metal-organic compounds
Poly[dimethylammonium [aquadi-μ2-oxalato-samarate(III)] trihydrate]
aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: ganlh@tongji.edu.cn
In the title complex, {(C2H8N)[Sm(C2O4)2(H2O)]·3H2O}n, the SmIII atom is chelated by four oxalate ligands and one water molecule forming a distorted tricapped trigonal–prismatic geometry. Each oxalate ligand chelates to two SmIII atoms, generating a three-dimensional anionic network with cavities in which the ammonium cations and lattice water molecules reside. Various O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding interactions further stablize the crystal structure.
Related literature
For general background to the rational design and synthesis of metal-organic polymers, see: Kim et al. (1998); Lv et al. (2011). For related structures, see: Lv et al. (2010); Trombe & Mohanu (2004). The structure of the isotypic EuIII compound was reported by Yang et al. (2005), and the DyIII compound was reported by Ye & Lin (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811020058/om2429sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020058/om2429Isup2.hkl
A mixture of potassium hydrogen saccharate (0.248 g, 1.0 mmol), Sm(NO3)3.6H2O (0.222 g, 0.5 mmol) and N, N-Dimethylformamide (20 ml) was stirred and heated at 373 K for 60 minute, the resulted colorless solution was kept at 20°C. Colorless block crystals suitable for X-ray crystallographic study were crystralized via slow evaporation in 2 weeks.
The structure was solved by
and expanded with difference Fourier techniques. All non-hydrogen atoms were refined anisotropically by the full matrix least-squares on the F2. The hydrogen atoms attached to carbon and nitrogen atoms were located by geometrical calculation and included in the using a riding model [C—H 0.96 Å and N—H 0.90 Å], while those attached to oxygen atom were located from the difference Fourier maps and their positions were refined with O—H distances fixed at 0.82 (5) Å.Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Structure of the title compound showing the atom labeling, thermal displacement parameters are shown at the 30% probability level. All the hydrogen atoms are omitted for clarity. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1/2 (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 1.] | |
Fig. 2. View of the three-dimensional framework. All the hydrogen atoms are omitted for clarity. |
(C2H8N)[Sm(C2O4)2(H2O)]·3H2O | F(000) = 868 |
Mr = 444.55 | Dx = 2.130 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3706 reflections |
a = 9.6711 (3) Å | θ = 2.5–27.7° |
b = 11.7849 (3) Å | µ = 4.30 mm−1 |
c = 14.3863 (4) Å | T = 296 K |
β = 122.276 (2)° | Block, colourless |
V = 1386.30 (7) Å3 | 0.17 × 0.14 × 0.08 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3225 independent reflections |
Radiation source: fine-focus sealed tube | 2739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 27.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.36, Tmax = 0.43 | k = −15→14 |
12866 measured reflections | l = −16→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0215P)2 + 2.7236P] where P = (Fo2 + 2Fc2)/3 |
3225 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.69 e Å−3 |
12 restraints | Δρmin = −0.98 e Å−3 |
(C2H8N)[Sm(C2O4)2(H2O)]·3H2O | V = 1386.30 (7) Å3 |
Mr = 444.55 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6711 (3) Å | µ = 4.30 mm−1 |
b = 11.7849 (3) Å | T = 296 K |
c = 14.3863 (4) Å | 0.17 × 0.14 × 0.08 mm |
β = 122.276 (2)° |
Bruker APEXII area-detector diffractometer | 3225 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2739 reflections with I > 2σ(I) |
Tmin = 0.36, Tmax = 0.43 | Rint = 0.039 |
12866 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 12 restraints |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.69 e Å−3 |
3225 reflections | Δρmin = −0.98 e Å−3 |
207 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.61680 (2) | 0.983582 (14) | 0.330364 (15) | 0.01793 (7) | |
O1 | 0.7036 (3) | 0.7832 (2) | 0.3435 (2) | 0.0284 (6) | |
O2 | 0.6156 (3) | 0.6045 (2) | 0.3014 (2) | 0.0293 (7) | |
O3 | 0.3063 (3) | 0.6799 (2) | 0.1732 (2) | 0.0242 (6) | |
O4 | 0.3978 (3) | 0.8576 (2) | 0.2047 (2) | 0.0241 (6) | |
O6 | 0.5172 (3) | 0.8817 (2) | 0.4343 (2) | 0.0286 (6) | |
O7 | 0.5330 (4) | 1.1081 (2) | 0.4324 (3) | 0.0334 (7) | |
O8 | 0.8912 (3) | 0.9847 (2) | 0.3572 (2) | 0.0253 (6) | |
O9 | 0.8415 (3) | 0.9876 (2) | 0.5228 (2) | 0.0289 (6) | |
O1W | 0.6084 (4) | 0.9755 (3) | 0.1530 (2) | 0.0330 (7) | |
H1WA | 0.608 (6) | 1.033 (2) | 0.121 (3) | 0.040* | |
H1WB | 0.544 (5) | 0.932 (3) | 0.103 (3) | 0.040* | |
O2W | 1.3864 (6) | 0.8423 (3) | 0.9661 (4) | 0.0614 (11) | |
H2WA | 1.426 (7) | 0.783 (3) | 0.962 (5) | 0.074* | |
H2WB | 1.306 (5) | 0.827 (5) | 0.966 (6) | 0.074* | |
O3W | 0.8362 (7) | 0.5053 (4) | 0.5101 (4) | 0.0799 (15) | |
H3WA | 0.793 (9) | 0.521 (5) | 0.443 (2) | 0.096* | |
H3WB | 0.876 (8) | 0.442 (3) | 0.517 (5) | 0.096* | |
O4W | 1.0543 (5) | 0.7816 (4) | 0.9682 (4) | 0.0767 (14) | |
H4WA | 0.958 (3) | 0.763 (6) | 0.942 (5) | 0.092* | |
H4WB | 1.106 (6) | 0.742 (5) | 1.024 (4) | 0.092* | |
N1 | 0.9284 (5) | 0.6293 (4) | 0.6960 (3) | 0.0430 (10) | |
H1A | 0.8867 | 0.5890 | 0.6334 | 0.052* | |
H1B | 0.8947 | 0.5962 | 0.7369 | 0.052* | |
C1 | 0.5958 (4) | 0.7095 (3) | 0.2949 (3) | 0.0212 (8) | |
C2 | 0.4172 (4) | 0.7536 (3) | 0.2173 (3) | 0.0200 (7) | |
C3 | 0.4950 (4) | 0.9348 (3) | 0.5004 (3) | 0.0238 (8) | |
C4 | 1.0168 (4) | 0.9999 (3) | 0.4541 (3) | 0.0202 (8) | |
C5 | 1.1056 (7) | 0.6231 (7) | 0.7555 (5) | 0.076 (2) | |
H5A | 1.1392 | 0.5450 | 0.7687 | 0.091* | |
H5B | 1.1514 | 0.6621 | 0.8243 | 0.091* | |
H5C | 1.1433 | 0.6579 | 0.7126 | 0.091* | |
C6 | 0.8628 (9) | 0.7443 (6) | 0.6685 (6) | 0.083 (2) | |
H6A | 0.7455 | 0.7414 | 0.6256 | 0.100* | |
H6B | 0.9012 | 0.7813 | 0.6269 | 0.100* | |
H6C | 0.8987 | 0.7861 | 0.7349 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.01682 (10) | 0.01446 (10) | 0.01891 (10) | −0.00015 (7) | 0.00713 (8) | −0.00032 (7) |
O1 | 0.0186 (14) | 0.0194 (14) | 0.0365 (17) | −0.0004 (10) | 0.0076 (12) | −0.0044 (11) |
O2 | 0.0225 (14) | 0.0156 (13) | 0.0327 (16) | 0.0014 (10) | 0.0032 (12) | −0.0002 (11) |
O3 | 0.0199 (13) | 0.0176 (13) | 0.0313 (15) | 0.0008 (10) | 0.0111 (12) | −0.0021 (11) |
O4 | 0.0222 (14) | 0.0171 (13) | 0.0234 (14) | 0.0010 (10) | 0.0057 (12) | 0.0003 (10) |
O6 | 0.0358 (16) | 0.0225 (14) | 0.0311 (16) | −0.0052 (11) | 0.0203 (13) | −0.0054 (11) |
O7 | 0.0479 (18) | 0.0213 (14) | 0.0428 (18) | 0.0052 (12) | 0.0322 (16) | 0.0063 (12) |
O8 | 0.0199 (13) | 0.0337 (15) | 0.0169 (13) | −0.0009 (11) | 0.0061 (11) | −0.0030 (11) |
O9 | 0.0195 (14) | 0.0437 (17) | 0.0235 (14) | −0.0032 (12) | 0.0114 (12) | −0.0030 (12) |
O1W | 0.0363 (17) | 0.0349 (17) | 0.0209 (15) | −0.0056 (13) | 0.0108 (13) | −0.0013 (12) |
O2W | 0.073 (3) | 0.035 (2) | 0.063 (3) | 0.0036 (18) | 0.028 (2) | 0.0070 (19) |
O3W | 0.084 (3) | 0.078 (3) | 0.047 (3) | 0.027 (3) | 0.014 (3) | −0.003 (2) |
O4W | 0.056 (3) | 0.053 (3) | 0.069 (3) | −0.008 (2) | −0.002 (2) | 0.014 (2) |
N1 | 0.035 (2) | 0.057 (3) | 0.036 (2) | −0.0080 (18) | 0.0180 (18) | 0.0077 (18) |
C1 | 0.0196 (19) | 0.0201 (19) | 0.0190 (18) | 0.0007 (13) | 0.0069 (16) | −0.0017 (14) |
C2 | 0.0209 (19) | 0.0206 (19) | 0.0171 (17) | 0.0011 (14) | 0.0092 (15) | 0.0001 (14) |
C3 | 0.0196 (18) | 0.025 (2) | 0.0225 (19) | 0.0000 (14) | 0.0081 (15) | 0.0006 (15) |
C4 | 0.0217 (19) | 0.0137 (17) | 0.0190 (18) | −0.0016 (13) | 0.0068 (15) | 0.0015 (13) |
C5 | 0.041 (3) | 0.126 (6) | 0.051 (4) | −0.010 (4) | 0.018 (3) | 0.020 (4) |
C6 | 0.104 (6) | 0.067 (4) | 0.086 (5) | 0.012 (4) | 0.056 (5) | 0.017 (4) |
Sm1—O4 | 2.422 (3) | O2W—H2WA | 0.811 (19) |
Sm1—O3i | 2.440 (2) | O2W—H2WB | 0.798 (19) |
Sm1—O9 | 2.442 (3) | O3W—H3WA | 0.839 (19) |
Sm1—O8 | 2.469 (3) | O3W—H3WB | 0.819 (19) |
Sm1—O2i | 2.474 (3) | O4W—H4WA | 0.83 (2) |
Sm1—O6 | 2.479 (3) | O4W—H4WB | 0.823 (19) |
Sm1—O1 | 2.479 (3) | N1—C5 | 1.452 (7) |
Sm1—O7 | 2.497 (3) | N1—C6 | 1.459 (8) |
Sm1—O1W | 2.512 (3) | N1—H1A | 0.9001 |
O1—C1 | 1.246 (4) | N1—H1B | 0.9001 |
O2—C1 | 1.248 (4) | C1—C2 | 1.562 (5) |
O2—Sm1ii | 2.474 (3) | C3—O7iii | 1.242 (5) |
O3—C2 | 1.257 (4) | C3—C3iii | 1.541 (8) |
O3—Sm1ii | 2.440 (2) | C4—O9iv | 1.234 (5) |
O4—C2 | 1.238 (4) | C4—C4iv | 1.519 (8) |
O6—C3 | 1.248 (5) | C5—H5A | 0.9600 |
O7—C3iii | 1.242 (5) | C5—H5B | 0.9600 |
O8—C4 | 1.282 (4) | C5—H5C | 0.9600 |
O9—C4iv | 1.234 (5) | C6—H6A | 0.9600 |
O1W—H1WA | 0.817 (18) | C6—H6B | 0.9600 |
O1W—H1WB | 0.828 (18) | C6—H6C | 0.9600 |
O4—Sm1—O3i | 136.09 (9) | C3—O6—Sm1 | 119.8 (2) |
O4—Sm1—O9 | 138.78 (9) | C3iii—O7—Sm1 | 119.5 (2) |
O3i—Sm1—O9 | 84.76 (9) | C4—O8—Sm1 | 119.1 (2) |
O4—Sm1—O8 | 123.92 (9) | C4iv—O9—Sm1 | 119.7 (2) |
O3i—Sm1—O8 | 71.56 (9) | Sm1—O1W—H1WA | 122 (3) |
O9—Sm1—O8 | 65.88 (9) | Sm1—O1W—H1WB | 120 (3) |
O4—Sm1—O2i | 72.94 (8) | H1WA—O1W—H1WB | 104 (3) |
O3i—Sm1—O2i | 66.43 (8) | H2WA—O2W—H2WB | 108 (3) |
O9—Sm1—O2i | 138.73 (9) | H3WA—O3W—H3WB | 105 (3) |
O8—Sm1—O2i | 125.24 (9) | H4WA—O4W—H4WB | 105 (3) |
O4—Sm1—O6 | 71.76 (9) | C5—N1—C6 | 114.3 (5) |
O3i—Sm1—O6 | 133.88 (9) | C5—N1—H1A | 108.6 |
O9—Sm1—O6 | 73.91 (9) | C6—N1—H1A | 108.8 |
O8—Sm1—O6 | 129.79 (9) | C5—N1—H1B | 108.5 |
O2i—Sm1—O6 | 104.74 (10) | C6—N1—H1B | 108.8 |
O4—Sm1—O1 | 66.34 (8) | H1A—N1—H1B | 107.6 |
O3i—Sm1—O1 | 144.12 (9) | O1—C1—O2 | 126.9 (3) |
O9—Sm1—O1 | 82.65 (9) | O1—C1—C2 | 116.3 (3) |
O8—Sm1—O1 | 72.62 (9) | O2—C1—C2 | 116.8 (3) |
O2i—Sm1—O1 | 137.62 (9) | O4—C2—O3 | 126.0 (3) |
O6—Sm1—O1 | 73.62 (9) | O4—C2—C1 | 117.2 (3) |
O4—Sm1—O7 | 111.72 (10) | O3—C2—C1 | 116.8 (3) |
O3i—Sm1—O7 | 69.72 (9) | O7iii—C3—O6 | 125.9 (4) |
O9—Sm1—O7 | 72.18 (10) | O7iii—C3—C3iii | 116.9 (4) |
O8—Sm1—O7 | 124.34 (9) | O6—C3—C3iii | 117.2 (4) |
O2i—Sm1—O7 | 70.42 (10) | O9iv—C4—O8 | 125.5 (4) |
O6—Sm1—O7 | 64.99 (9) | O9iv—C4—C4iv | 119.2 (4) |
O1—Sm1—O7 | 135.89 (10) | O8—C4—C4iv | 115.3 (4) |
O4—Sm1—O1W | 71.17 (10) | N1—C5—H5A | 109.5 |
O3i—Sm1—O1W | 81.92 (10) | N1—C5—H5B | 109.5 |
O9—Sm1—O1W | 132.76 (10) | H5A—C5—H5B | 109.5 |
O8—Sm1—O1W | 66.90 (9) | N1—C5—H5C | 109.5 |
O2i—Sm1—O1W | 73.75 (10) | H5A—C5—H5C | 109.5 |
O6—Sm1—O1W | 141.50 (9) | H5B—C5—H5C | 109.5 |
O1—Sm1—O1W | 82.35 (10) | N1—C6—H6A | 109.5 |
O7—Sm1—O1W | 140.82 (10) | N1—C6—H6B | 109.5 |
C1—O1—Sm1 | 118.3 (2) | H6A—C6—H6B | 109.5 |
C1—O2—Sm1ii | 118.2 (2) | N1—C6—H6C | 109.5 |
C2—O3—Sm1ii | 118.6 (2) | H6A—C6—H6C | 109.5 |
C2—O4—Sm1 | 119.6 (2) | H6B—C6—H6C | 109.5 |
O4—Sm1—O1—C1 | −10.9 (3) | O4—Sm1—O8—C4 | −141.7 (2) |
O3i—Sm1—O1—C1 | −148.3 (3) | O3i—Sm1—O8—C4 | 84.6 (2) |
O9—Sm1—O1—C1 | 141.3 (3) | O9—Sm1—O8—C4 | −7.9 (2) |
O8—Sm1—O1—C1 | −151.8 (3) | O2i—Sm1—O8—C4 | 125.8 (2) |
O2i—Sm1—O1—C1 | −28.1 (4) | O6—Sm1—O8—C4 | −47.7 (3) |
O6—Sm1—O1—C1 | 66.0 (3) | O1—Sm1—O8—C4 | −97.6 (3) |
O7—Sm1—O1—C1 | 86.5 (3) | O7—Sm1—O8—C4 | 36.7 (3) |
O1W—Sm1—O1—C1 | −83.6 (3) | O1W—Sm1—O8—C4 | 173.5 (3) |
O3i—Sm1—O4—C2 | 158.7 (3) | O4—Sm1—O9—C4iv | 122.0 (3) |
O9—Sm1—O4—C2 | −31.0 (3) | O3i—Sm1—O9—C4iv | −64.8 (3) |
O8—Sm1—O4—C2 | 60.2 (3) | O8—Sm1—O9—C4iv | 7.4 (3) |
O2i—Sm1—O4—C2 | −178.4 (3) | O2i—Sm1—O9—C4iv | −109.3 (3) |
O6—Sm1—O4—C2 | −66.0 (3) | O6—Sm1—O9—C4iv | 156.6 (3) |
O1—Sm1—O4—C2 | 13.6 (3) | O1—Sm1—O9—C4iv | 81.6 (3) |
O7—Sm1—O4—C2 | −118.4 (3) | O7—Sm1—O9—C4iv | −135.1 (3) |
O1W—Sm1—O4—C2 | 103.4 (3) | O1W—Sm1—O9—C4iv | 9.2 (3) |
O4—Sm1—O6—C3 | −136.1 (3) | Sm1—O1—C1—O2 | −172.2 (3) |
O3i—Sm1—O6—C3 | 1.2 (3) | Sm1—O1—C1—C2 | 8.1 (4) |
O9—Sm1—O6—C3 | 67.1 (3) | Sm1ii—O2—C1—O1 | −169.5 (3) |
O8—Sm1—O6—C3 | 104.5 (3) | Sm1ii—O2—C1—C2 | 10.2 (5) |
O2i—Sm1—O6—C3 | −70.1 (3) | Sm1—O4—C2—O3 | 165.1 (3) |
O1—Sm1—O6—C3 | 154.0 (3) | Sm1—O4—C2—C1 | −15.0 (4) |
O7—Sm1—O6—C3 | −10.4 (3) | Sm1ii—O3—C2—O4 | 162.8 (3) |
O1W—Sm1—O6—C3 | −152.4 (3) | Sm1ii—O3—C2—C1 | −17.2 (4) |
O4—Sm1—O7—C3iii | 66.9 (3) | O1—C1—C2—O4 | 4.4 (5) |
O3i—Sm1—O7—C3iii | −160.3 (3) | O2—C1—C2—O4 | −175.4 (4) |
O9—Sm1—O7—C3iii | −69.4 (3) | O1—C1—C2—O3 | −175.7 (3) |
O8—Sm1—O7—C3iii | −111.7 (3) | O2—C1—C2—O3 | 4.5 (5) |
O2i—Sm1—O7—C3iii | 128.4 (3) | Sm1—O6—C3—O7iii | −169.7 (3) |
O6—Sm1—O7—C3iii | 10.8 (3) | Sm1—O6—C3—C3iii | 9.6 (5) |
O1—Sm1—O7—C3iii | −11.0 (4) | Sm1—O8—C4—O9iv | −173.2 (3) |
O1W—Sm1—O7—C3iii | 153.4 (3) | Sm1—O8—C4—C4iv | 7.9 (5) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2Wiv | 0.82 (2) | 1.95 (2) | 2.764 (5) | 174 (5) |
O1W—H1WB···O2Wv | 0.83 (2) | 2.03 (2) | 2.852 (5) | 172 (4) |
O2W—H2WA···O6vi | 0.81 (2) | 2.26 (2) | 3.065 (5) | 175 (6) |
O2W—H2WA···O7vii | 0.81 (2) | 2.47 (5) | 3.023 (5) | 126 (5) |
O2W—H2WB···O4W | 0.80 (2) | 2.51 (2) | 3.306 (7) | 179 (6) |
O2W—H2WB···O3Wviii | 0.80 (2) | 2.64 (5) | 3.039 (8) | 113 (5) |
O3W—H3WA···O2 | 0.84 (2) | 2.08 (3) | 2.845 (5) | 151 (6) |
O3W—H3WB···O4Wvii | 0.82 (2) | 1.98 (2) | 2.796 (6) | 172 (8) |
O4W—H4WA···O1ix | 0.83 (2) | 2.15 (2) | 2.967 (5) | 169 (6) |
O4W—H4WB···O3x | 0.82 (2) | 2.11 (2) | 2.898 (5) | 160 (6) |
N1—H1A···O3W | 0.90 | 1.85 | 2.744 (6) | 171 |
N1—H1B···O8ix | 0.90 | 1.99 | 2.864 (5) | 163 |
N1—H1B···O1Wix | 0.90 | 2.50 | 3.071 (5) | 122 |
C5—H5C···O4vi | 0.96 | 2.53 | 3.283 (7) | 135 |
Symmetry codes: (iv) −x+2, −y+2, −z+1; (v) x−1, y, z−1; (vi) x+1, −y+3/2, z+1/2; (vii) −x+2, y−1/2, −z+3/2; (viii) −x+2, y+1/2, −z+3/2; (ix) x, −y+3/2, z+1/2; (x) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | (C2H8N)[Sm(C2O4)2(H2O)]·3H2O |
Mr | 444.55 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.6711 (3), 11.7849 (3), 14.3863 (4) |
β (°) | 122.276 (2) |
V (Å3) | 1386.30 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.30 |
Crystal size (mm) | 0.17 × 0.14 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.36, 0.43 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12866, 3225, 2739 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.061, 1.03 |
No. of reflections | 3225 |
No. of parameters | 207 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.69, −0.98 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2Wi | 0.817 (18) | 1.95 (2) | 2.764 (5) | 174 (5) |
O1W—H1WB···O2Wii | 0.828 (18) | 2.03 (2) | 2.852 (5) | 172 (4) |
O2W—H2WA···O6iii | 0.811 (19) | 2.26 (2) | 3.065 (5) | 175 (6) |
O2W—H2WA···O7iv | 0.811 (19) | 2.47 (5) | 3.023 (5) | 126 (5) |
O2W—H2WB···O4W | 0.798 (19) | 2.51 (2) | 3.306 (7) | 179 (6) |
O2W—H2WB···O3Wv | 0.798 (19) | 2.64 (5) | 3.039 (8) | 113 (5) |
O3W—H3WA···O2 | 0.839 (19) | 2.08 (3) | 2.845 (5) | 151 (6) |
O3W—H3WB···O4Wiv | 0.819 (19) | 1.98 (2) | 2.796 (6) | 172 (8) |
O4W—H4WA···O1vi | 0.83 (2) | 2.15 (2) | 2.967 (5) | 169 (6) |
O4W—H4WB···O3vii | 0.823 (19) | 2.11 (2) | 2.898 (5) | 160 (6) |
N1—H1A···O3W | 0.90 | 1.85 | 2.744 (6) | 171 |
N1—H1B···O8vi | 0.90 | 1.99 | 2.864 (5) | 163 |
N1—H1B···O1Wvi | 0.90 | 2.50 | 3.071 (5) | 122 |
C5—H5C···O4iii | 0.96 | 2.53 | 3.283 (7) | 135 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x−1, y, z−1; (iii) x+1, −y+3/2, z+1/2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) x+1, y, z+1. |
Acknowledgements
The present work was supported financially by the National Natural Science Foundation of China (No. 20973127) and Shanghai Nanotechnology Promotion Center (No. 0952nm00800).
References
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kim, K. M., Song, S. C., Lee, S. B., Kang, H. C. & Sohn, Y. S. (1998). Inorg. Chem. 37, 5764–5768. CrossRef CAS Google Scholar
Lv, Y. K., Feng, Y. L., Liu, J. W. & Jiang, Z. G. (2011). J. Solid State Chem. 184, 1339–1345. CrossRef CAS Google Scholar
Lv, Y.-K., Gan, L.-H., Cao, Y.-J., Gao, B.-F. & Chen, L.-H. (2010). Acta Cryst. E66, m1440. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403–1419. Web of Science CSD CrossRef CAS Google Scholar
Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901–m902. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbohydrates and their derivatives are the most widely distributed naturally occurring compounds and are indispensable to living organisms as an energy source and building blocks. Many carbohydrate-derived ligands were prepared and occasionally lead to novel and versatile metal-organic polymers with interesting structures (Kim et al., 1998; Lv et al., 2011). Oxalate, which usually represent one of the products of the degradation of carbohydrates, is one of the simplest multidentate organic ligands potentially able to bridge metal ions in a bidentate chelating manner (Lv et al., 2010; Trombe & Mohanu, 2004). We report herein the synthesis and structure of a new samarium(III) complex, (C2H8N)[Sm(C2O4)2(H2O)].3H2O. The oxalate ligands in this complex arise from the decomposition of potassium hydrogen saccharate.
Single-crystal X-ray diffraction analysis revealed that the title complex crystallizes in the monoclinic system with space group P21/c, and is isostructural with its EuIII analogue (Yang et al., 2005) and DyIII analogues (Ye & Lin, 2010). As shown in Fig. 1, the SmIII atom is chelated by four oxalate ligands and one water molecule forming a distorted tricapped trigonal-prismatic geometry. Each oxalate ligand bridges two SmIII atoms, generating a three-dimensional anionic network with cavities where the ammonium cations and lattice water molecules reside (Fig. 2). Furthermore, there are various hydrogen-bonding interactions (N—H···O, O—H···O and C—H···O) stablizing the crystal framework.