organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-{[3-(2-meth­­oxy­benz­yl)thio­phen-2-yl]methyl­­idene}malonate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 16 April 2011; accepted 10 June 2011; online 18 June 2011)

In the title compound, C20H22O5S, the dihedral angle between the mean planes through the thio­phene and benzene rings is 75.2 (1)°. The meth­oxy group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.019 (2) Å for the O atom. The malonate group assumes an extended conformation.

Related literature

For the biological activities of thio­phene derivatives, see: Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6583.]); Brault et al. (2005[Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-760.]); Isloora et al. (2010[Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825-830.]); Xia et al. (2010[Xia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.]). For a similar thio­phene structure, see: Dufresne & Skene (2010[Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O5S

  • Mr = 374.44

  • Orthorhombic, P b c a

  • a = 8.1680 (2) Å

  • b = 16.4046 (4) Å

  • c = 28.8651 (7) Å

  • V = 3867.72 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.964

  • 35690 measured reflections

  • 3695 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.145

  • S = 1.02

  • 3695 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.55 3.429 (3) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene derivatives exhibit anti-HIVPR inhibition (Bonini et al., 2005) and antibreast cancer (Brault et al., 2005) activity. In addition, some of the benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activity (Isloora et al., 2010). Thiophene derivates have been viewed as significant compounds for applications in many fields (Xia et al., 2010). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other thiophene derivative (Dufresne & Skene, 2010). The thiophene ring system make the dihedral angle of 75.2 (1)° with respect to benzene ring. The atom O1 is deviated by 0.019 (2) Å from the least-squares plane of the benzene ring. The malonate group assumes an extended conformation as can be seen from torsion angles C14—C18—O5—C19 of 178.3 (2)° and C14—C15—O3—C16 of 173.9 (2)°.

Related literature top

For the biological activities of thiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloora et al. (2010); Xia et al. (2010). For a similar thiophene structure, see: Dufresne & Skene (2010).

Experimental top

To a solution of diethyl-2-((3-(bromomethyl)thiophen-2-yl)methylene)malonate (2.88 mmol) in dry dichloroethane (15 ml), anhydrous ZnBr2 (2.84 mmol) and anisole (3.17 mmol) were added. The reaction mixture was stirred at room temperature for 9 h and then refluxed for 1 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice–water (50 ml) containing 1 ml of Conc. HCl, extracted with chloroform (3 × 10 ml) and dried (Na2SO4). Removal of solvent followed by flash column chromatographic purification (n-hexane/ethyl acetate 98:2) led to the isolation of diethyl-2-((3-(2-methoxybenzyl)thiophen-2-yl) methylene)malonate as a colorless crystal. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 30% probability level.
Diethyl 2-{[3-(2-methoxybenzyl)thiophen-2-yl]methylidene}malonate top
Crystal data top
C20H22O5SF(000) = 1584
Mr = 374.44Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3696 reflections
a = 8.1680 (2) Åθ = 1.4–25.8°
b = 16.4046 (4) ŵ = 0.19 mm1
c = 28.8651 (7) ÅT = 293 K
V = 3867.72 (16) Å3Block, white
Z = 80.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω and ϕ scansθmax = 25.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.953, Tmax = 0.964k = 2019
35690 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0896P)2 + 0.4403P]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H22O5SV = 3867.72 (16) Å3
Mr = 374.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1680 (2) ŵ = 0.19 mm1
b = 16.4046 (4) ÅT = 293 K
c = 28.8651 (7) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2687 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.964Rint = 0.053
35690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3695 reflectionsΔρmin = 0.21 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2480 (3)0.84683 (13)0.40960 (7)0.0502 (5)
H10.28530.79550.41820.060*
C20.0917 (3)0.87086 (14)0.41448 (8)0.0577 (6)
H20.00970.83820.42700.069*
C30.2653 (2)0.97752 (12)0.37999 (6)0.0406 (5)
C40.3501 (2)0.90728 (11)0.39004 (6)0.0391 (4)
C50.5308 (2)0.89232 (12)0.38274 (6)0.0416 (5)
H5A0.54550.84200.36560.050*
H5B0.57640.93630.36440.050*
C60.6220 (2)0.88675 (12)0.42814 (6)0.0392 (4)
C70.6554 (3)0.81224 (12)0.44834 (7)0.0499 (5)
H70.62460.76460.43320.060*
C80.7338 (3)0.80722 (15)0.49063 (8)0.0605 (6)
H80.75510.75660.50390.073*
C90.7800 (3)0.87723 (15)0.51296 (7)0.0600 (6)
H90.83330.87390.54140.072*
C100.7487 (3)0.95238 (14)0.49386 (7)0.0541 (6)
H100.77990.99960.50940.065*
C110.6703 (2)0.95747 (11)0.45135 (7)0.0415 (5)
C120.6731 (3)1.10362 (14)0.45138 (9)0.0702 (7)
H12A0.61901.10580.48090.105*
H12B0.63641.14810.43250.105*
H12C0.78931.10760.45590.105*
C130.3340 (2)1.05129 (11)0.36133 (6)0.0410 (5)
H130.44771.05190.35980.049*
C140.2619 (2)1.11897 (12)0.34583 (6)0.0418 (5)
C150.0810 (2)1.13214 (12)0.34553 (7)0.0467 (5)
C160.1688 (3)1.09125 (18)0.31161 (12)0.0825 (9)
H16A0.20771.14410.30130.099*
H16B0.21171.08110.34240.099*
C170.2233 (4)1.0273 (3)0.27952 (11)0.1122 (13)
H17A0.17221.03510.24990.168*
H17B0.34011.03000.27610.168*
H17C0.19330.97480.29160.168*
C180.3658 (3)1.18679 (13)0.32912 (8)0.0541 (6)
C190.3623 (4)1.31693 (16)0.29168 (9)0.0758 (8)
H19A0.29471.36490.29630.091*
H19B0.46351.32440.30880.091*
C200.3981 (4)1.3071 (2)0.24258 (10)0.0962 (10)
H20A0.46991.26140.23830.144*
H20B0.45001.35560.23110.144*
H20C0.29801.29800.22590.144*
O10.63527 (19)1.02826 (8)0.42901 (5)0.0542 (4)
O20.0111 (2)1.17398 (10)0.37271 (7)0.0752 (5)
O30.00937 (18)1.08978 (10)0.31226 (5)0.0587 (4)
O40.5109 (2)1.18958 (11)0.33296 (8)0.0910 (7)
O50.2766 (2)1.24465 (9)0.30883 (5)0.0639 (5)
S10.06061 (7)0.96745 (4)0.39524 (2)0.0526 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0581 (14)0.0429 (11)0.0496 (11)0.0054 (10)0.0043 (10)0.0073 (9)
C20.0579 (15)0.0586 (14)0.0565 (13)0.0150 (12)0.0021 (11)0.0091 (11)
C30.0398 (11)0.0421 (11)0.0399 (10)0.0006 (8)0.0028 (8)0.0007 (8)
C40.0450 (12)0.0387 (10)0.0338 (9)0.0009 (8)0.0038 (8)0.0015 (8)
C50.0489 (12)0.0380 (10)0.0378 (10)0.0053 (9)0.0007 (9)0.0010 (8)
C60.0382 (10)0.0396 (10)0.0397 (10)0.0030 (8)0.0012 (8)0.0015 (8)
C70.0595 (14)0.0385 (11)0.0516 (12)0.0054 (10)0.0067 (10)0.0025 (9)
C80.0754 (16)0.0534 (14)0.0526 (13)0.0114 (12)0.0090 (11)0.0089 (10)
C90.0710 (16)0.0669 (16)0.0422 (12)0.0082 (13)0.0118 (11)0.0015 (11)
C100.0600 (14)0.0544 (14)0.0478 (12)0.0047 (10)0.0056 (11)0.0106 (10)
C110.0420 (11)0.0369 (10)0.0457 (11)0.0004 (8)0.0015 (9)0.0011 (8)
C120.0827 (18)0.0391 (12)0.0889 (18)0.0098 (12)0.0012 (14)0.0097 (12)
C130.0364 (10)0.0416 (11)0.0450 (11)0.0006 (8)0.0001 (8)0.0002 (8)
C140.0389 (11)0.0385 (10)0.0480 (11)0.0017 (8)0.0007 (9)0.0007 (8)
C150.0447 (12)0.0361 (10)0.0592 (13)0.0028 (9)0.0043 (10)0.0044 (10)
C160.0380 (13)0.088 (2)0.121 (2)0.0024 (13)0.0115 (14)0.0139 (18)
C170.070 (2)0.178 (4)0.088 (2)0.035 (2)0.0234 (17)0.002 (2)
C180.0474 (14)0.0444 (12)0.0706 (14)0.0025 (10)0.0056 (11)0.0067 (11)
C190.096 (2)0.0568 (15)0.0747 (17)0.0089 (14)0.0089 (15)0.0113 (13)
C200.111 (3)0.101 (2)0.0764 (19)0.0050 (19)0.0193 (17)0.0097 (17)
O10.0689 (10)0.0344 (7)0.0593 (9)0.0046 (7)0.0092 (7)0.0008 (6)
O20.0597 (10)0.0637 (11)0.1023 (13)0.0107 (9)0.0193 (10)0.0254 (10)
O30.0378 (8)0.0702 (10)0.0681 (10)0.0033 (7)0.0059 (7)0.0051 (8)
O40.0428 (10)0.0703 (12)0.160 (2)0.0049 (9)0.0016 (11)0.0353 (12)
O50.0642 (10)0.0492 (9)0.0782 (11)0.0018 (8)0.0022 (8)0.0227 (8)
S10.0422 (3)0.0553 (4)0.0603 (4)0.0012 (2)0.0033 (2)0.0067 (3)
Geometric parameters (Å, º) top
C1—C21.344 (3)C12—H12B0.9600
C1—C41.413 (3)C12—H12C0.9600
C1—H10.9300C13—C141.334 (3)
C2—S11.698 (2)C13—H130.9300
C2—H20.9300C14—C181.480 (3)
C3—C41.375 (3)C14—C151.493 (3)
C3—C131.439 (3)C15—O21.189 (2)
C3—S11.737 (2)C15—O31.322 (3)
C4—C51.511 (3)C16—O31.456 (3)
C5—C61.510 (3)C16—C171.469 (4)
C5—H5A0.9700C16—H16A0.9700
C5—H5B0.9700C16—H16B0.9700
C6—C71.381 (3)C17—H17A0.9600
C6—C111.396 (3)C17—H17B0.9600
C7—C81.381 (3)C17—H17C0.9600
C7—H70.9300C18—O41.192 (3)
C8—C91.370 (3)C18—O51.332 (3)
C8—H80.9300C19—C201.456 (4)
C9—C101.375 (3)C19—O51.463 (3)
C9—H90.9300C19—H19A0.9700
C10—C111.387 (3)C19—H19B0.9700
C10—H100.9300C20—H20A0.9600
C11—O11.359 (2)C20—H20B0.9600
C12—O11.429 (3)C20—H20C0.9600
C12—H12A0.9600
C2—C1—C4113.4 (2)H12B—C12—H12C109.5
C2—C1—H1123.3C14—C13—C3130.83 (19)
C4—C1—H1123.3C14—C13—H13114.6
C1—C2—S1112.43 (17)C3—C13—H13114.6
C1—C2—H2123.8C13—C14—C18118.84 (18)
S1—C2—H2123.8C13—C14—C15123.97 (18)
C4—C3—C13125.96 (18)C18—C14—C15117.16 (17)
C4—C3—S1110.60 (15)O2—C15—O3124.75 (19)
C13—C3—S1123.39 (15)O2—C15—C14123.7 (2)
C3—C4—C1112.01 (18)O3—C15—C14111.48 (17)
C3—C4—C5126.77 (17)O3—C16—C17107.4 (2)
C1—C4—C5121.21 (18)O3—C16—H16A110.2
C6—C5—C4111.75 (15)C17—C16—H16A110.2
C6—C5—H5A109.3O3—C16—H16B110.2
C4—C5—H5A109.3C17—C16—H16B110.2
C6—C5—H5B109.3H16A—C16—H16B108.5
C4—C5—H5B109.3C16—C17—H17A109.5
H5A—C5—H5B107.9C16—C17—H17B109.5
C7—C6—C11118.48 (17)H17A—C17—H17B109.5
C7—C6—C5121.15 (17)C16—C17—H17C109.5
C11—C6—C5120.34 (17)H17A—C17—H17C109.5
C6—C7—C8121.2 (2)H17B—C17—H17C109.5
C6—C7—H7119.4O4—C18—O5123.9 (2)
C8—C7—H7119.4O4—C18—C14124.7 (2)
C9—C8—C7119.6 (2)O5—C18—C14111.45 (18)
C9—C8—H8120.2C20—C19—O5109.6 (2)
C7—C8—H8120.2C20—C19—H19A109.7
C8—C9—C10120.78 (19)O5—C19—H19A109.7
C8—C9—H9119.6C20—C19—H19B109.7
C10—C9—H9119.6O5—C19—H19B109.7
C9—C10—C11119.7 (2)H19A—C19—H19B108.2
C9—C10—H10120.2C19—C20—H20A109.5
C11—C10—H10120.2C19—C20—H20B109.5
O1—C11—C10124.65 (18)H20A—C20—H20B109.5
O1—C11—C6115.03 (17)C19—C20—H20C109.5
C10—C11—C6120.32 (18)H20A—C20—H20C109.5
O1—C12—H12A109.5H20B—C20—H20C109.5
O1—C12—H12B109.5C11—O1—C12118.66 (17)
H12A—C12—H12B109.5C15—O3—C16116.32 (19)
O1—C12—H12C109.5C18—O5—C19117.7 (2)
H12A—C12—H12C109.5C2—S1—C391.58 (10)
C4—C1—C2—S10.5 (2)S1—C3—C13—C1410.9 (3)
C13—C3—C4—C1177.77 (18)C3—C13—C14—C18178.9 (2)
S1—C3—C4—C10.3 (2)C3—C13—C14—C150.9 (3)
C13—C3—C4—C51.4 (3)C13—C14—C15—O2103.5 (3)
S1—C3—C4—C5178.86 (14)C18—C14—C15—O274.5 (3)
C2—C1—C4—C30.5 (3)C13—C14—C15—O374.7 (2)
C2—C1—C4—C5178.72 (18)C18—C14—C15—O3107.2 (2)
C3—C4—C5—C6110.5 (2)C13—C14—C18—O48.6 (3)
C1—C4—C5—C668.6 (2)C15—C14—C18—O4169.6 (2)
C4—C5—C6—C796.2 (2)C13—C14—C18—O5171.06 (18)
C4—C5—C6—C1181.9 (2)C15—C14—C18—O510.8 (3)
C11—C6—C7—C80.4 (3)C10—C11—O1—C123.5 (3)
C5—C6—C7—C8177.7 (2)C6—C11—O1—C12176.92 (18)
C6—C7—C8—C90.2 (4)O2—C15—O3—C164.3 (3)
C7—C8—C9—C100.3 (4)C14—C15—O3—C16173.90 (19)
C8—C9—C10—C110.4 (4)C17—C16—O3—C15167.5 (2)
C9—C10—C11—O1179.0 (2)O4—C18—O5—C192.1 (4)
C9—C10—C11—C60.5 (3)C14—C18—O5—C19178.30 (19)
C7—C6—C11—O1179.11 (18)C20—C19—O5—C1895.8 (3)
C5—C6—C11—O12.8 (3)C1—C2—S1—C30.25 (18)
C7—C6—C11—C100.5 (3)C4—C3—S1—C20.03 (16)
C5—C6—C11—C10177.62 (19)C13—C3—S1—C2177.60 (17)
C4—C3—C13—C14171.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.553.429 (3)159
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H22O5S
Mr374.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.1680 (2), 16.4046 (4), 28.8651 (7)
V3)3867.72 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
35690, 3695, 2687
Rint0.053
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.145, 1.02
No. of reflections3695
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.553.429 (3)158.5
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6583.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIsloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds