organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1842-o1843

10α-Hy­dr­oxy-4,9-di­methyl-13-[(pyrrol­idin-1-yl)meth­yl]-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decan-14-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah,40000 Marrakech, Morocco, bLaboratoire des Matériaux Inorganiques, Université Blaise Pascal, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 21 June 2011; accepted 23 June 2011; online 30 June 2011)

The title compound, C19H29NO5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from two fused five- and ten-membered rings with the (pyrrolidin-4-yl)methyl group as a substituent. The two five-membered ring display the same envelope conformations, whereas the ten-membered ring adopts an approximate chair–chair conformation. The dihedral angle between the ten-membered ring and the lactone ring is 21.81 (9)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains parallel to the c axis.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For reactivity of this sesquiterpene see: Der-Ren et al. (2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M.-L., Jordan, C.-T. & Crooks, P.-A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For conformations of ten-membered rings, see: Castaneda-Acosta et al. (1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]). For related structures, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]); Watson & Zabel (1982[Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834-838.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29NO5

  • Mr = 351.43

  • Orthorhombic, P 21 21 21

  • a = 8.0714 (2) Å

  • b = 10.4571 (3) Å

  • c = 21.5816 (8) Å

  • V = 1821.56 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.89 × 0.46 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 8707 measured reflections

  • 2122 independent reflections

  • 1660 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.03

  • 2122 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N 0.82 2.04 2.851 (2) 172
C9—H9⋯O4i 0.98 2.38 3.260 (2) 149
C10—H10⋯O2ii 0.98 2.46 3.392 (3) 158
C19—H19B⋯O5iii 0.97 2.59 3.357 (3) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata. The main constituent of the chloroform extract of aerial parts of this plant is 9α-hydroxypartenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Neukirch et al., 2003; Der-Ren et al., 2006; Neelakantan et al., 2009), in order to prepare products with a high added value that can be used in the pharmacology industry. In this context, we have treated the 9α-hydroxypartenolide with one equivalent of meta-chloroperbenzoic acid (mCPBA), as we have done for its isomer the 9β-hydroxypartenolide (Moumou et al.,2010), and we got the 6β,7α-epoxy-9α-hydroxypartenolide in a yield of 75% (see Figure 3). This latter was treated with an equivalent of pyrrolodine and gives the title compound (I) in a yield of 95%. The molecule contains two fused rings which exhibit different conformations with a pyrolidin ring as a substituent to the lactone ring. The molecular structure of (I), Fig. 1, shows that the two five membered rings adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.298 (2) Å and ϕ = 77.5 (4)° for the lactone ring and Q = 0.362 (3) Å, ϕ2 = 6.4 (6)° for the pyrolidin ring. The ten-membered ring displays an approximate chair-chair conformation, this is the typical conformation observed for other sesquiterpenes lactones (Moumou et al., 2010; Watson & Zabel, 1982; Castaneda-Acosta et al., 1997). In the crystal structure, molecules are linked into supramolecular chains (Fig. 2) parallel to the c axis by C—H···O hydrogen bonds (Table 1). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004). For reactivity of this sesquiterpene see: Der-Ren et al. (2006); Neelakantan et al. (2009); Neukirch et al. (2003). For ring puckering parameters, see: Cremer & Pople (1975). For conformations of ten-membered rings, see: Castaneda-Acosta et al. (1997). For related structures, see: Moumou et al. (2010); Watson & Zabel (1982).

Experimental top

The mixture of 6β,7α-epoxy-9α hydoxy partenolide (0.5 g, 2 mmol) and one equivalent of pyrolidine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 666 mg (1.9 mmol) of solid which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1295 Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Synthesis of the title compound.
10α-Hydroxy-4,9-dimethyl-13-[(pyrrolidin-1-yl)methyl]-3,8,15- trioxatetracyclo[10.3.0.02,4.07,9]pentadecan-14-one top
Crystal data top
C19H29NO5F(000) = 760
Mr = 351.43Dx = 1.281 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3417 reflections
a = 8.0714 (2) Åθ = 2.7–26.4°
b = 10.4571 (3) ŵ = 0.09 mm1
c = 21.5816 (8) ÅT = 298 K
V = 1821.56 (10) Å3Prism, colourless
Z = 40.89 × 0.46 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1660 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ϕ and ω scansh = 710
8707 measured reflectionsk = 1310
2122 independent reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H29NO5V = 1821.56 (10) Å3
Mr = 351.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0714 (2) ŵ = 0.09 mm1
b = 10.4571 (3) ÅT = 298 K
c = 21.5816 (8) Å0.89 × 0.46 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1660 reflections with I > 2σ(I)
8707 measured reflectionsRint = 0.034
2122 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2122 reflectionsΔρmin = 0.15 e Å3
229 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2294 (3)0.5169 (2)0.08783 (11)0.0361 (6)
H10.18510.59450.06850.043*
C20.3205 (3)0.5410 (2)0.14572 (11)0.0399 (6)
C30.3293 (3)0.6785 (2)0.16551 (12)0.0483 (7)
H3A0.33540.68200.21040.058*
H3B0.22800.72120.15300.058*
C40.4776 (3)0.7513 (3)0.13836 (13)0.0491 (7)
H4A0.45730.84230.14240.059*
H4B0.57540.73110.16260.059*
C50.5120 (3)0.7213 (2)0.07148 (12)0.0377 (6)
H50.41290.71130.04570.045*
C60.6598 (3)0.6526 (2)0.04855 (11)0.0361 (5)
C70.6555 (3)0.5740 (2)0.01081 (10)0.0336 (5)
H70.77000.55170.02140.040*
C80.5592 (3)0.4481 (2)0.00134 (11)0.0351 (5)
H8A0.60270.38450.02970.042*
H8B0.57920.41770.04050.042*
C90.3708 (3)0.4590 (2)0.01138 (10)0.0325 (5)
H90.34540.54970.01790.039*
C100.2637 (3)0.4126 (2)0.04320 (12)0.0367 (6)
H100.31460.33890.06390.044*
C110.2981 (3)0.3852 (2)0.06591 (12)0.0410 (6)
H110.35230.30160.06850.049*
C120.1199 (3)0.3663 (2)0.04627 (14)0.0491 (7)
C130.7995 (3)0.6124 (3)0.09028 (13)0.0549 (8)
H13A0.90320.63630.07180.082*
H13B0.79630.52140.09590.082*
H13C0.78810.65390.12970.082*
C140.4501 (3)0.4522 (3)0.17126 (13)0.0557 (7)
H14A0.44310.45090.21570.084*
H14B0.55800.48140.15900.084*
H14C0.43210.36750.15540.084*
C150.3068 (3)0.4494 (3)0.12859 (12)0.0469 (6)
H15A0.24800.39710.15850.056*
H15B0.25060.53120.12620.056*
C160.5619 (4)0.3520 (3)0.16867 (15)0.0686 (9)
H16A0.48840.29500.19100.082*
H16B0.60430.30790.13240.082*
C170.7000 (5)0.3955 (4)0.2091 (2)0.0935 (13)
H17A0.72180.33320.24140.112*
H17B0.80030.40780.18510.112*
C180.6423 (4)0.5219 (3)0.23718 (14)0.0664 (9)
H18A0.72100.58950.22830.080*
H18B0.63010.51430.28170.080*
C190.4779 (4)0.5494 (3)0.20714 (12)0.0553 (7)
H19A0.46860.63940.19680.066*
H19B0.38750.52650.23460.066*
N0.4750 (3)0.47021 (19)0.15073 (9)0.0435 (5)
O10.1047 (2)0.37802 (16)0.01525 (9)0.0474 (5)
O20.0011 (3)0.3449 (2)0.07852 (11)0.0696 (6)
O30.5907 (2)0.64734 (16)0.06008 (8)0.0415 (4)
H30.56560.59990.08880.062*
O40.6462 (2)0.78993 (16)0.04219 (8)0.0460 (5)
O50.1545 (2)0.48703 (17)0.14653 (8)0.0503 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (11)0.0437 (13)0.0369 (13)0.0005 (11)0.0061 (10)0.0094 (10)
C20.0353 (13)0.0507 (14)0.0338 (13)0.0003 (12)0.0068 (10)0.0073 (12)
C30.0521 (15)0.0586 (16)0.0340 (14)0.0070 (13)0.0051 (12)0.0027 (12)
C40.0538 (16)0.0513 (15)0.0423 (16)0.0036 (13)0.0025 (13)0.0083 (12)
C50.0378 (13)0.0365 (12)0.0389 (14)0.0073 (12)0.0015 (11)0.0009 (11)
C60.0270 (11)0.0401 (13)0.0411 (14)0.0065 (11)0.0007 (10)0.0050 (11)
C70.0269 (11)0.0398 (12)0.0341 (13)0.0029 (11)0.0037 (10)0.0065 (10)
C80.0352 (12)0.0341 (11)0.0359 (13)0.0025 (11)0.0024 (10)0.0030 (10)
C90.0337 (11)0.0284 (10)0.0354 (12)0.0000 (10)0.0004 (10)0.0027 (10)
C100.0304 (12)0.0348 (12)0.0450 (15)0.0028 (10)0.0001 (11)0.0096 (11)
C110.0444 (14)0.0343 (12)0.0442 (15)0.0005 (12)0.0029 (12)0.0032 (11)
C120.0517 (17)0.0366 (13)0.0591 (19)0.0096 (14)0.0047 (15)0.0015 (13)
C130.0385 (15)0.077 (2)0.0487 (17)0.0019 (14)0.0071 (13)0.0033 (14)
C140.0566 (16)0.0671 (17)0.0434 (16)0.0044 (16)0.0038 (13)0.0116 (15)
C150.0485 (15)0.0516 (14)0.0405 (15)0.0041 (14)0.0047 (12)0.0067 (12)
C160.079 (2)0.0623 (18)0.064 (2)0.0231 (18)0.0107 (19)0.0128 (16)
C170.083 (3)0.116 (3)0.082 (3)0.026 (2)0.027 (2)0.008 (2)
C180.070 (2)0.081 (2)0.0476 (18)0.0066 (19)0.0082 (16)0.0081 (16)
C190.0636 (17)0.0695 (18)0.0327 (14)0.0029 (17)0.0035 (13)0.0014 (14)
N0.0512 (13)0.0459 (12)0.0333 (11)0.0082 (11)0.0027 (10)0.0041 (9)
O10.0366 (10)0.0480 (10)0.0576 (12)0.0131 (8)0.0013 (9)0.0040 (9)
O20.0568 (13)0.0737 (14)0.0784 (16)0.0238 (12)0.0205 (12)0.0018 (12)
O30.0507 (10)0.0409 (8)0.0327 (10)0.0062 (9)0.0004 (8)0.0074 (7)
O40.0488 (10)0.0406 (9)0.0485 (11)0.0146 (8)0.0053 (9)0.0000 (8)
O50.0399 (9)0.0666 (12)0.0445 (11)0.0044 (9)0.0147 (8)0.0106 (9)
Geometric parameters (Å, º) top
C1—O51.438 (3)C10—H100.9800
C1—C21.472 (3)C11—C151.512 (4)
C1—C101.481 (3)C11—C121.512 (4)
C1—H10.9800C11—H110.9800
C2—O51.454 (3)C12—O21.206 (3)
C2—C31.501 (4)C12—O11.339 (3)
C2—C141.504 (4)C13—H13A0.9600
C3—C41.535 (4)C13—H13B0.9600
C3—H3A0.9700C13—H13C0.9600
C3—H3B0.9700C14—H14A0.9600
C4—C51.503 (4)C14—H14B0.9600
C4—H4A0.9700C14—H14C0.9600
C4—H4B0.9700C15—N1.455 (3)
C5—O41.445 (3)C15—H15A0.9700
C5—C61.478 (3)C15—H15B0.9700
C5—H50.9800C16—N1.473 (3)
C6—O41.446 (3)C16—C171.487 (5)
C6—C131.503 (3)C16—H16A0.9700
C6—C71.523 (3)C16—H16B0.9700
C7—O31.412 (3)C17—C181.526 (5)
C7—C81.543 (3)C17—H17A0.9700
C7—H70.9800C17—H17B0.9700
C8—C91.540 (3)C18—C191.504 (4)
C8—H8A0.9700C18—H18A0.9700
C8—H8B0.9700C18—H18B0.9700
C9—C111.525 (3)C19—N1.473 (3)
C9—C101.540 (3)C19—H19A0.9700
C9—H90.9800C19—H19B0.9700
C10—O11.464 (3)O3—H30.8200
O5—C1—C259.96 (15)C9—C10—H10111.2
O5—C1—C10119.5 (2)C15—C11—C12110.7 (2)
C2—C1—C10125.8 (2)C15—C11—C9116.62 (19)
O5—C1—H1113.7C12—C11—C9102.5 (2)
C2—C1—H1113.7C15—C11—H11108.9
C10—C1—H1113.7C12—C11—H11108.9
O5—C2—C158.87 (15)C9—C11—H11108.9
O5—C2—C3114.3 (2)O2—C12—O1121.1 (3)
C1—C2—C3115.4 (2)O2—C12—C11128.2 (3)
O5—C2—C14113.4 (2)O1—C12—C11110.7 (2)
C1—C2—C14123.6 (2)C6—C13—H13A109.5
C3—C2—C14117.0 (2)C6—C13—H13B109.5
C2—C3—C4113.8 (2)H13A—C13—H13B109.5
C2—C3—H3A108.8C6—C13—H13C109.5
C4—C3—H3A108.8H13A—C13—H13C109.5
C2—C3—H3B108.8H13B—C13—H13C109.5
C4—C3—H3B108.8C2—C14—H14A109.5
H3A—C3—H3B107.7C2—C14—H14B109.5
C5—C4—C3114.0 (2)H14A—C14—H14B109.5
C5—C4—H4A108.7C2—C14—H14C109.5
C3—C4—H4A108.7H14A—C14—H14C109.5
C5—C4—H4B108.7H14B—C14—H14C109.5
C3—C4—H4B108.7N—C15—C11113.8 (2)
H4A—C4—H4B107.6N—C15—H15A108.8
O4—C5—C659.31 (14)C11—C15—H15A108.8
O4—C5—C4117.1 (2)N—C15—H15B108.8
C6—C5—C4124.9 (2)C11—C15—H15B108.8
O4—C5—H5114.6H15A—C15—H15B107.7
C6—C5—H5114.6N—C16—C17104.8 (3)
C4—C5—H5114.6N—C16—H16A110.8
O4—C6—C559.20 (15)C17—C16—H16A110.8
O4—C6—C13113.1 (2)N—C16—H16B110.8
C5—C6—C13122.7 (2)C17—C16—H16B110.8
O4—C6—C7117.0 (2)H16A—C16—H16B108.9
C5—C6—C7121.7 (2)C16—C17—C18105.6 (3)
C13—C6—C7111.7 (2)C16—C17—H17A110.6
O3—C7—C6110.42 (18)C18—C17—H17A110.6
O3—C7—C8112.11 (19)C16—C17—H17B110.6
C6—C7—C8111.14 (18)C18—C17—H17B110.6
O3—C7—H7107.7H17A—C17—H17B108.7
C6—C7—H7107.7C19—C18—C17105.3 (3)
C8—C7—H7107.7C19—C18—H18A110.7
C9—C8—C7114.57 (19)C17—C18—H18A110.7
C9—C8—H8A108.6C19—C18—H18B110.7
C7—C8—H8A108.6C17—C18—H18B110.7
C9—C8—H8B108.6H18A—C18—H18B108.8
C7—C8—H8B108.6N—C19—C18105.2 (2)
H8A—C8—H8B107.6N—C19—H19A110.7
C11—C9—C10102.40 (17)C18—C19—H19A110.7
C11—C9—C8116.8 (2)N—C19—H19B110.7
C10—C9—C8115.03 (19)C18—C19—H19B110.7
C11—C9—H9107.3H19A—C19—H19B108.8
C10—C9—H9107.3C15—N—C19111.7 (2)
C8—C9—H9107.3C15—N—C16113.9 (2)
O1—C10—C1106.59 (19)C19—N—C16104.3 (2)
O1—C10—C9104.76 (18)C12—O1—C10110.54 (19)
C1—C10—C9111.73 (18)C7—O3—H3109.5
O1—C10—H10111.2C5—O4—C661.49 (14)
C1—C10—H10111.2C1—O5—C261.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N0.822.042.851 (2)172
C9—H9···O4i0.982.383.260 (2)149
C10—H10···O2ii0.982.463.392 (3)158
C19—H19B···O5iii0.972.593.357 (3)136
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H29NO5
Mr351.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.0714 (2), 10.4571 (3), 21.5816 (8)
V3)1821.56 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.89 × 0.46 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8707, 2122, 1660
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.03
No. of reflections2122
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2005), APEX2 and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N0.822.042.851 (2)172
C9—H9···O4i0.982.383.260 (2)149
C10—H10···O2ii0.982.463.392 (3)158
C19—H19B···O5iii0.972.593.357 (3)136
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83–91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M.-L., Jordan, C.-T. & Crooks, P.-A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1842-o1843
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds