRef CAS Google Scholar
Maroszová, J., Martiška, L., Valigura, D., Koman, M. & Glowiak, T. (2006). Acta Cryst. E62, m1164–m1166. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wen, D., Ta, H., Zhong, C., Xie, T. & Wu, L. (2007). Acta Cryst. E63, m2446–m2447. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wen, D. & Ying, S. (2007). Acta Cryst. E63, m2407–m2408. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m937. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As π-π stacking between aromatic rings plays an important role in the electron transfer process in some biological system (Deisenhofer & Michel, 1989), the π-π stacking has attracted our much attention in past years. In order to understand the nature of π-π stacking between aromatic rings, we have determined crystal structures of metal complexes with aromatic ligands to investigate the factors controlling aromatic stacking.
Our previous studies on dihydroxybenzoate complexes has revealed that hydroxy-substitution of the aromatic ring may be an effective factor for π-π stacking (Yang et al., 2006; Zhang et al., 2008). As a continued investigation, the title chlorine-substituted salicylate complex has been prepared in the laboratory and its crystal structure is presented here to show the effect of chlorine-substitution on π-π stacking between benzene rings of chlorine-substituted salicylates.
The molecular structure of the title compound is shown in Fig. 1. The Zn(II) cation is coordinated by one phenanthroline (phen) ligand, two chloro-salicylate (chls) anions and one water molecule in a distorted square-pyramidal coordination geometry (Table 1). The Zn atom is 0.4591 (12) Å deviated from the basal plane towards the apical O1 atom. Uncoordinated carboxyl oxygen atoms, O2 and O5, are simultaneously hydrogen bonded to the coordinated water molecule and hydroxyl group of the same chls anion (Table 2).
It is notable π-π stacking between benzene rings of chls anions in the crystal structure. A partially overlapped arrangement is observed between parallel chls anions of neighboring complexes (Fig. 2). The face-to-face separation between C14-benzene ring C14i-benzene ring is 3.449 (3) Å, and the centroid-to-centroid distance is 3.9003 (17) Å [symmetry code: (i) 1 - x, 1 - y, 2 - z]. These facts clearly indicate the existence of aromatic stacking between benzene rings of chls anions.
A partially overlapped arrangement is also observed between nearly parallel chls anion and phen ligands of neighboring complexes (Fig. 3). The centroid-to-centroid separation between C26-benzene and N1ii-phen is 3.5841 (18) Å [symmetry code: (ii) 2 - x, 1 - y, 1 - z], and that between C26-benznen and N2iii-phen is 3.584 (2) Å [symmetry code: (iii) 1 - x, 1 - y, 1 - z]. These findings also suggest that the chls is involved in π-π stacking in the crystal structure; similar to that found in reported metal complexes with chls ligands (Maroszová et al., 2006; Malamatari et al., 1995; Wen & Ying, 2007; Wen et al., 2007).
As π-π stacking interaction does not occur between benzene ring in salicylate complexes (Allen, 2002), but occurs in the chloro-salicylate complex. This reveals the effect of chloro-substitution on aromatic π-π stacking.