organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-(2-Naphthyl­amino)­pent-3-en-2-one

aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, bUniversité Blaise Pascal, Laboratoire des Matèriaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubiére, France, and cDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 20 June 2011; accepted 22 June 2011; online 25 June 2011)

The title compound, C15H15NO, which was synthesized under solvent-free conditions by the reaction of acetoacetone and 2-naphthyl­amine, adopts a Z conformation about the C=C bond. The enamine–ketone fragment is approximately planar [maximum deviation = 0.026 (3) Å] and forms a dihedral angle of 39.78 (3)° with the naphthalene ring system. An intra­molecular N—H⋯O hydrogen bond is observed.

Related literature

For our studies on the synthesis of β-enamino­nes and β-enamino esters, see: Harrad et al. (2010[Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442-446.], 2011[Harrad, M. A., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o1269-o1270.]). For related structures, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Arıcı et al. (1999[Arıcı, C., Tahir, M. N., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 1691-1692.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Orthorhombic, P b c a

  • a = 11.2417 (18) Å

  • b = 8.2532 (10) Å

  • c = 26.570 (4) Å

  • V = 2465.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.48 × 0.34 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.746

  • 9535 measured reflections

  • 2221 independent reflections

  • 1179 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 0.94

  • 2221 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.92 (2) 1.85 (2) 2.657 (2) 144 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

β-Enaminones and β-enaminoesters are useful precursors for the preparation of biologically active compounds such as β-enamino acids and γ-enamino alcohols, and many synthetic methods have been developed for the preparation of these compounds. As a continuation of our work on the synthesis and characterization of new β-enamino compounds (Harrad et al., 2010, 2011), we describe herein the crystal structure of title compound.

The title compound (Fig. 1) crystallizes in the keto-enamine form, as indicated by values of the C14O1 and C13–C14 bond length of 1.252 (3) and 1.410 (3) Å, respectively. The bond lengths observed within the C13–C12–N1 chain (C12–C13 = 1.375 (3) Å; N1–C12 = 1.353 (3) Å) suggest some degree of electron delocalization of the imino and alkene double bonds. The molecule assumes a Z conformation about the C12C13 bond. An S(6) ring motif is formed due to an intramolecular N—H···O hydrogen bond (Table 1). The enamino-ketone fragment (N1/C12/c13/C14/O1) is approximately planar (maximum deviation 0.026 (3) Å for atom C14) and is twisted by 39.78 (3)° with respect to the naphthalene ring. This value is comparable with those of 32.06 (9) and 44.71 (7)° found in (Z)-4-anilinopent-3-en-2-one (Shaheen et al., 2006) and 4-chloro-2-(4-oxopent-2-en-2-ylamino)phenol (Arıcı et al., 1999), respectively. The crystal packing (Fig. 2) is governed only by van der Waals interactions. No C—H···π or π···π interactions are observed.

Related literature top

For our studies on the synthesis of β-enaminones and β-enamino esters, see: Harrad et al. (2010, 2011). For related structures, see: Shaheen et al. (2006); Arıcı et al. (1999).

Experimental top

A mixture of acetoacetone (5 mmol), 2-naphthylamine (5 mmol) and Ca(CF3CO2)2 (0.05 mmol) was stirred at room temperature for 1 h under solvent-free conditions. After completion of the reaction, the mixture was diluted with H2O (10 ml), extracted with EtOAc (2 × 10 ml) and dried over Na2SO4. The title compound was isolated as a white powder by column chromatography on silica gel using ethyl acetate/n-hexane (1:1 v/v) as eluent (yield 62%; m. p.= 395 K). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature of an n-hexane solution. 1H NMR (CDCl3, 300 MHz) δ: 1.9 (s; 3H), 2.2 (s, 3H), 3.1 (s, 1H); 7.2–7.7 (m, 7H, Ar), 12.6 (bs, 1H, HN); 13C NMR (CDCl3, 75 MHz) δ: 19.96, 30.53, 97.04, 127.95, 130.10, 132.50, 135.14, 126.61, 125.23; 124.63, 122.81; 120.58; 159.25, 195.23. EIMS (m/z) 226.1 (M+). HRMS calcd for C15H15NO: 225.1154; found 225.1163.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were fixed geometrically and treated as riding, with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups. Four low-angle reflections [2 0 0 (θ = 3.62°), 1 1 1 (θ = 3.16°), 1 0 2 (θ = 2.37°) and 1 1 2 (θ = 3.42°)] were omitted from the final cycles of refinement because their observed intensities were much lower than the calculated values as a result of being affected by the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995)'.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound approximately viewed along the a axis.
(Z)-4-(2-Naphthylamino)pent-3-en-2-one top
Crystal data top
C15H15NOF(000) = 960
Mr = 225.28Dx = 1.214 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1094 reflections
a = 11.2417 (18) Åθ = 3.1–19.4°
b = 8.2532 (10) ŵ = 0.08 mm1
c = 26.570 (4) ÅT = 296 K
V = 2465.2 (6) Å3Plate, colourless
Z = 80.48 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube1179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 25.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS, Bruker, 2008)
h = 138
Tmin = 0.660, Tmax = 0.746k = 99
9535 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0749P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2221 reflectionsΔρmax = 0.19 e Å3
159 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C15H15NOV = 2465.2 (6) Å3
Mr = 225.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2417 (18) ŵ = 0.08 mm1
b = 8.2532 (10) ÅT = 296 K
c = 26.570 (4) Å0.48 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2008)
1179 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.746Rint = 0.057
9535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.19 e Å3
2221 reflectionsΔρmin = 0.15 e Å3
159 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37331 (17)0.7158 (2)0.48799 (6)0.0702 (6)
N10.3060 (2)0.5679 (2)0.57214 (7)0.0544 (6)
H1N0.359 (2)0.602 (3)0.5479 (9)0.081 (9)*
C10.3453 (2)0.5091 (3)0.61903 (8)0.0468 (6)
C20.2893 (2)0.5426 (3)0.66352 (8)0.0526 (6)
H20.22120.60660.66330.063*
C30.3326 (2)0.4819 (2)0.70984 (8)0.0465 (6)
C40.2751 (2)0.5120 (3)0.75613 (9)0.0616 (7)
H40.20510.57220.75660.074*
C50.3207 (3)0.4541 (3)0.80021 (9)0.0713 (8)
H50.28160.47490.83040.086*
C60.4261 (3)0.3634 (3)0.80025 (10)0.0714 (8)
H60.45650.32410.83040.086*
C70.4840 (2)0.3327 (3)0.75657 (10)0.0646 (7)
H70.55400.27270.75710.077*
C80.4395 (2)0.3907 (2)0.71006 (8)0.0489 (6)
C90.4972 (2)0.3633 (3)0.66390 (9)0.0573 (7)
H90.56810.30500.66350.069*
C100.4518 (2)0.4200 (2)0.61962 (8)0.0546 (6)
H100.49170.39960.58960.065*
C110.0924 (2)0.5082 (3)0.58249 (9)0.0661 (7)
H11A0.08200.56120.61430.099*
H11B0.10950.39560.58790.099*
H11C0.02090.51830.56300.099*
C120.1937 (2)0.5854 (3)0.55465 (8)0.0517 (6)
C130.1742 (2)0.6647 (3)0.50990 (8)0.0563 (7)
H130.09580.67690.49930.068*
C140.2644 (3)0.7286 (3)0.47888 (9)0.0574 (7)
C150.2277 (3)0.8137 (3)0.43102 (9)0.0835 (9)
H15A0.29480.87020.41720.125*
H15B0.16540.88970.43830.125*
H15C0.19950.73530.40710.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0617 (13)0.0837 (12)0.0651 (11)0.0036 (10)0.0047 (10)0.0057 (9)
N10.0499 (14)0.0651 (12)0.0481 (12)0.0006 (11)0.0026 (12)0.0017 (10)
C10.0438 (15)0.0486 (12)0.0481 (15)0.0001 (11)0.0000 (11)0.0053 (11)
C20.0497 (16)0.0521 (14)0.0560 (15)0.0084 (11)0.0038 (12)0.0073 (11)
C30.0450 (15)0.0457 (12)0.0488 (14)0.0069 (11)0.0007 (12)0.0071 (10)
C40.0576 (17)0.0708 (15)0.0563 (16)0.0027 (13)0.0031 (14)0.0120 (12)
C50.076 (2)0.0848 (19)0.0529 (17)0.0202 (17)0.0030 (16)0.0073 (13)
C60.073 (2)0.0849 (18)0.0559 (17)0.0205 (16)0.0149 (16)0.0106 (14)
C70.0530 (16)0.0665 (15)0.0742 (18)0.0044 (12)0.0118 (15)0.0069 (13)
C80.0447 (15)0.0463 (12)0.0556 (14)0.0030 (11)0.0065 (12)0.0001 (11)
C90.0422 (15)0.0607 (14)0.0690 (17)0.0057 (11)0.0001 (13)0.0026 (13)
C100.0479 (16)0.0594 (14)0.0563 (15)0.0002 (12)0.0105 (12)0.0080 (12)
C110.0552 (17)0.0758 (15)0.0673 (16)0.0156 (14)0.0013 (13)0.0088 (13)
C120.0499 (16)0.0519 (13)0.0532 (14)0.0027 (11)0.0009 (13)0.0139 (11)
C130.0505 (16)0.0678 (15)0.0506 (14)0.0000 (13)0.0048 (13)0.0079 (12)
C140.072 (2)0.0537 (14)0.0467 (14)0.0015 (13)0.0084 (15)0.0070 (11)
C150.110 (3)0.0807 (19)0.0595 (16)0.0019 (16)0.0137 (16)0.0079 (13)
Geometric parameters (Å, º) top
O1—C141.252 (3)C7—H70.9300
N1—C121.353 (3)C8—C91.406 (3)
N1—C11.408 (3)C9—C101.365 (3)
N1—H1N0.92 (3)C9—H90.9300
C1—C21.368 (3)C10—H100.9300
C1—C101.405 (3)C11—C121.500 (3)
C2—C31.415 (3)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.412 (3)C11—H11C0.9600
C3—C81.418 (3)C12—C131.375 (3)
C4—C51.365 (3)C13—C141.410 (3)
C4—H40.9300C13—H130.9300
C5—C61.401 (4)C14—C151.510 (3)
C5—H50.9300C15—H15A0.9600
C6—C71.354 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.416 (3)
C12—N1—C1129.3 (2)C10—C9—C8121.6 (2)
C12—N1—H1N109.5 (16)C10—C9—H9119.2
C1—N1—H1N121.1 (16)C8—C9—H9119.2
C2—C1—C10119.2 (2)C9—C10—C1120.5 (2)
C2—C1—N1123.4 (2)C9—C10—H10119.7
C10—C1—N1117.24 (19)C1—C10—H10119.7
C1—C2—C3121.4 (2)C12—C11—H11A109.5
C1—C2—H2119.3C12—C11—H11B109.5
C3—C2—H2119.3H11A—C11—H11B109.5
C4—C3—C2122.5 (2)C12—C11—H11C109.5
C4—C3—C8118.6 (2)H11A—C11—H11C109.5
C2—C3—C8118.90 (19)H11B—C11—H11C109.5
C5—C4—C3120.9 (2)N1—C12—C13119.8 (2)
C5—C4—H4119.5N1—C12—C11119.6 (2)
C3—C4—H4119.5C13—C12—C11120.5 (2)
C4—C5—C6120.4 (2)C12—C13—C14124.7 (2)
C4—C5—H5119.8C12—C13—H13117.7
C6—C5—H5119.8C14—C13—H13117.7
C7—C6—C5120.3 (2)O1—C14—C13124.0 (2)
C7—C6—H6119.8O1—C14—C15118.0 (2)
C5—C6—H6119.8C13—C14—C15118.0 (2)
C6—C7—C8121.0 (2)C14—C15—H15A109.5
C6—C7—H7119.5C14—C15—H15B109.5
C8—C7—H7119.5H15A—C15—H15B109.5
C9—C8—C7122.9 (2)C14—C15—H15C109.5
C9—C8—C3118.25 (19)H15A—C15—H15C109.5
C7—C8—C3118.8 (2)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.92 (2)1.85 (2)2.657 (2)144 (2)

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.2417 (18), 8.2532 (10), 26.570 (4)
V3)2465.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.34 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2008)
Tmin, Tmax0.660, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9535, 2221, 1179
Rint0.057
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 0.94
No. of reflections2221
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.92 (2)1.85 (2)2.657 (2)144 (2)
 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationArıcı, C., Tahir, M. N., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 1691–1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrad, M. A., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.  Web of Science CrossRef CAS Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds