metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­methyl­ammonium [aquadi-μ2-oxalato-samarate(III)] trihydrate]

aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: ganlh@tongji.edu.cn

(Received 11 May 2011; accepted 26 May 2011; online 4 June 2011)

In the title complex, {(C2H8N)[Sm(C2O4)2(H2O)]·3H2O}n, the SmIII atom is chelated by four oxalate ligands and one water mol­ecule forming a distorted tricapped trigonal–prismatic geometry. Each oxalate ligand chelates to two SmIII atoms, generating a three-dimensional anionic network with cavities in which the ammonium cations and lattice water mol­ecules reside. Various O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions further stablize the crystal structure.

Related literature

For general background to the rational design and synthesis of metal-organic polymers, see: Kim et al. (1998[Kim, K. M., Song, S. C., Lee, S. B., Kang, H. C. & Sohn, Y. S. (1998). Inorg. Chem. 37, 5764-5768.]); Lv et al. (2011[Lv, Y. K., Feng, Y. L., Liu, J. W. & Jiang, Z. G. (2011). J. Solid State Chem. 184, 1339-1345.]). For related structures, see: Lv et al. (2010[Lv, Y.-K., Gan, L.-H., Cao, Y.-J., Gao, B.-F. & Chen, L.-H. (2010). Acta Cryst. E66, m1440.]); Trombe & Mohanu (2004[Trombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403-1419.]). The structure of the isotypic EuIII compound was reported by Yang et al. (2005[Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912-m1914.]), and the DyIII compound was reported by Ye & Lin (2010[Ye, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901-m902.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Sm(C2O4)2(H2O)]·3H2O

  • Mr = 444.55

  • Monoclinic, P 21 /c

  • a = 9.6711 (3) Å

  • b = 11.7849 (3) Å

  • c = 14.3863 (4) Å

  • β = 122.276 (2)°

  • V = 1386.30 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.30 mm−1

  • T = 296 K

  • 0.17 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.36, Tmax = 0.43

  • 12866 measured reflections

  • 3225 independent reflections

  • 2739 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.03

  • 3225 reflections

  • 207 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2Wi 0.82 (2) 1.95 (2) 2.764 (5) 174 (5)
O1W—H1WB⋯O2Wii 0.83 (2) 2.03 (2) 2.852 (5) 172 (4)
O2W—H2WA⋯O6iii 0.81 (2) 2.26 (2) 3.065 (5) 175 (6)
O2W—H2WA⋯O7iv 0.81 (2) 2.47 (5) 3.023 (5) 126 (5)
O2W—H2WB⋯O4W 0.80 (2) 2.51 (2) 3.306 (7) 179 (6)
O2W—H2WB⋯O3Wv 0.80 (2) 2.64 (5) 3.039 (8) 113 (5)
O3W—H3WA⋯O2 0.84 (2) 2.08 (3) 2.845 (5) 151 (6)
O3W—H3WB⋯O4Wiv 0.82 (2) 1.98 (2) 2.796 (6) 172 (8)
O4W—H4WA⋯O1vi 0.83 (2) 2.15 (2) 2.967 (5) 169 (6)
O4W—H4WB⋯O3vii 0.82 (2) 2.11 (2) 2.898 (5) 160 (6)
N1—H1A⋯O3W 0.90 1.85 2.744 (6) 171
N1—H1B⋯O8vi 0.90 1.99 2.864 (5) 163
N1—H1B⋯O1Wvi 0.90 2.50 3.071 (5) 122
C5—H5C⋯O4iii 0.96 2.53 3.283 (7) 135
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y, z-1; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Carbohydrates and their derivatives are the most widely distributed naturally occurring compounds and are indispensable to living organisms as an energy source and building blocks. Many carbohydrate-derived ligands were prepared and occasionally lead to novel and versatile metal-organic polymers with interesting structures (Kim et al., 1998; Lv et al., 2011). Oxalate, which usually represent one of the products of the degradation of carbohydrates, is one of the simplest multidentate organic ligands potentially able to bridge metal ions in a bidentate chelating manner (Lv et al., 2010; Trombe & Mohanu, 2004). We report herein the synthesis and structure of a new samarium(III) complex, (C2H8N)[Sm(C2O4)2(H2O)].3H2O. The oxalate ligands in this complex arise from the decomposition of potassium hydrogen saccharate.

Single-crystal X-ray diffraction analysis revealed that the title complex crystallizes in the monoclinic system with space group P21/c, and is isostructural with its EuIII analogue (Yang et al., 2005) and DyIII analogues (Ye & Lin, 2010). As shown in Fig. 1, the SmIII atom is chelated by four oxalate ligands and one water molecule forming a distorted tricapped trigonal-prismatic geometry. Each oxalate ligand bridges two SmIII atoms, generating a three-dimensional anionic network with cavities where the ammonium cations and lattice water molecules reside (Fig. 2). Furthermore, there are various hydrogen-bonding interactions (N—H···O, O—H···O and C—H···O) stablizing the crystal framework.

Related literature top

For general background to the rational design and synthesis of metal-organic polymers, see: Kim et al. (1998); Lv et al. (2011). For related structures, see: Lv et al. (2010); Trombe & Mohanu (2004). The structure of the isotypic EuIII compound was reported by Yang et al. (2005), and the DyIII compound was reported by Ye & Lin (2010).

Experimental top

A mixture of potassium hydrogen saccharate (0.248 g, 1.0 mmol), Sm(NO3)3.6H2O (0.222 g, 0.5 mmol) and N, N-Dimethylformamide (20 ml) was stirred and heated at 373 K for 60 minute, the resulted colorless solution was kept at 20°C. Colorless block crystals suitable for X-ray crystallographic study were crystralized via slow evaporation in 2 weeks.

Refinement top

The structure was solved by direct methods and expanded with difference Fourier techniques. All non-hydrogen atoms were refined anisotropically by the full matrix least-squares on the F2. The hydrogen atoms attached to carbon and nitrogen atoms were located by geometrical calculation and included in the refinement using a riding model [C—H 0.96 Å and N—H 0.90 Å], while those attached to oxygen atom were located from the difference Fourier maps and their positions were refined with O—H distances fixed at 0.82 (5) Å.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound showing the atom labeling, thermal displacement parameters are shown at the 30% probability level. All the hydrogen atoms are omitted for clarity. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1/2 (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 1.]
[Figure 2] Fig. 2. View of the three-dimensional framework. All the hydrogen atoms are omitted for clarity.
Poly[dimethylammonium [aquadi-µ2-oxalato-samarate(III)] trihydrate] top
Crystal data top
(C2H8N)[Sm(C2O4)2(H2O)]·3H2OF(000) = 868
Mr = 444.55Dx = 2.130 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3706 reflections
a = 9.6711 (3) Åθ = 2.5–27.7°
b = 11.7849 (3) ŵ = 4.30 mm1
c = 14.3863 (4) ÅT = 296 K
β = 122.276 (2)°Block, colourless
V = 1386.30 (7) Å30.17 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3225 independent reflections
Radiation source: fine-focus sealed tube2739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.36, Tmax = 0.43k = 1514
12866 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0215P)2 + 2.7236P]
where P = (Fo2 + 2Fc2)/3
3225 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.69 e Å3
12 restraintsΔρmin = 0.98 e Å3
Crystal data top
(C2H8N)[Sm(C2O4)2(H2O)]·3H2OV = 1386.30 (7) Å3
Mr = 444.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6711 (3) ŵ = 4.30 mm1
b = 11.7849 (3) ÅT = 296 K
c = 14.3863 (4) Å0.17 × 0.14 × 0.08 mm
β = 122.276 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3225 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2739 reflections with I > 2σ(I)
Tmin = 0.36, Tmax = 0.43Rint = 0.039
12866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02612 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.69 e Å3
3225 reflectionsΔρmin = 0.98 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.61680 (2)0.983582 (14)0.330364 (15)0.01793 (7)
O10.7036 (3)0.7832 (2)0.3435 (2)0.0284 (6)
O20.6156 (3)0.6045 (2)0.3014 (2)0.0293 (7)
O30.3063 (3)0.6799 (2)0.1732 (2)0.0242 (6)
O40.3978 (3)0.8576 (2)0.2047 (2)0.0241 (6)
O60.5172 (3)0.8817 (2)0.4343 (2)0.0286 (6)
O70.5330 (4)1.1081 (2)0.4324 (3)0.0334 (7)
O80.8912 (3)0.9847 (2)0.3572 (2)0.0253 (6)
O90.8415 (3)0.9876 (2)0.5228 (2)0.0289 (6)
O1W0.6084 (4)0.9755 (3)0.1530 (2)0.0330 (7)
H1WA0.608 (6)1.033 (2)0.121 (3)0.040*
H1WB0.544 (5)0.932 (3)0.103 (3)0.040*
O2W1.3864 (6)0.8423 (3)0.9661 (4)0.0614 (11)
H2WA1.426 (7)0.783 (3)0.962 (5)0.074*
H2WB1.306 (5)0.827 (5)0.966 (6)0.074*
O3W0.8362 (7)0.5053 (4)0.5101 (4)0.0799 (15)
H3WA0.793 (9)0.521 (5)0.443 (2)0.096*
H3WB0.876 (8)0.442 (3)0.517 (5)0.096*
O4W1.0543 (5)0.7816 (4)0.9682 (4)0.0767 (14)
H4WA0.958 (3)0.763 (6)0.942 (5)0.092*
H4WB1.106 (6)0.742 (5)1.024 (4)0.092*
N10.9284 (5)0.6293 (4)0.6960 (3)0.0430 (10)
H1A0.88670.58900.63340.052*
H1B0.89470.59620.73690.052*
C10.5958 (4)0.7095 (3)0.2949 (3)0.0212 (8)
C20.4172 (4)0.7536 (3)0.2173 (3)0.0200 (7)
C30.4950 (4)0.9348 (3)0.5004 (3)0.0238 (8)
C41.0168 (4)0.9999 (3)0.4541 (3)0.0202 (8)
C51.1056 (7)0.6231 (7)0.7555 (5)0.076 (2)
H5A1.13920.54500.76870.091*
H5B1.15140.66210.82430.091*
H5C1.14330.65790.71260.091*
C60.8628 (9)0.7443 (6)0.6685 (6)0.083 (2)
H6A0.74550.74140.62560.100*
H6B0.90120.78130.62690.100*
H6C0.89870.78610.73490.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01682 (10)0.01446 (10)0.01891 (10)0.00015 (7)0.00713 (8)0.00032 (7)
O10.0186 (14)0.0194 (14)0.0365 (17)0.0004 (10)0.0076 (12)0.0044 (11)
O20.0225 (14)0.0156 (13)0.0327 (16)0.0014 (10)0.0032 (12)0.0002 (11)
O30.0199 (13)0.0176 (13)0.0313 (15)0.0008 (10)0.0111 (12)0.0021 (11)
O40.0222 (14)0.0171 (13)0.0234 (14)0.0010 (10)0.0057 (12)0.0003 (10)
O60.0358 (16)0.0225 (14)0.0311 (16)0.0052 (11)0.0203 (13)0.0054 (11)
O70.0479 (18)0.0213 (14)0.0428 (18)0.0052 (12)0.0322 (16)0.0063 (12)
O80.0199 (13)0.0337 (15)0.0169 (13)0.0009 (11)0.0061 (11)0.0030 (11)
O90.0195 (14)0.0437 (17)0.0235 (14)0.0032 (12)0.0114 (12)0.0030 (12)
O1W0.0363 (17)0.0349 (17)0.0209 (15)0.0056 (13)0.0108 (13)0.0013 (12)
O2W0.073 (3)0.035 (2)0.063 (3)0.0036 (18)0.028 (2)0.0070 (19)
O3W0.084 (3)0.078 (3)0.047 (3)0.027 (3)0.014 (3)0.003 (2)
O4W0.056 (3)0.053 (3)0.069 (3)0.008 (2)0.002 (2)0.014 (2)
N10.035 (2)0.057 (3)0.036 (2)0.0080 (18)0.0180 (18)0.0077 (18)
C10.0196 (19)0.0201 (19)0.0190 (18)0.0007 (13)0.0069 (16)0.0017 (14)
C20.0209 (19)0.0206 (19)0.0171 (17)0.0011 (14)0.0092 (15)0.0001 (14)
C30.0196 (18)0.025 (2)0.0225 (19)0.0000 (14)0.0081 (15)0.0006 (15)
C40.0217 (19)0.0137 (17)0.0190 (18)0.0016 (13)0.0068 (15)0.0015 (13)
C50.041 (3)0.126 (6)0.051 (4)0.010 (4)0.018 (3)0.020 (4)
C60.104 (6)0.067 (4)0.086 (5)0.012 (4)0.056 (5)0.017 (4)
Geometric parameters (Å, º) top
Sm1—O42.422 (3)O2W—H2WA0.811 (19)
Sm1—O3i2.440 (2)O2W—H2WB0.798 (19)
Sm1—O92.442 (3)O3W—H3WA0.839 (19)
Sm1—O82.469 (3)O3W—H3WB0.819 (19)
Sm1—O2i2.474 (3)O4W—H4WA0.83 (2)
Sm1—O62.479 (3)O4W—H4WB0.823 (19)
Sm1—O12.479 (3)N1—C51.452 (7)
Sm1—O72.497 (3)N1—C61.459 (8)
Sm1—O1W2.512 (3)N1—H1A0.9001
O1—C11.246 (4)N1—H1B0.9001
O2—C11.248 (4)C1—C21.562 (5)
O2—Sm1ii2.474 (3)C3—O7iii1.242 (5)
O3—C21.257 (4)C3—C3iii1.541 (8)
O3—Sm1ii2.440 (2)C4—O9iv1.234 (5)
O4—C21.238 (4)C4—C4iv1.519 (8)
O6—C31.248 (5)C5—H5A0.9600
O7—C3iii1.242 (5)C5—H5B0.9600
O8—C41.282 (4)C5—H5C0.9600
O9—C4iv1.234 (5)C6—H6A0.9600
O1W—H1WA0.817 (18)C6—H6B0.9600
O1W—H1WB0.828 (18)C6—H6C0.9600
O4—Sm1—O3i136.09 (9)C3—O6—Sm1119.8 (2)
O4—Sm1—O9138.78 (9)C3iii—O7—Sm1119.5 (2)
O3i—Sm1—O984.76 (9)C4—O8—Sm1119.1 (2)
O4—Sm1—O8123.92 (9)C4iv—O9—Sm1119.7 (2)
O3i—Sm1—O871.56 (9)Sm1—O1W—H1WA122 (3)
O9—Sm1—O865.88 (9)Sm1—O1W—H1WB120 (3)
O4—Sm1—O2i72.94 (8)H1WA—O1W—H1WB104 (3)
O3i—Sm1—O2i66.43 (8)H2WA—O2W—H2WB108 (3)
O9—Sm1—O2i138.73 (9)H3WA—O3W—H3WB105 (3)
O8—Sm1—O2i125.24 (9)H4WA—O4W—H4WB105 (3)
O4—Sm1—O671.76 (9)C5—N1—C6114.3 (5)
O3i—Sm1—O6133.88 (9)C5—N1—H1A108.6
O9—Sm1—O673.91 (9)C6—N1—H1A108.8
O8—Sm1—O6129.79 (9)C5—N1—H1B108.5
O2i—Sm1—O6104.74 (10)C6—N1—H1B108.8
O4—Sm1—O166.34 (8)H1A—N1—H1B107.6
O3i—Sm1—O1144.12 (9)O1—C1—O2126.9 (3)
O9—Sm1—O182.65 (9)O1—C1—C2116.3 (3)
O8—Sm1—O172.62 (9)O2—C1—C2116.8 (3)
O2i—Sm1—O1137.62 (9)O4—C2—O3126.0 (3)
O6—Sm1—O173.62 (9)O4—C2—C1117.2 (3)
O4—Sm1—O7111.72 (10)O3—C2—C1116.8 (3)
O3i—Sm1—O769.72 (9)O7iii—C3—O6125.9 (4)
O9—Sm1—O772.18 (10)O7iii—C3—C3iii116.9 (4)
O8—Sm1—O7124.34 (9)O6—C3—C3iii117.2 (4)
O2i—Sm1—O770.42 (10)O9iv—C4—O8125.5 (4)
O6—Sm1—O764.99 (9)O9iv—C4—C4iv119.2 (4)
O1—Sm1—O7135.89 (10)O8—C4—C4iv115.3 (4)
O4—Sm1—O1W71.17 (10)N1—C5—H5A109.5
O3i—Sm1—O1W81.92 (10)N1—C5—H5B109.5
O9—Sm1—O1W132.76 (10)H5A—C5—H5B109.5
O8—Sm1—O1W66.90 (9)N1—C5—H5C109.5
O2i—Sm1—O1W73.75 (10)H5A—C5—H5C109.5
O6—Sm1—O1W141.50 (9)H5B—C5—H5C109.5
O1—Sm1—O1W82.35 (10)N1—C6—H6A109.5
O7—Sm1—O1W140.82 (10)N1—C6—H6B109.5
C1—O1—Sm1118.3 (2)H6A—C6—H6B109.5
C1—O2—Sm1ii118.2 (2)N1—C6—H6C109.5
C2—O3—Sm1ii118.6 (2)H6A—C6—H6C109.5
C2—O4—Sm1119.6 (2)H6B—C6—H6C109.5
O4—Sm1—O1—C110.9 (3)O4—Sm1—O8—C4141.7 (2)
O3i—Sm1—O1—C1148.3 (3)O3i—Sm1—O8—C484.6 (2)
O9—Sm1—O1—C1141.3 (3)O9—Sm1—O8—C47.9 (2)
O8—Sm1—O1—C1151.8 (3)O2i—Sm1—O8—C4125.8 (2)
O2i—Sm1—O1—C128.1 (4)O6—Sm1—O8—C447.7 (3)
O6—Sm1—O1—C166.0 (3)O1—Sm1—O8—C497.6 (3)
O7—Sm1—O1—C186.5 (3)O7—Sm1—O8—C436.7 (3)
O1W—Sm1—O1—C183.6 (3)O1W—Sm1—O8—C4173.5 (3)
O3i—Sm1—O4—C2158.7 (3)O4—Sm1—O9—C4iv122.0 (3)
O9—Sm1—O4—C231.0 (3)O3i—Sm1—O9—C4iv64.8 (3)
O8—Sm1—O4—C260.2 (3)O8—Sm1—O9—C4iv7.4 (3)
O2i—Sm1—O4—C2178.4 (3)O2i—Sm1—O9—C4iv109.3 (3)
O6—Sm1—O4—C266.0 (3)O6—Sm1—O9—C4iv156.6 (3)
O1—Sm1—O4—C213.6 (3)O1—Sm1—O9—C4iv81.6 (3)
O7—Sm1—O4—C2118.4 (3)O7—Sm1—O9—C4iv135.1 (3)
O1W—Sm1—O4—C2103.4 (3)O1W—Sm1—O9—C4iv9.2 (3)
O4—Sm1—O6—C3136.1 (3)Sm1—O1—C1—O2172.2 (3)
O3i—Sm1—O6—C31.2 (3)Sm1—O1—C1—C28.1 (4)
O9—Sm1—O6—C367.1 (3)Sm1ii—O2—C1—O1169.5 (3)
O8—Sm1—O6—C3104.5 (3)Sm1ii—O2—C1—C210.2 (5)
O2i—Sm1—O6—C370.1 (3)Sm1—O4—C2—O3165.1 (3)
O1—Sm1—O6—C3154.0 (3)Sm1—O4—C2—C115.0 (4)
O7—Sm1—O6—C310.4 (3)Sm1ii—O3—C2—O4162.8 (3)
O1W—Sm1—O6—C3152.4 (3)Sm1ii—O3—C2—C117.2 (4)
O4—Sm1—O7—C3iii66.9 (3)O1—C1—C2—O44.4 (5)
O3i—Sm1—O7—C3iii160.3 (3)O2—C1—C2—O4175.4 (4)
O9—Sm1—O7—C3iii69.4 (3)O1—C1—C2—O3175.7 (3)
O8—Sm1—O7—C3iii111.7 (3)O2—C1—C2—O34.5 (5)
O2i—Sm1—O7—C3iii128.4 (3)Sm1—O6—C3—O7iii169.7 (3)
O6—Sm1—O7—C3iii10.8 (3)Sm1—O6—C3—C3iii9.6 (5)
O1—Sm1—O7—C3iii11.0 (4)Sm1—O8—C4—O9iv173.2 (3)
O1W—Sm1—O7—C3iii153.4 (3)Sm1—O8—C4—C4iv7.9 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wiv0.82 (2)1.95 (2)2.764 (5)174 (5)
O1W—H1WB···O2Wv0.83 (2)2.03 (2)2.852 (5)172 (4)
O2W—H2WA···O6vi0.81 (2)2.26 (2)3.065 (5)175 (6)
O2W—H2WA···O7vii0.81 (2)2.47 (5)3.023 (5)126 (5)
O2W—H2WB···O4W0.80 (2)2.51 (2)3.306 (7)179 (6)
O2W—H2WB···O3Wviii0.80 (2)2.64 (5)3.039 (8)113 (5)
O3W—H3WA···O20.84 (2)2.08 (3)2.845 (5)151 (6)
O3W—H3WB···O4Wvii0.82 (2)1.98 (2)2.796 (6)172 (8)
O4W—H4WA···O1ix0.83 (2)2.15 (2)2.967 (5)169 (6)
O4W—H4WB···O3x0.82 (2)2.11 (2)2.898 (5)160 (6)
N1—H1A···O3W0.901.852.744 (6)171
N1—H1B···O8ix0.901.992.864 (5)163
N1—H1B···O1Wix0.902.503.071 (5)122
C5—H5C···O4vi0.962.533.283 (7)135
Symmetry codes: (iv) x+2, y+2, z+1; (v) x1, y, z1; (vi) x+1, y+3/2, z+1/2; (vii) x+2, y1/2, z+3/2; (viii) x+2, y+1/2, z+3/2; (ix) x, y+3/2, z+1/2; (x) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C2H8N)[Sm(C2O4)2(H2O)]·3H2O
Mr444.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6711 (3), 11.7849 (3), 14.3863 (4)
β (°) 122.276 (2)
V3)1386.30 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.30
Crystal size (mm)0.17 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.36, 0.43
No. of measured, independent and
observed [I > 2σ(I)] reflections
12866, 3225, 2739
Rint0.039
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.03
No. of reflections3225
No. of parameters207
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.98

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.817 (18)1.95 (2)2.764 (5)174 (5)
O1W—H1WB···O2Wii0.828 (18)2.03 (2)2.852 (5)172 (4)
O2W—H2WA···O6iii0.811 (19)2.26 (2)3.065 (5)175 (6)
O2W—H2WA···O7iv0.811 (19)2.47 (5)3.023 (5)126 (5)
O2W—H2WB···O4W0.798 (19)2.51 (2)3.306 (7)179 (6)
O2W—H2WB···O3Wv0.798 (19)2.64 (5)3.039 (8)113 (5)
O3W—H3WA···O20.839 (19)2.08 (3)2.845 (5)151 (6)
O3W—H3WB···O4Wiv0.819 (19)1.98 (2)2.796 (6)172 (8)
O4W—H4WA···O1vi0.83 (2)2.15 (2)2.967 (5)169 (6)
O4W—H4WB···O3vii0.823 (19)2.11 (2)2.898 (5)160 (6)
N1—H1A···O3W0.901.852.744 (6)171
N1—H1B···O8vi0.901.992.864 (5)163
N1—H1B···O1Wvi0.902.503.071 (5)122
C5—H5C···O4iii0.962.533.283 (7)135
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z1; (iii) x+1, y+3/2, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y, z+1.
 

Acknowledgements

The present work was supported financially by the National Natural Science Foundation of China (No. 20973127) and Shanghai Nanotechnology Promotion Center (No. 0952nm00800).

References

First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, K. M., Song, S. C., Lee, S. B., Kang, H. C. & Sohn, Y. S. (1998). Inorg. Chem. 37, 5764–5768.  CrossRef CAS Google Scholar
First citationLv, Y. K., Feng, Y. L., Liu, J. W. & Jiang, Z. G. (2011). J. Solid State Chem. 184, 1339–1345.  CrossRef CAS Google Scholar
First citationLv, Y.-K., Gan, L.-H., Cao, Y.-J., Gao, B.-F. & Chen, L.-H. (2010). Acta Cryst. E66, m1440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403–1419.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901–m902.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds