metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-hy­dr­oxy­benzoato-κ2O,O′)bis­­(pyridine-κN)copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 21 May 2011; accepted 14 June 2011; online 18 June 2011)

In the title compound, [Cu(C7H5O3)2(C5H5N)2], the Cu atom is located on an inversion center and is coordinated by the N atoms of the two pyridine ligands, trans to each other, and to the carboxyl­ate O atoms of two bidentate 4-hy­droxy­benzoate ligands [Cu—O = 1.9706 (10) and 2.5204 (11) Å]. Hydrogen bonding between hy­droxy H and carboxyl­ate O atoms results in a layer structure parallel to the ab plane.

Related literature

For the structure of bis­(p-hy­droxy­benzoate)dipicoline–copper(II), see: Sharma et al. (2009[Sharma, R. P., Singh, A., Saini, A., Venugopalan, P. & Molinari, A. (2009). J. Mol. Struct. 923, 78-84.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O3)2(C5H5N)2]

  • Mr = 495.96

  • Monoclinic, P 21 /c

  • a = 10.6715 (2) Å

  • b = 8.5385 (1) Å

  • c = 12.3988 (2) Å

  • β = 109.124 (1)°

  • V = 1067.41 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 100 K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.663, Tmax = 0.746

  • 9756 measured reflections

  • 2448 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.06

  • 2448 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.84 1.87 2.7028 (16) 171
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008)[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The copper atom in the title complex is located on an inversion center and adopts a distorted octahedral geometry, with the oxygen atoms of the carboxylic groups occupying the equatorial positions (Fig. 1). The axial Cu—N bond distance of 2.0076 (13) Å is comparable with that of bis(p-hydroxybenzoate)dipicoline-copper(II) which is 1.987 (2) Å (Sharma et al., 2009). The 4-hydroxybenzoate group acts as a bidentate ligand with Cu—O bond distances of 1.9706 (10) and 2.5204 (11) Å. The dipicoline-copper(II) complex differs from the title complex in that the two picoline ligands are cis to each other (N—Cu—N 91.50 (10)o) whereas the two pyridine ligands in the title complex are trans to each other. The distortion from ideal octahedral geometry for the title compound is mainly due to the small bite angle (57.60 (4)°) formed by the bidentate carboxylate moiety. In the crystal structure, intermolecular O—H···O hydrogen bonds link the molecules into layers parallel to the ab plane (Fig. 2). The π-π contacts between the pyridine rings, Cg1-Cg1' [symmetry code: 2 - x, 1 - y, 2 - z, where Cg1 is the centroid of the ring (N1, C8—C12)] may further stabilize the overall structure, with centroid-centroid distance of 3.7878 (10) Å.

Related literature top

For the X-ray structure of bis(p-hydroxybenzoate)dipicoline-copper(II), see: Sharma et al. (2009).

Experimental top

p-Hydroxybenzoic acid (0.35 g, 2.5 mmol) was dissolved in 100 ml of ethanol. While stirring and gently heating the solution, copper(II) acetate monohydrate (0.26 g, 1.3 mmol) was added portionwise. This was followed by 0.5 ml of pyridine and the mixture was heated for 30 minutes. The solution mixture was then filtered and upon cooling of the filtrate gave the title compound as a dark green crystalline solid.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U\~eq\~(C). The hydroxy-H was refined with a restraint of 0.84 ± 0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of bis(4-hydroxybenzoato-O, O')dipyridylcopper(II), showing 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius. (Symmetry code (i): -x + 2, -y, -z + 2).
[Figure 2] Fig. 2. A view down the c-axis of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity and the O—H···O hydrogen bonds are shown as red dotted lines.
Bis(4-hydroxybenzoato-κ2O,O')bis(pyridine-κN)copper(II) top
Crystal data top
[Cu(C7H5O3)2(C5H5N)2]F(000) = 510
Mr = 495.96Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4633 reflections
a = 10.6715 (2) Åθ = 3.0–28.2°
b = 8.5385 (1) ŵ = 1.07 mm1
c = 12.3988 (2) ÅT = 100 K
β = 109.124 (1)°Block, dark green
V = 1067.41 (3) Å30.30 × 0.26 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2448 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.663, Tmax = 0.746k = 1111
9756 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.7197P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C7H5O3)2(C5H5N)2]V = 1067.41 (3) Å3
Mr = 495.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.6715 (2) ŵ = 1.07 mm1
b = 8.5385 (1) ÅT = 100 K
c = 12.3988 (2) Å0.30 × 0.26 × 0.20 mm
β = 109.124 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2202 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.746Rint = 0.023
9756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2448 reflectionsΔρmin = 0.32 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.00001.00000.01147 (8)
O10.82299 (10)0.04277 (13)1.01071 (9)0.0143 (2)
O20.81152 (11)0.10333 (13)0.83387 (9)0.0162 (2)
O30.28650 (12)0.42997 (16)0.85782 (10)0.0258 (3)
H3A0.26180.47880.79560.039*
N11.05579 (12)0.21481 (15)1.06344 (11)0.0139 (3)
C10.76211 (15)0.10384 (17)0.91341 (13)0.0138 (3)
C20.63226 (15)0.18074 (17)0.89663 (13)0.0152 (3)
C30.56256 (16)0.24646 (19)0.79114 (14)0.0181 (3)
H30.59560.23500.72910.022*
C40.44571 (16)0.32832 (19)0.77537 (14)0.0191 (3)
H40.39850.37170.70280.023*
C50.39815 (16)0.3465 (2)0.86627 (14)0.0193 (3)
C60.46532 (18)0.2783 (2)0.97123 (15)0.0270 (4)
H60.43140.28811.03280.032*
C70.58159 (17)0.1960 (2)0.98591 (14)0.0232 (4)
H70.62710.14961.05770.028*
C81.01481 (17)0.27077 (19)1.14781 (14)0.0188 (3)
H80.95400.21051.17190.023*
C91.05787 (19)0.4126 (2)1.20074 (15)0.0242 (4)
H91.02850.44781.26110.029*
C101.14449 (18)0.50256 (19)1.16446 (15)0.0226 (3)
H101.17580.60031.19960.027*
C111.18455 (16)0.4474 (2)1.07611 (15)0.0205 (3)
H111.24250.50761.04850.025*
C121.13899 (15)0.30311 (18)1.02847 (14)0.0170 (3)
H121.16780.26510.96850.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01118 (13)0.00913 (13)0.01483 (14)0.00004 (9)0.00523 (9)0.00102 (10)
O10.0129 (5)0.0132 (5)0.0172 (5)0.0019 (4)0.0054 (4)0.0005 (4)
O20.0161 (5)0.0159 (5)0.0175 (5)0.0010 (4)0.0066 (4)0.0009 (4)
O30.0220 (6)0.0344 (7)0.0245 (6)0.0126 (5)0.0124 (5)0.0100 (5)
N10.0142 (6)0.0115 (6)0.0158 (6)0.0012 (5)0.0045 (5)0.0001 (5)
C10.0132 (7)0.0085 (6)0.0193 (7)0.0027 (5)0.0047 (6)0.0019 (6)
C20.0128 (7)0.0117 (7)0.0200 (8)0.0013 (6)0.0039 (6)0.0020 (6)
C30.0199 (8)0.0170 (7)0.0186 (8)0.0011 (6)0.0080 (6)0.0001 (6)
C40.0204 (8)0.0188 (8)0.0173 (7)0.0026 (6)0.0050 (6)0.0027 (6)
C50.0140 (7)0.0208 (8)0.0237 (8)0.0024 (6)0.0070 (6)0.0037 (7)
C60.0255 (9)0.0378 (11)0.0227 (9)0.0111 (8)0.0148 (7)0.0085 (8)
C70.0207 (8)0.0299 (9)0.0197 (8)0.0066 (7)0.0076 (6)0.0075 (7)
C80.0265 (8)0.0140 (7)0.0199 (8)0.0026 (6)0.0130 (7)0.0004 (6)
C90.0374 (10)0.0175 (8)0.0222 (8)0.0034 (7)0.0160 (7)0.0052 (7)
C100.0292 (9)0.0139 (7)0.0251 (8)0.0052 (7)0.0094 (7)0.0049 (7)
C110.0202 (8)0.0151 (7)0.0281 (9)0.0039 (6)0.0107 (7)0.0009 (7)
C120.0169 (7)0.0151 (7)0.0210 (8)0.0003 (6)0.0089 (6)0.0016 (6)
Geometric parameters (Å, º) top
Cu1—O11.9706 (10)C4—H40.9500
Cu1—N12.0076 (13)C5—C61.391 (2)
Cu1—O22.5204 (11)C6—C71.385 (2)
O1—C11.2790 (19)C6—H60.9500
O2—C11.2614 (18)C7—H70.9500
O3—C51.3624 (19)C8—C91.382 (2)
O3—H3A0.8400C8—H80.9500
N1—C121.340 (2)C9—C101.386 (2)
N1—C81.347 (2)C9—H90.9500
C1—C21.485 (2)C10—C111.383 (2)
C2—C71.388 (2)C10—H100.9500
C2—C31.393 (2)C11—C121.384 (2)
C3—C41.386 (2)C11—H110.9500
C3—H30.9500C12—H120.9500
C4—C51.388 (2)
O1—Cu1—O1i180.0C5—C4—H4120.2
O1—Cu1—N1i91.60 (5)O3—C5—C4122.64 (15)
O1—Cu1—N188.40 (5)O3—C5—C6117.43 (15)
O1i—Cu1—N191.60 (5)C4—C5—C6119.94 (15)
N1i—Cu1—N1180.0C7—C6—C5120.02 (15)
O1—Cu1—O257.60 (4)C7—C6—H6120.0
O1i—Cu1—O2122.40 (4)C5—C6—H6120.0
N1i—Cu1—O286.83 (4)C6—C7—C2120.61 (15)
N1—Cu1—O293.17 (4)C6—C7—H7119.7
C1—O1—Cu1102.35 (9)C2—C7—H7119.7
C1—O2—Cu177.78 (8)N1—C8—C9122.52 (15)
C5—O3—H3A109.5N1—C8—H8118.7
C12—N1—C8118.01 (13)C9—C8—H8118.7
C12—N1—Cu1122.01 (10)C8—C9—C10119.02 (15)
C8—N1—Cu1119.89 (10)C8—C9—H9120.5
O2—C1—O1121.52 (14)C10—C9—H9120.5
O2—C1—C2120.11 (14)C11—C10—C9118.72 (15)
O1—C1—C2118.34 (13)C11—C10—H10120.6
C7—C2—C3118.88 (14)C9—C10—H10120.6
C7—C2—C1121.28 (14)C10—C11—C12119.01 (15)
C3—C2—C1119.75 (14)C10—C11—H11120.5
C4—C3—C2120.95 (15)C12—C11—H11120.5
C4—C3—H3119.5N1—C12—C11122.69 (15)
C2—C3—H3119.5N1—C12—H12118.7
C3—C4—C5119.55 (15)C11—C12—H12118.7
C3—C4—H4120.2
O1i—Cu1—O1—C198 (46)O1—C1—C2—C74.3 (2)
N1i—Cu1—O1—C190.19 (9)O2—C1—C2—C32.7 (2)
N1—Cu1—O1—C189.81 (9)O1—C1—C2—C3179.10 (14)
O2—Cu1—O1—C14.95 (8)C7—C2—C3—C41.1 (2)
O1—Cu1—O2—C15.02 (8)C1—C2—C3—C4175.51 (14)
O1i—Cu1—O2—C1174.98 (8)C2—C3—C4—C50.7 (2)
N1i—Cu1—O2—C198.93 (9)C3—C4—C5—O3177.74 (15)
N1—Cu1—O2—C181.07 (9)C3—C4—C5—C62.2 (3)
O1—Cu1—N1—C12143.73 (12)O3—C5—C6—C7178.07 (17)
O1i—Cu1—N1—C1236.27 (12)C4—C5—C6—C71.9 (3)
N1i—Cu1—N1—C120 (100)C5—C6—C7—C20.0 (3)
O2—Cu1—N1—C1286.30 (12)C3—C2—C7—C61.5 (3)
O1—Cu1—N1—C839.72 (12)C1—C2—C7—C6175.12 (17)
O1i—Cu1—N1—C8140.28 (12)C12—N1—C8—C91.7 (2)
N1i—Cu1—N1—C80 (95)Cu1—N1—C8—C9175.01 (13)
O2—Cu1—N1—C897.15 (12)N1—C8—C9—C101.3 (3)
Cu1—O2—C1—O17.68 (13)C8—C9—C10—C110.2 (3)
Cu1—O2—C1—C2170.43 (13)C9—C10—C11—C121.2 (3)
Cu1—O1—C1—O29.84 (16)C8—N1—C12—C110.6 (2)
Cu1—O1—C1—C2168.30 (11)Cu1—N1—C12—C11176.06 (12)
O2—C1—C2—C7173.84 (15)C10—C11—C12—N10.9 (3)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.841.872.7028 (16)171
Symmetry code: (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O3)2(C5H5N)2]
Mr495.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6715 (2), 8.5385 (1), 12.3988 (2)
β (°) 109.124 (1)
V3)1067.41 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.663, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9756, 2448, 2202
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.06
No. of reflections2448
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.841.872.7028 (16)171
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the University of Malaya (grant Nos. PS345/2010 A and TA010/2010) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSharma, R. P., Singh, A., Saini, A., Venugopalan, P. & Molinari, A. (2009). J. Mol. Struct. 923, 78–84.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds