organic compounds
Bis(guanidinium) 4,5-dichlorophthalate monohydrate
aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title hydrated salt, 2CH6N3+·C8H2Cl2O42−·H2O, the planes of the carboxylate groups of the dianion are rotated out of the plane of the benzene ring [dihedral angles = 48.42 (10) and 55.64 (9)°]. A duplex-sheet structure is formed through guanidinium–carboxylate N—H⋯O, guanidinium–water N—H⋯O and water–carboxylate O—H⋯O hydrogen-bonding associations.
Related literature
For the structures of 1:1 salts of 4,5-dichlorophthalate, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2008, 2009); Smith & Wermuth (2010a,d). For 1:2 salts, see: Büyükgüngör & Odabaşoğlu (2007); Smith & Wermuth (2010a,c). For guanidinium salts of aromatic dicarboxylic acids, see: Krumbe & Haussuhl (1986); Smith & Wermuth (2010b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536811021192/ng5176sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021192/ng5176Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811021192/ng5176Isup3.cml
Compound (I) was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and guanidine carbonate in 50 ml of 50% ethanol–water. Total evaporation of solvent gave a white non-crystalline powder which on subsequent slow room-temperature evaporation of an aqueous solution gave colourless crystalline plates of (I) from which a specimen was cleaved for the X-ray analysis.
H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Molecular conformation and atom-numbering scheme for the two guanidinium cations, the DCPA dianion and the water molecule of solvation in (I), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids. | |
Fig. 2. A view the two-dimensional duplex-sheet structure in the unit cell of (I), viewed down the sheets, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms are omitted. |
2CH6N3+·C8H2Cl2O42−·H2O | F(000) = 768 |
Mr = 371.19 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6093 reflections |
a = 15.9797 (5) Å | θ = 3.2–28.6° |
b = 6.9432 (2) Å | µ = 0.42 mm−1 |
c = 15.2266 (5) Å | T = 200 K |
β = 94.650 (3)° | Block, colourless |
V = 1683.84 (9) Å3 | 0.28 × 0.25 × 0.20 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD area-detector diffractometer | 3319 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2627 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
ω scans | h = −18→19 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −8→8 |
Tmin = 0.933, Tmax = 0.990 | l = −11→18 |
11236 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1489P] where P = (Fo2 + 2Fc2)/3 |
3319 reflections | (Δ/σ)max = 0.001 |
264 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
2CH6N3+·C8H2Cl2O42−·H2O | V = 1683.84 (9) Å3 |
Mr = 371.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.9797 (5) Å | µ = 0.42 mm−1 |
b = 6.9432 (2) Å | T = 200 K |
c = 15.2266 (5) Å | 0.28 × 0.25 × 0.20 mm |
β = 94.650 (3)° |
Oxford Diffraction Gemini-S CCD area-detector diffractometer | 3319 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2627 reflections with I > 2σ(I) |
Tmin = 0.933, Tmax = 0.990 | Rint = 0.022 |
11236 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.63 e Å−3 |
3319 reflections | Δρmin = −0.83 e Å−3 |
264 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl4 | 1.05872 (4) | 0.24406 (13) | 0.56212 (5) | 0.0786 (3) | |
Cl5 | 1.03264 (4) | −0.12369 (11) | 0.67711 (5) | 0.0676 (3) | |
O11 | 0.70520 (8) | 0.02886 (19) | 0.75803 (8) | 0.0304 (4) | |
O12 | 0.66435 (8) | 0.04844 (17) | 0.61463 (8) | 0.0260 (4) | |
O21 | 0.70448 (9) | 0.47401 (19) | 0.64857 (9) | 0.0325 (4) | |
O22 | 0.73076 (9) | 0.47465 (18) | 0.50680 (9) | 0.0313 (4) | |
C1 | 0.80565 (11) | 0.1185 (2) | 0.65803 (11) | 0.0207 (5) | |
C2 | 0.81671 (11) | 0.2830 (2) | 0.60675 (11) | 0.0221 (5) | |
C3 | 0.89502 (12) | 0.3185 (3) | 0.57737 (13) | 0.0338 (6) | |
C4 | 0.96178 (12) | 0.1945 (4) | 0.59905 (14) | 0.0397 (7) | |
C5 | 0.95069 (13) | 0.0335 (3) | 0.65047 (14) | 0.0361 (7) | |
C6 | 0.87267 (12) | −0.0039 (3) | 0.68007 (12) | 0.0278 (6) | |
C11 | 0.71840 (11) | 0.0626 (2) | 0.67974 (12) | 0.0206 (5) | |
C21 | 0.74498 (11) | 0.4223 (2) | 0.58557 (12) | 0.0221 (5) | |
N1A | 0.51848 (11) | 0.2730 (3) | 0.54869 (12) | 0.0297 (5) | |
N2A | 0.51734 (11) | 0.2568 (3) | 0.69927 (12) | 0.0318 (5) | |
N3A | 0.40865 (10) | 0.4034 (2) | 0.61686 (13) | 0.0281 (5) | |
C1A | 0.48092 (11) | 0.3101 (3) | 0.62137 (12) | 0.0231 (5) | |
N1B | 0.74241 (11) | 0.6136 (3) | 0.96559 (11) | 0.0288 (5) | |
N2B | 0.73486 (13) | 0.3392 (3) | 0.88218 (13) | 0.0403 (6) | |
N3B | 0.74928 (11) | 0.6306 (3) | 0.81514 (12) | 0.0314 (6) | |
C1B | 0.74182 (11) | 0.5289 (3) | 0.88781 (12) | 0.0246 (6) | |
O1W | 0.56692 (9) | 0.7224 (2) | 0.63168 (9) | 0.0296 (4) | |
H3 | 0.90300 | 0.42630 | 0.54280 | 0.0410* | |
H6 | 0.86520 | −0.11150 | 0.71490 | 0.0330* | |
H11A | 0.4941 (13) | 0.288 (3) | 0.4989 (16) | 0.029 (6)* | |
H12A | 0.5663 (15) | 0.206 (3) | 0.5529 (14) | 0.040 (6)* | |
H21A | 0.5643 (18) | 0.187 (4) | 0.7004 (17) | 0.056 (7)* | |
H22A | 0.4931 (16) | 0.254 (3) | 0.7442 (18) | 0.048 (7)* | |
H31A | 0.3862 (16) | 0.437 (3) | 0.6634 (18) | 0.049 (7)* | |
H32A | 0.3855 (14) | 0.436 (3) | 0.5679 (16) | 0.038 (7)* | |
H11B | 0.7413 (13) | 0.740 (3) | 0.9689 (13) | 0.033 (6)* | |
H12B | 0.7272 (14) | 0.546 (3) | 1.0077 (15) | 0.037 (6)* | |
H21B | 0.7375 (16) | 0.267 (4) | 0.9278 (18) | 0.055 (8)* | |
H22B | 0.7359 (15) | 0.281 (4) | 0.8289 (18) | 0.056 (8)* | |
H31B | 0.7401 (14) | 0.570 (3) | 0.7640 (16) | 0.039 (6)* | |
H32B | 0.7451 (13) | 0.753 (3) | 0.8189 (14) | 0.032 (6)* | |
H11W | 0.6032 (18) | 0.637 (4) | 0.6354 (18) | 0.058 (8)* | |
H12W | 0.5946 (16) | 0.831 (4) | 0.6270 (17) | 0.054 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl4 | 0.0240 (3) | 0.1185 (7) | 0.0961 (6) | 0.0108 (3) | 0.0218 (3) | 0.0627 (5) |
Cl5 | 0.0354 (3) | 0.0869 (5) | 0.0818 (5) | 0.0326 (3) | 0.0135 (3) | 0.0423 (4) |
O11 | 0.0375 (8) | 0.0322 (7) | 0.0229 (7) | −0.0065 (6) | 0.0117 (6) | −0.0002 (6) |
O12 | 0.0220 (7) | 0.0265 (7) | 0.0292 (7) | −0.0010 (5) | 0.0003 (5) | 0.0023 (5) |
O21 | 0.0359 (8) | 0.0334 (7) | 0.0283 (7) | 0.0100 (6) | 0.0042 (6) | −0.0032 (6) |
O22 | 0.0381 (8) | 0.0279 (7) | 0.0276 (7) | 0.0084 (6) | 0.0002 (6) | 0.0072 (6) |
C1 | 0.0228 (9) | 0.0234 (9) | 0.0160 (8) | 0.0001 (7) | 0.0024 (7) | 0.0006 (7) |
C2 | 0.0230 (9) | 0.0242 (9) | 0.0188 (9) | −0.0003 (7) | 0.0007 (7) | 0.0030 (7) |
C3 | 0.0274 (10) | 0.0399 (11) | 0.0345 (11) | −0.0015 (9) | 0.0050 (8) | 0.0178 (9) |
C4 | 0.0202 (10) | 0.0607 (14) | 0.0391 (12) | 0.0016 (9) | 0.0077 (9) | 0.0193 (11) |
C5 | 0.0254 (10) | 0.0471 (13) | 0.0360 (12) | 0.0122 (9) | 0.0029 (9) | 0.0129 (10) |
C6 | 0.0288 (10) | 0.0299 (10) | 0.0248 (10) | 0.0038 (8) | 0.0025 (8) | 0.0082 (8) |
C11 | 0.0241 (9) | 0.0143 (8) | 0.0241 (9) | 0.0013 (7) | 0.0059 (7) | −0.0002 (7) |
C21 | 0.0246 (9) | 0.0161 (8) | 0.0251 (10) | −0.0023 (7) | −0.0004 (7) | 0.0007 (7) |
N1A | 0.0270 (9) | 0.0394 (10) | 0.0230 (9) | 0.0087 (8) | 0.0038 (7) | 0.0013 (7) |
N2A | 0.0275 (9) | 0.0451 (10) | 0.0232 (9) | 0.0083 (8) | 0.0051 (7) | 0.0033 (8) |
N3A | 0.0216 (8) | 0.0381 (9) | 0.0248 (10) | 0.0028 (7) | 0.0036 (7) | −0.0012 (8) |
C1A | 0.0211 (9) | 0.0228 (9) | 0.0258 (10) | −0.0032 (7) | 0.0046 (7) | 0.0001 (7) |
N1B | 0.0426 (10) | 0.0223 (9) | 0.0216 (9) | −0.0005 (7) | 0.0027 (7) | −0.0003 (7) |
N2B | 0.0696 (14) | 0.0238 (9) | 0.0275 (10) | −0.0036 (9) | 0.0042 (9) | −0.0020 (8) |
N3B | 0.0434 (10) | 0.0275 (10) | 0.0236 (9) | 0.0023 (8) | 0.0048 (7) | 0.0019 (7) |
C1B | 0.0251 (9) | 0.0247 (10) | 0.0237 (10) | −0.0003 (7) | 0.0005 (7) | 0.0011 (7) |
O1W | 0.0265 (7) | 0.0258 (8) | 0.0363 (8) | −0.0026 (6) | 0.0021 (6) | 0.0010 (6) |
Cl4—C4 | 1.725 (2) | N2B—C1B | 1.324 (3) |
Cl5—C5 | 1.728 (2) | N3B—C1B | 1.326 (3) |
O11—C11 | 1.250 (2) | N1B—H12B | 0.85 (2) |
O12—C11 | 1.265 (2) | N1B—H11B | 0.88 (2) |
O21—C21 | 1.252 (2) | N2B—H21B | 0.86 (3) |
O22—C21 | 1.256 (2) | N2B—H22B | 0.91 (3) |
O1W—H12W | 0.88 (3) | N3B—H31B | 0.89 (2) |
O1W—H11W | 0.83 (3) | N3B—H32B | 0.86 (2) |
N1A—C1A | 1.326 (3) | C1—C6 | 1.387 (3) |
N2A—C1A | 1.331 (3) | C1—C11 | 1.510 (2) |
N3A—C1A | 1.321 (2) | C1—C2 | 1.403 (2) |
N1A—H12A | 0.89 (2) | C2—C21 | 1.514 (2) |
N1A—H11A | 0.83 (2) | C2—C3 | 1.385 (3) |
N2A—H22A | 0.81 (3) | C3—C4 | 1.390 (3) |
N2A—H21A | 0.89 (3) | C4—C5 | 1.384 (3) |
N3A—H32A | 0.84 (2) | C5—C6 | 1.384 (3) |
N3A—H31A | 0.85 (3) | C3—H3 | 0.9300 |
N1B—C1B | 1.322 (3) | C6—H6 | 0.9300 |
H11W—O1W—H12W | 105 (3) | C2—C3—C4 | 120.62 (19) |
H11A—N1A—H12A | 118 (2) | C3—C4—C5 | 120.24 (19) |
C1A—N1A—H12A | 119.0 (14) | Cl4—C4—C3 | 119.43 (19) |
C1A—N1A—H11A | 121.8 (15) | Cl4—C4—C5 | 120.33 (17) |
H21A—N2A—H22A | 115 (2) | Cl5—C5—C4 | 120.90 (16) |
C1A—N2A—H22A | 123.6 (18) | Cl5—C5—C6 | 119.38 (16) |
C1A—N2A—H21A | 118.3 (17) | C4—C5—C6 | 119.71 (19) |
C1A—N3A—H32A | 120.1 (16) | C1—C6—C5 | 120.30 (18) |
H31A—N3A—H32A | 119 (2) | O12—C11—C1 | 115.63 (15) |
C1A—N3A—H31A | 121.1 (17) | O11—C11—O12 | 125.16 (16) |
C1B—N1B—H12B | 116.8 (15) | O11—C11—C1 | 119.18 (16) |
H11B—N1B—H12B | 120 (2) | O22—C21—C2 | 117.60 (15) |
C1B—N1B—H11B | 119.8 (13) | O21—C21—C2 | 116.69 (15) |
C1B—N2B—H22B | 119.6 (18) | O21—C21—O22 | 125.71 (16) |
C1B—N2B—H21B | 122.2 (19) | C2—C3—H3 | 120.00 |
H21B—N2B—H22B | 118 (3) | C4—C3—H3 | 120.00 |
H31B—N3B—H32B | 122 (2) | C5—C6—H6 | 120.00 |
C1B—N3B—H31B | 117.4 (14) | C1—C6—H6 | 120.00 |
C1B—N3B—H32B | 117.4 (14) | N1A—C1A—N2A | 119.67 (18) |
C6—C1—C11 | 119.89 (14) | N1A—C1A—N3A | 120.31 (18) |
C2—C1—C6 | 120.26 (16) | N2A—C1A—N3A | 120.00 (18) |
C2—C1—C11 | 119.44 (15) | N1B—C1B—N2B | 119.68 (19) |
C3—C2—C21 | 120.38 (15) | N1B—C1B—N3B | 121.1 (2) |
C1—C2—C21 | 120.74 (15) | N2B—C1B—N3B | 119.24 (19) |
C1—C2—C3 | 118.86 (16) | ||
C6—C1—C2—C3 | 1.2 (2) | C1—C2—C21—O21 | 47.5 (2) |
C6—C1—C2—C21 | −177.34 (16) | C1—C2—C21—O22 | −131.93 (17) |
C11—C1—C2—C3 | −171.43 (16) | C3—C2—C21—O21 | −131.02 (18) |
C11—C1—C2—C21 | 10.0 (2) | C3—C2—C21—O22 | 49.6 (2) |
C2—C1—C6—C5 | −1.1 (3) | C2—C3—C4—Cl4 | −179.47 (15) |
C11—C1—C6—C5 | 171.54 (17) | C2—C3—C4—C5 | 0.0 (3) |
C2—C1—C11—O11 | −129.41 (16) | Cl4—C4—C5—Cl5 | −1.3 (3) |
C2—C1—C11—O12 | 52.6 (2) | Cl4—C4—C5—C6 | 179.63 (16) |
C6—C1—C11—O11 | 57.9 (2) | C3—C4—C5—Cl5 | 179.30 (17) |
C6—C1—C11—O12 | −120.04 (17) | C3—C4—C5—C6 | 0.2 (3) |
C1—C2—C3—C4 | −0.7 (3) | Cl5—C5—C6—C1 | −178.78 (15) |
C21—C2—C3—C4 | 177.87 (18) | C4—C5—C6—C1 | 0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11A···O1Wi | 0.83 (2) | 2.14 (2) | 2.966 (2) | 171 (2) |
N1A—H12A···O12 | 0.89 (2) | 2.07 (2) | 2.914 (2) | 156.8 (19) |
N1B—H11B···O22ii | 0.88 (2) | 2.07 (2) | 2.936 (2) | 166.3 (19) |
N1B—H12B···O12iii | 0.85 (2) | 2.09 (2) | 2.904 (2) | 162 (2) |
N2A—H21A···O11 | 0.89 (3) | 2.59 (3) | 3.447 (2) | 160 (2) |
N2A—H21A···O12 | 0.89 (3) | 2.35 (3) | 3.125 (2) | 145 (2) |
N2A—H22A···O1Wiv | 0.81 (3) | 2.20 (3) | 3.010 (2) | 175 (2) |
N2B—H21B···O22iii | 0.86 (3) | 2.07 (3) | 2.894 (2) | 161 (3) |
N2B—H22B···O11 | 0.91 (3) | 2.09 (3) | 2.880 (2) | 144 (2) |
N3A—H31A···O11v | 0.85 (3) | 2.06 (3) | 2.874 (2) | 159 (2) |
N3A—H32A···O22i | 0.84 (2) | 2.19 (2) | 2.923 (2) | 147 (2) |
N3B—H31B···O21 | 0.89 (2) | 1.92 (2) | 2.799 (2) | 169 (2) |
N3B—H32B···O11vi | 0.86 (2) | 2.20 (2) | 2.966 (2) | 149.2 (19) |
O1W—H11W···O21 | 0.83 (3) | 1.97 (3) | 2.789 (2) | 169 (3) |
O1W—H12W···O12vi | 0.88 (3) | 1.90 (3) | 2.7716 (19) | 174 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·C8H2Cl2O42−·H2O |
Mr | 371.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 15.9797 (5), 6.9432 (2), 15.2266 (5) |
β (°) | 94.650 (3) |
V (Å3) | 1683.84 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.28 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.933, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11236, 3319, 2627 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.105, 1.16 |
No. of reflections | 3319 |
No. of parameters | 264 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.63, −0.83 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11A···O1Wi | 0.83 (2) | 2.14 (2) | 2.966 (2) | 171 (2) |
N1A—H12A···O12 | 0.89 (2) | 2.07 (2) | 2.914 (2) | 156.8 (19) |
N1B—H11B···O22ii | 0.88 (2) | 2.07 (2) | 2.936 (2) | 166.3 (19) |
N1B—H12B···O12iii | 0.85 (2) | 2.09 (2) | 2.904 (2) | 162 (2) |
N2A—H21A···O11 | 0.89 (3) | 2.59 (3) | 3.447 (2) | 160 (2) |
N2A—H21A···O12 | 0.89 (3) | 2.35 (3) | 3.125 (2) | 145 (2) |
N2A—H22A···O1Wiv | 0.81 (3) | 2.20 (3) | 3.010 (2) | 175 (2) |
N2B—H21B···O22iii | 0.86 (3) | 2.07 (3) | 2.894 (2) | 161 (3) |
N2B—H22B···O11 | 0.91 (3) | 2.09 (3) | 2.880 (2) | 144 (2) |
N3A—H31A···O11v | 0.85 (3) | 2.06 (3) | 2.874 (2) | 159 (2) |
N3A—H32A···O22i | 0.84 (2) | 2.19 (2) | 2.923 (2) | 147 (2) |
N3B—H31B···O21 | 0.89 (2) | 1.92 (2) | 2.799 (2) | 169 (2) |
N3B—H32B···O11vi | 0.86 (2) | 2.20 (2) | 2.966 (2) | 149.2 (19) |
O1W—H11W···O21 | 0.83 (3) | 1.97 (3) | 2.789 (2) | 169 (3) |
O1W—H12W···O12vi | 0.88 (3) | 1.90 (3) | 2.7716 (19) | 174 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, y+1, z. |
Acknowledgements
The authors acknowledge financial support from the Australian Reseach Council, and from the Faculty of Science and Technology and the University Library, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Krumbe, W. & Haussuhl, S. (1986). Z. Kristallogr. 179, 267–279. CrossRef Google Scholar
Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374–o380. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o575–o580. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o235. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010d). J. Chem. Crystallogr. 40, 151–155. CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103–o107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4,5-Dichlorophthalic acid (DCPA) forms 1:1 salts with a number of Lewis bases, having most commonly low-dimensional hydrogen-bonded structures featuring the `planar' hydrogen phthalate anion (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2008, 2009; Smith & Wermuth, 2010a,d). The `nonplanar' dianionic DCPA species is much less common among the known structures, examples being the 1:2 salts with 4-ethylaniline (Büyükgüngör & Odabaşoğlu, 2007), ethylenediamine (Smith & Wermuth, 2010c), n-butylamine and piperidine (Smith & Wermuth, 2010a). With the strong base guanidine, the formation of 1:2 salts with dicarboxylic acids is more common, e.g. with phthalic acid (Krumbe & Haussuhl, 1986) and terephthalic acids (Smith & Wermuth, 2010b) and our 1:1 stoichiometric reaction of DCPA with guanidine carbonate not unexpectedly gave the bis(guanidinium) salt hydrate, the title compound, 2(CH6N3+) C8H2Cl2O42-. H2O (I) (Fig. 1), and the structure is reported here.
In the structure of (I), the two guanidinium cations (A and B) and the water molecule of solvation provide hydrogen-bonding links between the `non-planar' DCPA dianions (Table 1). The planes of the carboxyl groups of the dianion are rotated out of the plane of the benzene ring [torsion angles C1—C2—C21–O22, -131.93 (17)°; C2—C1—C11–O11, -129.41 (16)°]. Duplex-sheet structures are formed, extending down the (011) planes in the unit cell (Fig. 2). Within these sheets there are guanidinium N—H···Ocarboxyl, N—H···Owater and water O—H···Ocarboxyl associations.