organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,5-Di­chloro-2-hy­dr­oxy­benzyl­­idene)-2-meth­­oxy­benzohydrazide

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 6 June 2011; accepted 17 June 2011; online 25 June 2011)

In the title compound, C15H12Cl2N2O3, the dihedral angle between the two substituted aromatic rings is 5.4 (4)°. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds affect the planarity of the molcular conformation, with a mean deviation from the plane defined by the non-H atoms of 0.062 (2) Å. The mol­ecule exists in a trans configuration with respect to the methyl­idene unit. In the crystal, mol­ecules are linked by N—H⋯O inter­actions.

Related literature

For the crystal structures of hydrazone compounds, see: Li (2011[Li, H.-B. (2011). Acta Cryst. E67, o1532.]); Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O3

  • Mr = 339.17

  • Monoclinic, C c

  • a = 10.845 (7) Å

  • b = 12.771 (8) Å

  • c = 10.856 (7) Å

  • β = 96.683 (7)°

  • V = 1493.4 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.18 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.928

  • 4586 measured reflections

  • 2978 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.133

  • S = 1.02

  • 2978 reflections

  • 204 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1272 Friedel pairs

  • Flack parameter: 0.10 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.543 (4) 146
N2—H2⋯O3 0.90 (1) 2.02 (5) 2.624 (4) 123 (5)
N2—H2⋯O1i 0.90 (1) 2.63 (4) 3.271 (5) 129 (5)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the last few years, hydrazones have been attracted much attention for their crystal structures (Li, 2011; Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010).

In the crystal structure of the title hydrazone molecule, as shown in Fig. 1, the dihedral angle between the two substituted aromatic rings is 5.4 (4)°. The intramolecular O—H···N and N—H···O hydrogen bonds (Table 1) affect the planarity of the conformation of the molecule. The molecule exists in a trans configuration with respect to the methylidene unit.

Related literature top

For the crystal structures of hydrazone compounds, see: Li (2011); Hashemian et al. (2011); Lei (2011); Shalash et al. (2010).

Experimental top

A mixture of 2-methoxybenzhydrazide (0.166 g, 1 mmol) and 3,5-dichlorosalicylaldehyde (0.190 g, 1 mmol) in 30 ml of ethanol containing a few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colorless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

The and N-bound hydrogen atom was located from a difference Fourier map and refined isotropically. The rest of hydrogen atoms were positioned geometrically [C—H = 0.93 & 0.96 Å; O—H = 0.82 Å] and refined using a riding model [Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(C15 and O1)]. A rotating-group model was applied for the methyl group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement parameters drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
(E)-N'-(3,5-Dichloro-2-hydroxybenzylidene)-2- methoxybenzohydrazide top
Crystal data top
C15H12Cl2N2O3F(000) = 696
Mr = 339.17Dx = 1.508 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 816 reflections
a = 10.845 (7) Åθ = 2.4–24.3°
b = 12.771 (8) ŵ = 0.45 mm1
c = 10.856 (7) ÅT = 298 K
β = 96.683 (7)°Block, colorless
V = 1493.4 (16) Å30.18 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2978 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.924, Tmax = 0.928k = 1612
4586 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2978 reflectionsΔρmax = 0.28 e Å3
204 parametersΔρmin = 0.28 e Å3
4 restraintsAbsolute structure: Flack (1983), 1272 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (10)
Crystal data top
C15H12Cl2N2O3V = 1493.4 (16) Å3
Mr = 339.17Z = 4
Monoclinic, CcMo Kα radiation
a = 10.845 (7) ŵ = 0.45 mm1
b = 12.771 (8) ÅT = 298 K
c = 10.856 (7) Å0.18 × 0.18 × 0.17 mm
β = 96.683 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2011 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.928Rint = 0.050
4586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.28 e Å3
2978 reflectionsAbsolute structure: Flack (1983), 1272 Friedel pairs
204 parametersAbsolute structure parameter: 0.10 (10)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40120 (15)0.77322 (10)0.22803 (13)0.0652 (4)
Cl20.47525 (14)0.96477 (10)0.67126 (14)0.0658 (4)
N10.6075 (4)0.4977 (3)0.5532 (3)0.0389 (9)
N20.6498 (4)0.4042 (3)0.6052 (3)0.0436 (10)
O10.5144 (3)0.5940 (2)0.3592 (3)0.0461 (8)
H10.54500.54430.39980.069*
O20.6238 (4)0.3303 (2)0.4167 (3)0.0581 (10)
O30.7634 (3)0.2894 (3)0.7842 (3)0.0535 (10)
C10.5091 (4)0.6771 (3)0.4333 (4)0.0353 (10)
C20.4584 (4)0.7706 (4)0.3839 (4)0.0436 (12)
C30.4487 (4)0.8590 (4)0.4551 (5)0.0464 (12)
H30.41420.92020.41980.056*
C40.4913 (5)0.8547 (4)0.5798 (4)0.0450 (12)
C50.5424 (4)0.7637 (4)0.6342 (4)0.0418 (12)
H50.57080.76210.71840.050*
C60.5504 (4)0.6748 (3)0.5611 (4)0.0360 (10)
C70.6003 (4)0.5782 (4)0.6203 (4)0.0421 (11)
H70.62610.57600.70500.051*
C80.6559 (4)0.3220 (3)0.5280 (4)0.0376 (11)
C90.7044 (4)0.2206 (3)0.5831 (4)0.0374 (11)
C100.6993 (5)0.1355 (4)0.5042 (5)0.0476 (12)
H100.66510.14470.42230.057*
C110.7425 (5)0.0378 (4)0.5408 (5)0.0595 (15)
H110.73560.01830.48590.071*
C120.7965 (5)0.0254 (4)0.6618 (6)0.0646 (16)
H120.82660.04000.68820.077*
C130.8063 (5)0.1080 (4)0.7436 (5)0.0548 (14)
H130.84450.09900.82420.066*
C140.7587 (4)0.2053 (4)0.7049 (4)0.0427 (12)
C150.8242 (5)0.2795 (5)0.9067 (5)0.0705 (18)
H15A0.78620.22420.94880.106*
H15B0.81730.34410.95050.106*
H15C0.91030.26340.90350.106*
H20.667 (5)0.404 (5)0.6884 (9)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0949 (10)0.0518 (8)0.0441 (7)0.0028 (8)0.0130 (6)0.0124 (6)
Cl20.0854 (10)0.0383 (6)0.0762 (10)0.0036 (7)0.0194 (7)0.0199 (7)
N10.053 (2)0.033 (2)0.0301 (19)0.0056 (18)0.0001 (17)0.0040 (16)
N20.059 (3)0.035 (2)0.034 (2)0.0087 (19)0.005 (2)0.0070 (18)
O10.074 (2)0.0319 (18)0.0310 (17)0.0013 (16)0.0010 (16)0.0017 (14)
O20.086 (3)0.048 (2)0.0353 (19)0.0129 (19)0.0132 (18)0.0007 (17)
O30.066 (2)0.054 (2)0.038 (2)0.0143 (18)0.0076 (17)0.0048 (17)
C10.041 (3)0.033 (2)0.032 (2)0.0051 (19)0.005 (2)0.0042 (19)
C20.055 (3)0.038 (3)0.037 (3)0.006 (2)0.001 (2)0.001 (2)
C30.052 (3)0.030 (3)0.057 (3)0.003 (2)0.005 (2)0.004 (2)
C40.054 (3)0.032 (3)0.051 (3)0.008 (2)0.014 (3)0.007 (2)
C50.049 (3)0.039 (3)0.037 (3)0.002 (2)0.003 (2)0.004 (2)
C60.042 (3)0.032 (2)0.034 (3)0.000 (2)0.006 (2)0.0013 (19)
C70.051 (3)0.043 (3)0.032 (2)0.003 (2)0.002 (2)0.001 (2)
C80.040 (3)0.035 (2)0.037 (3)0.002 (2)0.000 (2)0.003 (2)
C90.041 (3)0.030 (3)0.041 (3)0.0035 (19)0.007 (2)0.0096 (19)
C100.053 (3)0.040 (3)0.051 (3)0.003 (2)0.011 (2)0.001 (2)
C110.072 (4)0.035 (3)0.072 (4)0.001 (2)0.011 (3)0.003 (3)
C120.063 (4)0.038 (3)0.094 (5)0.017 (3)0.015 (3)0.022 (3)
C130.056 (3)0.055 (3)0.054 (3)0.010 (3)0.008 (3)0.024 (3)
C140.043 (3)0.042 (3)0.043 (3)0.007 (2)0.007 (2)0.011 (2)
C150.070 (4)0.096 (5)0.042 (3)0.020 (3)0.010 (3)0.007 (3)
Geometric parameters (Å, º) top
Cl1—C21.734 (5)C5—H50.9300
Cl2—C41.741 (5)C6—C71.465 (6)
N1—C71.268 (5)C7—H70.9300
N1—N21.377 (5)C8—C91.496 (6)
N2—C81.350 (5)C9—C101.381 (6)
N2—H20.900 (7)C9—C141.397 (6)
O1—C11.337 (5)C10—C111.375 (7)
O1—H10.8200C10—H100.9300
O2—C81.223 (5)C11—C121.383 (8)
O3—C141.373 (6)C11—H110.9300
O3—C151.420 (6)C12—C131.376 (8)
C1—C21.396 (6)C12—H120.9300
C1—C61.407 (5)C13—C141.392 (6)
C2—C31.379 (7)C13—H130.9300
C3—C41.380 (6)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.390 (6)C15—H15C0.9600
C5—C61.394 (6)
C7—N1—N2120.5 (4)O2—C8—N2121.2 (4)
C8—N2—N1117.2 (3)O2—C8—C9121.1 (4)
C8—N2—H2127 (4)N2—C8—C9117.7 (4)
N1—N2—H2116 (4)C10—C9—C14117.3 (4)
C1—O1—H1109.5C10—C9—C8116.5 (4)
C14—O3—C15119.8 (4)C14—C9—C8126.1 (4)
O1—C1—C2119.4 (4)C11—C10—C9123.1 (5)
O1—C1—C6123.0 (4)C11—C10—H10118.4
C2—C1—C6117.6 (4)C9—C10—H10118.4
C3—C2—C1122.5 (4)C10—C11—C12118.1 (5)
C3—C2—Cl1119.3 (4)C10—C11—H11121.0
C1—C2—Cl1118.2 (4)C12—C11—H11121.0
C2—C3—C4118.6 (4)C13—C12—C11121.2 (5)
C2—C3—H3120.7C13—C12—H12119.4
C4—C3—H3120.7C11—C12—H12119.4
C3—C4—C5121.4 (4)C12—C13—C14119.4 (5)
C3—C4—Cl2118.9 (4)C12—C13—H13120.3
C5—C4—Cl2119.6 (4)C14—C13—H13120.3
C4—C5—C6119.2 (4)O3—C14—C13121.5 (4)
C4—C5—H5120.4O3—C14—C9117.7 (4)
C6—C5—H5120.4C13—C14—C9120.8 (5)
C5—C6—C1120.7 (4)O3—C15—H15A109.5
C5—C6—C7118.7 (4)O3—C15—H15B109.5
C1—C6—C7120.6 (4)H15A—C15—H15B109.5
N1—C7—C6118.3 (4)O3—C15—H15C109.5
N1—C7—H7120.8H15A—C15—H15C109.5
C6—C7—H7120.8H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.543 (4)146
N2—H2···O30.90 (1)2.02 (5)2.624 (4)123 (5)
N2—H2···O1i0.90 (1)2.63 (4)3.271 (5)129 (5)
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O3
Mr339.17
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)10.845 (7), 12.771 (8), 10.856 (7)
β (°) 96.683 (7)
V3)1493.4 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.18 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
4586, 2978, 2011
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.133, 1.02
No. of reflections2978
No. of parameters204
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28
Absolute structureFlack (1983), 1272 Friedel pairs
Absolute structure parameter0.10 (10)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.543 (4)146
N2—H2···O30.900 (7)2.02 (5)2.624 (4)123 (5)
N2—H2···O1i0.900 (7)2.63 (4)3.271 (5)129 (5)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The author acknowledges the Zibo Vocational Institute for supporting the work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H.-B. (2011). Acta Cryst. E67, o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds