organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(guanidinium) 4,5-di­chloro­phthalate monohydrate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 30 May 2011; accepted 1 June 2011; online 11 June 2011)

In the structure of the title hydrated salt, 2CH6N3+·C8H2Cl2O42−·H2O, the planes of the carboxyl­ate groups of the dianion are rotated out of the plane of the benzene ring [dihedral angles = 48.42 (10) and 55.64 (9)°]. A duplex-sheet structure is formed through guanidinium–carboxyl­ate N—H⋯O, guanidinium–water N—H⋯O and water–carboxyl­ate O—H⋯O hydrogen-bonding associations.

Related literature

For the structures of 1:1 salts of 4,5-dichloro­phthalate, see: Mallinson et al. (2003[Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259-4270.]); Bozkurt et al. (2006[Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258-o4260.]); Smith et al. (2008[Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180-o183.], 2009[Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103-o107.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374-o380.],d[Smith, G. & Wermuth, U. D. (2010d). J. Chem. Crystallogr. 40, 151-155.]). For 1:2 salts, see: Büyükgüngör & Odabaşoğlu (2007[Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376-o4377.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374-o380.],c[Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o235.]). For guanidinium salts of aromatic dicarb­oxy­lic acids, see: Krumbe & Haussuhl (1986[Krumbe, W. & Haussuhl, S. (1986). Z. Kristallogr. 179, 267-279.]); Smith & Wermuth (2010b[Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o575-o580.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·C8H2Cl2O42−·H2O

  • Mr = 371.19

  • Monoclinic, P 21 /c

  • a = 15.9797 (5) Å

  • b = 6.9432 (2) Å

  • c = 15.2266 (5) Å

  • β = 94.650 (3)°

  • V = 1683.84 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 200 K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.933, Tmax = 0.990

  • 11236 measured reflections

  • 3319 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.16

  • 3319 reflections

  • 264 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O1Wi 0.83 (2) 2.14 (2) 2.966 (2) 171 (2)
N1A—H12A⋯O12 0.89 (2) 2.07 (2) 2.914 (2) 156.8 (19)
N1B—H11B⋯O22ii 0.88 (2) 2.07 (2) 2.936 (2) 166.3 (19)
N1B—H12B⋯O12iii 0.85 (2) 2.09 (2) 2.904 (2) 162 (2)
N2A—H21A⋯O11 0.89 (3) 2.59 (3) 3.447 (2) 160 (2)
N2A—H21A⋯O12 0.89 (3) 2.35 (3) 3.125 (2) 145 (2)
N2A—H22A⋯O1Wiv 0.81 (3) 2.20 (3) 3.010 (2) 175 (2)
N2B—H21B⋯O22iii 0.86 (3) 2.07 (3) 2.894 (2) 161 (3)
N2B—H22B⋯O11 0.91 (3) 2.09 (3) 2.880 (2) 144 (2)
N3A—H31A⋯O11v 0.85 (3) 2.06 (3) 2.874 (2) 159 (2)
N3A—H32A⋯O22i 0.84 (2) 2.19 (2) 2.923 (2) 147 (2)
N3B—H31B⋯O21 0.89 (2) 1.92 (2) 2.799 (2) 169 (2)
N3B—H32B⋯O11vi 0.86 (2) 2.20 (2) 2.966 (2) 149.2 (19)
O1W—H11W⋯O21 0.83 (3) 1.97 (3) 2.789 (2) 169 (3)
O1W—H12W⋯O12vi 0.88 (3) 1.90 (3) 2.7716 (19) 174 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4,5-Dichlorophthalic acid (DCPA) forms 1:1 salts with a number of Lewis bases, having most commonly low-dimensional hydrogen-bonded structures featuring the `planar' hydrogen phthalate anion (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2008, 2009; Smith & Wermuth, 2010a,d). The `nonplanar' dianionic DCPA species is much less common among the known structures, examples being the 1:2 salts with 4-ethylaniline (Büyükgüngör & Odabaşoğlu, 2007), ethylenediamine (Smith & Wermuth, 2010c), n-butylamine and piperidine (Smith & Wermuth, 2010a). With the strong base guanidine, the formation of 1:2 salts with dicarboxylic acids is more common, e.g. with phthalic acid (Krumbe & Haussuhl, 1986) and terephthalic acids (Smith & Wermuth, 2010b) and our 1:1 stoichiometric reaction of DCPA with guanidine carbonate not unexpectedly gave the bis(guanidinium) salt hydrate, the title compound, 2(CH6N3+) C8H2Cl2O42-. H2O (I) (Fig. 1), and the structure is reported here.

In the structure of (I), the two guanidinium cations (A and B) and the water molecule of solvation provide hydrogen-bonding links between the `non-planar' DCPA dianions (Table 1). The planes of the carboxyl groups of the dianion are rotated out of the plane of the benzene ring [torsion angles C1—C2—C21–O22, -131.93 (17)°; C2—C1—C11–O11, -129.41 (16)°]. Duplex-sheet structures are formed, extending down the (011) planes in the unit cell (Fig. 2). Within these sheets there are guanidinium N—H···Ocarboxyl, N—H···Owater and water O—H···Ocarboxyl associations.

Related literature top

For the structures of 1:1 salts of 4,5-dichlorophthalate, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2008, 2009); Smith & Wermuth (2010a,d). For 1:2 salts, see: Büyükgüngör & Odabaşoğlu (2007); Smith & Wermuth (2010a,c). For guanidinium salts of aromatic dicarboxylic acids, see: Krumbe & Haussuhl (1986); Smith & Wermuth (2010b).

Experimental top

Compound (I) was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and guanidine carbonate in 50 ml of 50% ethanol–water. Total evaporation of solvent gave a white non-crystalline powder which on subsequent slow room-temperature evaporation of an aqueous solution gave colourless crystalline plates of (I) from which a specimen was cleaved for the X-ray analysis.

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme for the two guanidinium cations, the DCPA dianion and the water molecule of solvation in (I), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view the two-dimensional duplex-sheet structure in the unit cell of (I), viewed down the sheets, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms are omitted.
Bis(guanidinium) 4,5-dichlorophthalate monohydrate top
Crystal data top
2CH6N3+·C8H2Cl2O42·H2OF(000) = 768
Mr = 371.19Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6093 reflections
a = 15.9797 (5) Åθ = 3.2–28.6°
b = 6.9432 (2) ŵ = 0.42 mm1
c = 15.2266 (5) ÅT = 200 K
β = 94.650 (3)°Block, colourless
V = 1683.84 (9) Å30.28 × 0.25 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD area-detector
diffractometer
3319 independent reflections
Radiation source: Enhance (Mo) X-ray source2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1819
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.933, Tmax = 0.990l = 1118
11236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1489P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
2CH6N3+·C8H2Cl2O42·H2OV = 1683.84 (9) Å3
Mr = 371.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9797 (5) ŵ = 0.42 mm1
b = 6.9432 (2) ÅT = 200 K
c = 15.2266 (5) Å0.28 × 0.25 × 0.20 mm
β = 94.650 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD area-detector
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2627 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.990Rint = 0.022
11236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.63 e Å3
3319 reflectionsΔρmin = 0.83 e Å3
264 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl41.05872 (4)0.24406 (13)0.56212 (5)0.0786 (3)
Cl51.03264 (4)0.12369 (11)0.67711 (5)0.0676 (3)
O110.70520 (8)0.02886 (19)0.75803 (8)0.0304 (4)
O120.66435 (8)0.04844 (17)0.61463 (8)0.0260 (4)
O210.70448 (9)0.47401 (19)0.64857 (9)0.0325 (4)
O220.73076 (9)0.47465 (18)0.50680 (9)0.0313 (4)
C10.80565 (11)0.1185 (2)0.65803 (11)0.0207 (5)
C20.81671 (11)0.2830 (2)0.60675 (11)0.0221 (5)
C30.89502 (12)0.3185 (3)0.57737 (13)0.0338 (6)
C40.96178 (12)0.1945 (4)0.59905 (14)0.0397 (7)
C50.95069 (13)0.0335 (3)0.65047 (14)0.0361 (7)
C60.87267 (12)0.0039 (3)0.68007 (12)0.0278 (6)
C110.71840 (11)0.0626 (2)0.67974 (12)0.0206 (5)
C210.74498 (11)0.4223 (2)0.58557 (12)0.0221 (5)
N1A0.51848 (11)0.2730 (3)0.54869 (12)0.0297 (5)
N2A0.51734 (11)0.2568 (3)0.69927 (12)0.0318 (5)
N3A0.40865 (10)0.4034 (2)0.61686 (13)0.0281 (5)
C1A0.48092 (11)0.3101 (3)0.62137 (12)0.0231 (5)
N1B0.74241 (11)0.6136 (3)0.96559 (11)0.0288 (5)
N2B0.73486 (13)0.3392 (3)0.88218 (13)0.0403 (6)
N3B0.74928 (11)0.6306 (3)0.81514 (12)0.0314 (6)
C1B0.74182 (11)0.5289 (3)0.88781 (12)0.0246 (6)
O1W0.56692 (9)0.7224 (2)0.63168 (9)0.0296 (4)
H30.903000.426300.542800.0410*
H60.865200.111500.714900.0330*
H11A0.4941 (13)0.288 (3)0.4989 (16)0.029 (6)*
H12A0.5663 (15)0.206 (3)0.5529 (14)0.040 (6)*
H21A0.5643 (18)0.187 (4)0.7004 (17)0.056 (7)*
H22A0.4931 (16)0.254 (3)0.7442 (18)0.048 (7)*
H31A0.3862 (16)0.437 (3)0.6634 (18)0.049 (7)*
H32A0.3855 (14)0.436 (3)0.5679 (16)0.038 (7)*
H11B0.7413 (13)0.740 (3)0.9689 (13)0.033 (6)*
H12B0.7272 (14)0.546 (3)1.0077 (15)0.037 (6)*
H21B0.7375 (16)0.267 (4)0.9278 (18)0.055 (8)*
H22B0.7359 (15)0.281 (4)0.8289 (18)0.056 (8)*
H31B0.7401 (14)0.570 (3)0.7640 (16)0.039 (6)*
H32B0.7451 (13)0.753 (3)0.8189 (14)0.032 (6)*
H11W0.6032 (18)0.637 (4)0.6354 (18)0.058 (8)*
H12W0.5946 (16)0.831 (4)0.6270 (17)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0240 (3)0.1185 (7)0.0961 (6)0.0108 (3)0.0218 (3)0.0627 (5)
Cl50.0354 (3)0.0869 (5)0.0818 (5)0.0326 (3)0.0135 (3)0.0423 (4)
O110.0375 (8)0.0322 (7)0.0229 (7)0.0065 (6)0.0117 (6)0.0002 (6)
O120.0220 (7)0.0265 (7)0.0292 (7)0.0010 (5)0.0003 (5)0.0023 (5)
O210.0359 (8)0.0334 (7)0.0283 (7)0.0100 (6)0.0042 (6)0.0032 (6)
O220.0381 (8)0.0279 (7)0.0276 (7)0.0084 (6)0.0002 (6)0.0072 (6)
C10.0228 (9)0.0234 (9)0.0160 (8)0.0001 (7)0.0024 (7)0.0006 (7)
C20.0230 (9)0.0242 (9)0.0188 (9)0.0003 (7)0.0007 (7)0.0030 (7)
C30.0274 (10)0.0399 (11)0.0345 (11)0.0015 (9)0.0050 (8)0.0178 (9)
C40.0202 (10)0.0607 (14)0.0391 (12)0.0016 (9)0.0077 (9)0.0193 (11)
C50.0254 (10)0.0471 (13)0.0360 (12)0.0122 (9)0.0029 (9)0.0129 (10)
C60.0288 (10)0.0299 (10)0.0248 (10)0.0038 (8)0.0025 (8)0.0082 (8)
C110.0241 (9)0.0143 (8)0.0241 (9)0.0013 (7)0.0059 (7)0.0002 (7)
C210.0246 (9)0.0161 (8)0.0251 (10)0.0023 (7)0.0004 (7)0.0007 (7)
N1A0.0270 (9)0.0394 (10)0.0230 (9)0.0087 (8)0.0038 (7)0.0013 (7)
N2A0.0275 (9)0.0451 (10)0.0232 (9)0.0083 (8)0.0051 (7)0.0033 (8)
N3A0.0216 (8)0.0381 (9)0.0248 (10)0.0028 (7)0.0036 (7)0.0012 (8)
C1A0.0211 (9)0.0228 (9)0.0258 (10)0.0032 (7)0.0046 (7)0.0001 (7)
N1B0.0426 (10)0.0223 (9)0.0216 (9)0.0005 (7)0.0027 (7)0.0003 (7)
N2B0.0696 (14)0.0238 (9)0.0275 (10)0.0036 (9)0.0042 (9)0.0020 (8)
N3B0.0434 (10)0.0275 (10)0.0236 (9)0.0023 (8)0.0048 (7)0.0019 (7)
C1B0.0251 (9)0.0247 (10)0.0237 (10)0.0003 (7)0.0005 (7)0.0011 (7)
O1W0.0265 (7)0.0258 (8)0.0363 (8)0.0026 (6)0.0021 (6)0.0010 (6)
Geometric parameters (Å, º) top
Cl4—C41.725 (2)N2B—C1B1.324 (3)
Cl5—C51.728 (2)N3B—C1B1.326 (3)
O11—C111.250 (2)N1B—H12B0.85 (2)
O12—C111.265 (2)N1B—H11B0.88 (2)
O21—C211.252 (2)N2B—H21B0.86 (3)
O22—C211.256 (2)N2B—H22B0.91 (3)
O1W—H12W0.88 (3)N3B—H31B0.89 (2)
O1W—H11W0.83 (3)N3B—H32B0.86 (2)
N1A—C1A1.326 (3)C1—C61.387 (3)
N2A—C1A1.331 (3)C1—C111.510 (2)
N3A—C1A1.321 (2)C1—C21.403 (2)
N1A—H12A0.89 (2)C2—C211.514 (2)
N1A—H11A0.83 (2)C2—C31.385 (3)
N2A—H22A0.81 (3)C3—C41.390 (3)
N2A—H21A0.89 (3)C4—C51.384 (3)
N3A—H32A0.84 (2)C5—C61.384 (3)
N3A—H31A0.85 (3)C3—H30.9300
N1B—C1B1.322 (3)C6—H60.9300
H11W—O1W—H12W105 (3)C2—C3—C4120.62 (19)
H11A—N1A—H12A118 (2)C3—C4—C5120.24 (19)
C1A—N1A—H12A119.0 (14)Cl4—C4—C3119.43 (19)
C1A—N1A—H11A121.8 (15)Cl4—C4—C5120.33 (17)
H21A—N2A—H22A115 (2)Cl5—C5—C4120.90 (16)
C1A—N2A—H22A123.6 (18)Cl5—C5—C6119.38 (16)
C1A—N2A—H21A118.3 (17)C4—C5—C6119.71 (19)
C1A—N3A—H32A120.1 (16)C1—C6—C5120.30 (18)
H31A—N3A—H32A119 (2)O12—C11—C1115.63 (15)
C1A—N3A—H31A121.1 (17)O11—C11—O12125.16 (16)
C1B—N1B—H12B116.8 (15)O11—C11—C1119.18 (16)
H11B—N1B—H12B120 (2)O22—C21—C2117.60 (15)
C1B—N1B—H11B119.8 (13)O21—C21—C2116.69 (15)
C1B—N2B—H22B119.6 (18)O21—C21—O22125.71 (16)
C1B—N2B—H21B122.2 (19)C2—C3—H3120.00
H21B—N2B—H22B118 (3)C4—C3—H3120.00
H31B—N3B—H32B122 (2)C5—C6—H6120.00
C1B—N3B—H31B117.4 (14)C1—C6—H6120.00
C1B—N3B—H32B117.4 (14)N1A—C1A—N2A119.67 (18)
C6—C1—C11119.89 (14)N1A—C1A—N3A120.31 (18)
C2—C1—C6120.26 (16)N2A—C1A—N3A120.00 (18)
C2—C1—C11119.44 (15)N1B—C1B—N2B119.68 (19)
C3—C2—C21120.38 (15)N1B—C1B—N3B121.1 (2)
C1—C2—C21120.74 (15)N2B—C1B—N3B119.24 (19)
C1—C2—C3118.86 (16)
C6—C1—C2—C31.2 (2)C1—C2—C21—O2147.5 (2)
C6—C1—C2—C21177.34 (16)C1—C2—C21—O22131.93 (17)
C11—C1—C2—C3171.43 (16)C3—C2—C21—O21131.02 (18)
C11—C1—C2—C2110.0 (2)C3—C2—C21—O2249.6 (2)
C2—C1—C6—C51.1 (3)C2—C3—C4—Cl4179.47 (15)
C11—C1—C6—C5171.54 (17)C2—C3—C4—C50.0 (3)
C2—C1—C11—O11129.41 (16)Cl4—C4—C5—Cl51.3 (3)
C2—C1—C11—O1252.6 (2)Cl4—C4—C5—C6179.63 (16)
C6—C1—C11—O1157.9 (2)C3—C4—C5—Cl5179.30 (17)
C6—C1—C11—O12120.04 (17)C3—C4—C5—C60.2 (3)
C1—C2—C3—C40.7 (3)Cl5—C5—C6—C1178.78 (15)
C21—C2—C3—C4177.87 (18)C4—C5—C6—C10.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O1Wi0.83 (2)2.14 (2)2.966 (2)171 (2)
N1A—H12A···O120.89 (2)2.07 (2)2.914 (2)156.8 (19)
N1B—H11B···O22ii0.88 (2)2.07 (2)2.936 (2)166.3 (19)
N1B—H12B···O12iii0.85 (2)2.09 (2)2.904 (2)162 (2)
N2A—H21A···O110.89 (3)2.59 (3)3.447 (2)160 (2)
N2A—H21A···O120.89 (3)2.35 (3)3.125 (2)145 (2)
N2A—H22A···O1Wiv0.81 (3)2.20 (3)3.010 (2)175 (2)
N2B—H21B···O22iii0.86 (3)2.07 (3)2.894 (2)161 (3)
N2B—H22B···O110.91 (3)2.09 (3)2.880 (2)144 (2)
N3A—H31A···O11v0.85 (3)2.06 (3)2.874 (2)159 (2)
N3A—H32A···O22i0.84 (2)2.19 (2)2.923 (2)147 (2)
N3B—H31B···O210.89 (2)1.92 (2)2.799 (2)169 (2)
N3B—H32B···O11vi0.86 (2)2.20 (2)2.966 (2)149.2 (19)
O1W—H11W···O210.83 (3)1.97 (3)2.789 (2)169 (3)
O1W—H12W···O12vi0.88 (3)1.90 (3)2.7716 (19)174 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula2CH6N3+·C8H2Cl2O42·H2O
Mr371.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.9797 (5), 6.9432 (2), 15.2266 (5)
β (°) 94.650 (3)
V3)1683.84 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.933, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11236, 3319, 2627
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.16
No. of reflections3319
No. of parameters264
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.83

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O1Wi0.83 (2)2.14 (2)2.966 (2)171 (2)
N1A—H12A···O120.89 (2)2.07 (2)2.914 (2)156.8 (19)
N1B—H11B···O22ii0.88 (2)2.07 (2)2.936 (2)166.3 (19)
N1B—H12B···O12iii0.85 (2)2.09 (2)2.904 (2)162 (2)
N2A—H21A···O110.89 (3)2.59 (3)3.447 (2)160 (2)
N2A—H21A···O120.89 (3)2.35 (3)3.125 (2)145 (2)
N2A—H22A···O1Wiv0.81 (3)2.20 (3)3.010 (2)175 (2)
N2B—H21B···O22iii0.86 (3)2.07 (3)2.894 (2)161 (3)
N2B—H22B···O110.91 (3)2.09 (3)2.880 (2)144 (2)
N3A—H31A···O11v0.85 (3)2.06 (3)2.874 (2)159 (2)
N3A—H32A···O22i0.84 (2)2.19 (2)2.923 (2)147 (2)
N3B—H31B···O210.89 (2)1.92 (2)2.799 (2)169 (2)
N3B—H32B···O11vi0.86 (2)2.20 (2)2.966 (2)149.2 (19)
O1W—H11W···O210.83 (3)1.97 (3)2.789 (2)169 (3)
O1W—H12W···O12vi0.88 (3)1.90 (3)2.7716 (19)174 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council, and from the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKrumbe, W. & Haussuhl, S. (1986). Z. Kristallogr. 179, 267–279.  CrossRef Google Scholar
First citationMallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o374–o380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o575–o580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010d). J. Chem. Crystallogr. 40, 151–155.  CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds