organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3,3,3-tri­fluoro-2-hy­dr­oxy-2-(5-meth­­oxy-1H-indol-3-yl)propionate

aTashkent Chemical–Technological Institute, Navoi St. 32, Tashkent 100011, Uzbekistan, bInstitute of Bioorganic Chemistry, Mirzo-Ulugbek St. 83, Tashkent 100125, Uzbekistan, cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation, and dNational University of Uzbekistan named by Mirzo Ulugbek, Chemical Faculty, Vuzgorodok, Tashkent 100123, Uzbekistan
*Correspondence e-mail: zuhra_kadirova@yahoo.com

(Received 26 April 2011; accepted 3 June 2011; online 11 June 2011)

In the title compound, C14H14F3NO4, the 3,3,3-trifluoro­pyruvate fragment has a syn configuration and is noncoplanar with the indole plane [dihedral angle = 84.87 (5)°]. In the crystal, mol­ecules form inversion-related dimers via pairs of inter­molecular O—H⋯O hydrogen bonds. These dimers are connected by inter­molecular N—H⋯O=C(CF3) hydrogen bonds to form a two-dimensional network structure.

Related literature

For background on the synthesis and activity of trifluoro­pyruvates of indole, see: Nakamura et al. (2008[Nakamura, Sh., Hyodo, K., Nakamura, Yu., Shibata, N. & Toru, T. (2008). Adv. Synth. Catal. 350, 1443-1448.]); Abid et al. (2008[Abid, M., Teixeira, L. & Torok, B. (2008). Org. Lett. 10, 933-935.]). For the crystal structures of related compounds, see: Choudhury et al. (2004[Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644-o647.]); Abid et al. (2008[Abid, M., Teixeira, L. & Torok, B. (2008). Org. Lett. 10, 933-935.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14F3NO4

  • Mr = 317.26

  • Monoclinic, P 21 /n

  • a = 9.6277 (4) Å

  • b = 15.9760 (6) Å

  • c = 9.9738 (4) Å

  • β = 109.314 (5)°

  • V = 1447.75 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.55 × 0.45 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.782, Tmax = 1.000

  • 5738 measured reflections

  • 2911 independent reflections

  • 2319 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.06

  • 2911 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 (2) 2.11 (2) 2.9166 (18) 156.8 (18)
O2—H2B⋯O3ii 0.80 (2) 2.03 (2) 2.7798 (17) 156 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3,3,3-Trifluoropyruvates have been used as efficient fluorinated building blocks in the synthesis of some biologically active trifluoromethylated compounds owing to the unique properties of the trifluoromethyl group, such as high electronegativity, electron density, steric hindrance and its hydrophobic character. The incorporation of a tertiary α-trifluoromethyl alcohol stereocenter (CF3C*(OH)R1R2) into heterocycles could provide novel drug candidates with unusual biological activities as a result of the presence of the chiral tertiary α-trifluoromethyl alcohol functionality (Nakamura et al. 2008, Abid et al., 2008).

In this study we synthesized the 3,3,3-trifluoropyruvate derivative of indole, which is an analogue of indole alkaloids. The molecular structure is shown in Fig. 1.

The compound crystallizes as a racemate and the carboxy- and hydroxy- groups are syn to each other (torsion angle O2—C9—C10—O3 = 8.1 (2)°. The 3,3,3-trifluoropyruvate fragment is non-coplanar to the plane of the indole [torsion angles C8—C7—C9—C10, C6—C7—C9—C10, C6—C7—C9—O2, C8—C7—C9—O2 are 107.3 (2)°, -69.7 (2)°, 50.0 (2)°, and -133.0 (2)°, respectively)]. The methoxy-, hydroxy- and trifluoromethyl groups deviate from the indole plane by 0.061 (2), 0.854 (1) and 0.165 (2) Å, respectively. The bond distances C—C and C—N in the indole group are in the range 1.369–1.435 Å and 1.358–1.379 Å, respectively. Due to the concurrent influence of electron-withdrawing groups in the 3,3,3-trifluoropyruvate fragment, the EtO(O)C—C(O)CF3 bond is elongated slightly to 1.554 (2) Å.

The fluorine does not readily accept hydrogen bonds and hence behaves differently from chlorine and bromine, but a signifcant number of compounds pack via weak interactions involving organic fluorine (Choudhury et al., 2004) and generate different packing motifs via F···F, C—H···F and C—F···π interactions. In the presence of a strong acceptor such as C=O, the C—H···O interaction takes priority over C—H···F. The molecules form inversion-related dimers via pairs of intermolecular O—H···O hydrogen bonds. These dimers are connected by intermolecular N—H···OC(CF3) hydrogen bonds to form a two-dimensional network structure.

Related literature top

For background on the synthesis and activity of trifluoropyruvates of indole, see: Nakamura et al. (2008); Abid et al. (2008). For the crystal structures of related compounds, see: Choudhury et al. (2004); Abid et al. (2008).

Experimental top

A solution of 0.170 g (0.001 mol) of ethyl 3,3,3-trifluoropyruvate in 10 ml of ether was added to a solution of 0.147 g (0.001 mol) of 5-methoxyindole in 10 ml ether, and stirred at room temperature for 24 h. The reaction was monitored by TLC. The reaction mixture was then evaporated under reduced pressure and the residue was purified by chromatography on silica gel (chloroform/ethylacetate=9:1); yield: 0.150 g (47%). The compound was crystallized from ethanolic solution by slow evaporation, giving colorless prism crystals suitable for X-ray diffraction analysis. 1H NMR (300 MHz, dmso-d6): δ 1.11 (3H, t, CH3); 4.22 (2H, q, CH2, JCH3—CH2 7,2 Hz); 3.72 (3H, s, O—CH3), 6.78 (1H, d, aromatic, J6–5 = 6.9 Hz), 7.17 (1H, s, aromatic), 7.32 (1H, d, aromatic), 7.37 (2H, s. br., OH, CH), 11.58 (1H, s. br., NH); 19F NMR (dmso-d6): 3.01 (s, CF3); MS (m/z 317).

Refinement top

Hydrogen atoms of the NH, OH and hydrogens attached to carbon (except CMe) were located in difference Fourier maps and fully refined (including Uiso). Methyl hydrogens were included using a riding model with Uiso(H) values of 1.5 Ueq(CMe).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot drawn at the 50% probability level with H atoms shown as small spheres of arbitary radius.
[Figure 2] Fig. 2. A view of the crystal structure packing, showing part of the hydrogen bonding network.
Ethyl 3,3,3-trifluoro-2-hydroxy-2-(5-methoxy-1H-indol-3-yl)propionate top
Crystal data top
C14H14F3NO4F(000) = 656
Mr = 317.26Dx = 1.456 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2319 reflections
a = 9.6277 (4) Åθ = 5.5–75.5°
b = 15.9760 (6) ŵ = 1.15 mm1
c = 9.9738 (4) ÅT = 293 K
β = 109.314 (5)°Block, colourless
V = 1447.75 (10) Å30.55 × 0.45 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby CCD
diffractometer
2911 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 5.5°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1913
Tmin = 0.782, Tmax = 1.000l = 1212
5738 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1918P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2911 reflectionsΔρmax = 0.20 e Å3
234 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (10)
Crystal data top
C14H14F3NO4V = 1447.75 (10) Å3
Mr = 317.26Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.6277 (4) ŵ = 1.15 mm1
b = 15.9760 (6) ÅT = 293 K
c = 9.9738 (4) Å0.55 × 0.45 × 0.40 mm
β = 109.314 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby CCD
diffractometer
2911 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2319 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.018
5738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2911 reflectionsΔρmin = 0.14 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.24919 (15)0.21987 (8)0.04081 (14)0.0900 (4)
F20.24512 (15)0.09413 (9)0.03770 (13)0.0863 (4)
F30.42514 (12)0.13538 (8)0.14198 (14)0.0805 (4)
O10.16538 (14)0.08409 (10)0.51949 (16)0.0773 (4)
O20.04297 (12)0.12631 (7)0.09810 (13)0.0566 (3)
O30.12118 (13)0.03385 (7)0.13702 (13)0.0622 (3)
O40.34902 (11)0.00327 (7)0.27903 (12)0.0535 (3)
N10.34543 (16)0.23072 (9)0.50886 (17)0.0590 (4)
C10.22216 (17)0.19773 (10)0.53026 (18)0.0524 (4)
C20.1720 (2)0.20300 (11)0.6458 (2)0.0627 (5)
C30.0439 (2)0.16245 (13)0.6367 (2)0.0658 (5)
C40.03659 (18)0.11812 (11)0.5139 (2)0.0596 (4)
C50.01333 (17)0.11079 (10)0.40028 (19)0.0528 (4)
C60.14673 (16)0.15055 (9)0.40867 (17)0.0476 (4)
C70.23112 (16)0.15638 (9)0.31430 (17)0.0479 (4)
C80.34965 (18)0.20619 (10)0.3800 (2)0.0556 (4)
C90.19239 (16)0.11127 (9)0.17494 (17)0.0475 (4)
C100.21565 (15)0.01523 (9)0.19510 (16)0.0461 (4)
C110.3900 (2)0.09195 (11)0.2897 (2)0.0639 (5)
C120.4403 (3)0.11618 (14)0.1696 (3)0.0826 (6)
H12A0.46970.17390.17940.124*
H12B0.52230.08180.17020.124*
H12C0.36130.10850.08170.124*
C130.2798 (2)0.14066 (12)0.0805 (2)0.0645 (5)
C140.2605 (2)0.04673 (16)0.3932 (2)0.0810 (6)
H14A0.35060.03030.40730.122*
H14B0.21370.00170.37030.122*
H14C0.28150.08630.31660.122*
H1A0.403 (2)0.2684 (13)0.559 (2)0.066 (6)*
H2A0.222 (2)0.2317 (15)0.724 (2)0.079 (6)*
H2B0.009 (2)0.0882 (16)0.045 (2)0.079 (7)*
H3A0.007 (2)0.1646 (14)0.715 (2)0.075 (6)*
H5A0.0408 (19)0.0778 (12)0.3176 (19)0.056 (5)*
H8A0.430 (2)0.2217 (12)0.3467 (19)0.059 (5)*
H11A0.304 (2)0.1242 (13)0.292 (2)0.068 (6)*
H11B0.473 (3)0.0959 (14)0.378 (2)0.079 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1020 (9)0.0653 (7)0.0962 (9)0.0066 (6)0.0240 (7)0.0318 (6)
F20.0997 (9)0.0956 (10)0.0691 (7)0.0147 (7)0.0352 (6)0.0033 (6)
F30.0560 (6)0.0923 (9)0.0963 (8)0.0088 (6)0.0292 (6)0.0143 (7)
O10.0549 (7)0.0862 (10)0.0964 (10)0.0112 (7)0.0323 (7)0.0175 (8)
O20.0429 (6)0.0470 (6)0.0639 (7)0.0081 (5)0.0037 (5)0.0038 (6)
O30.0518 (6)0.0471 (6)0.0710 (7)0.0071 (5)0.0022 (5)0.0011 (5)
O40.0387 (5)0.0429 (6)0.0696 (7)0.0059 (4)0.0053 (5)0.0037 (5)
N10.0492 (7)0.0435 (7)0.0687 (9)0.0106 (6)0.0014 (7)0.0051 (6)
C10.0448 (8)0.0369 (7)0.0645 (10)0.0019 (6)0.0032 (7)0.0040 (7)
C20.0611 (10)0.0519 (10)0.0645 (11)0.0052 (8)0.0066 (9)0.0157 (8)
C30.0611 (10)0.0628 (11)0.0724 (12)0.0074 (9)0.0204 (9)0.0139 (9)
C40.0469 (8)0.0525 (9)0.0774 (11)0.0031 (7)0.0179 (8)0.0085 (8)
C50.0420 (8)0.0442 (8)0.0648 (10)0.0021 (6)0.0076 (7)0.0100 (7)
C60.0408 (7)0.0331 (7)0.0600 (9)0.0026 (6)0.0049 (6)0.0033 (6)
C70.0404 (7)0.0358 (7)0.0594 (9)0.0005 (6)0.0055 (6)0.0032 (6)
C80.0437 (8)0.0459 (9)0.0673 (10)0.0053 (7)0.0050 (7)0.0068 (7)
C90.0365 (7)0.0415 (8)0.0563 (9)0.0015 (6)0.0042 (6)0.0038 (6)
C100.0390 (7)0.0426 (8)0.0515 (8)0.0001 (6)0.0079 (6)0.0010 (6)
C110.0521 (9)0.0459 (9)0.0860 (13)0.0096 (8)0.0125 (9)0.0074 (9)
C120.0726 (13)0.0660 (12)0.1059 (17)0.0106 (10)0.0249 (12)0.0157 (12)
C130.0636 (10)0.0580 (10)0.0664 (11)0.0046 (8)0.0139 (8)0.0111 (9)
C140.0487 (10)0.0883 (15)0.1008 (16)0.0144 (10)0.0176 (10)0.0043 (12)
Geometric parameters (Å, º) top
F1—C131.330 (2)C4—C51.375 (3)
F2—C131.339 (2)C5—C61.410 (2)
F3—C131.332 (2)C5—H5A0.972 (18)
O1—C41.372 (2)C6—C71.436 (2)
O1—C141.421 (3)C7—C81.367 (2)
O2—C91.4090 (17)C7—C91.499 (2)
O2—H2B0.80 (2)C8—H8A0.974 (18)
O3—C101.1954 (18)C9—C131.530 (3)
O4—C101.3137 (17)C9—C101.554 (2)
O4—C111.465 (2)C11—C121.484 (3)
N1—C81.357 (2)C11—H11A0.98 (2)
N1—C11.378 (2)C11—H11B0.98 (2)
N1—H1A0.86 (2)C12—H12A0.9600
C1—C21.391 (3)C12—H12B0.9600
C1—C61.408 (2)C12—H12C0.9600
C2—C31.369 (3)C14—H14A0.9600
C2—H2A0.90 (2)C14—H14B0.9600
C3—C41.405 (3)C14—H14C0.9600
C3—H3A0.97 (2)
C4—O1—C14117.18 (16)C7—C9—C13113.86 (13)
C9—O2—H2B110.4 (17)O2—C9—C10108.44 (12)
C10—O4—C11116.54 (13)C7—C9—C10111.95 (13)
C8—N1—C1109.48 (14)C13—C9—C10107.31 (14)
C8—N1—H1A122.4 (13)O3—C10—O4126.01 (14)
C1—N1—H1A127.1 (13)O3—C10—C9122.07 (13)
N1—C1—C2131.13 (16)O4—C10—C9111.91 (12)
N1—C1—C6107.25 (16)O4—C11—C12110.23 (17)
C2—C1—C6121.60 (16)O4—C11—H11A107.4 (12)
C3—C2—C1117.93 (17)C12—C11—H11A112.8 (12)
C3—C2—H2A120.9 (14)O4—C11—H11B104.3 (13)
C1—C2—H2A121.2 (14)C12—C11—H11B109.3 (13)
C2—C3—C4121.43 (19)H11A—C11—H11B112.5 (17)
C2—C3—H3A119.9 (13)C11—C12—H12A109.5
C4—C3—H3A118.6 (13)C11—C12—H12B109.5
O1—C4—C5124.53 (16)H12A—C12—H12B109.5
O1—C4—C3114.21 (18)C11—C12—H12C109.5
C5—C4—C3121.26 (17)H12A—C12—H12C109.5
C4—C5—C6118.20 (15)H12B—C12—H12C109.5
C4—C5—H5A120.7 (11)F1—C13—F3107.05 (16)
C6—C5—H5A121.1 (11)F1—C13—F2107.46 (16)
C1—C6—C5119.49 (16)F3—C13—F2106.77 (17)
C1—C6—C7106.70 (14)F1—C13—C9111.24 (17)
C5—C6—C7133.81 (15)F3—C13—C9113.91 (15)
C8—C7—C6106.71 (15)F2—C13—C9110.11 (15)
C8—C7—C9129.49 (16)O1—C14—H14A109.5
C6—C7—C9123.74 (13)O1—C14—H14B109.5
N1—C8—C7109.86 (16)H14A—C14—H14B109.5
N1—C8—H8A121.8 (11)O1—C14—H14C109.5
C7—C8—H8A128.3 (11)H14A—C14—H14C109.5
O2—C9—C7108.57 (13)H14B—C14—H14C109.5
O2—C9—C13106.46 (13)
C8—N1—C1—C2178.10 (17)C8—C7—C9—O2133.00 (17)
C8—N1—C1—C60.03 (18)C6—C7—C9—O250.01 (18)
N1—C1—C2—C3179.49 (18)C8—C7—C9—C1314.6 (2)
C6—C1—C2—C31.7 (3)C6—C7—C9—C13168.40 (14)
C1—C2—C3—C41.2 (3)C8—C7—C9—C10107.32 (18)
C14—O1—C4—C57.2 (3)C6—C7—C9—C1069.67 (18)
C14—O1—C4—C3172.94 (18)C11—O4—C10—O37.0 (3)
C2—C3—C4—O1177.34 (18)C11—O4—C10—C9171.67 (15)
C2—C3—C4—C52.8 (3)O2—C9—C10—O38.1 (2)
O1—C4—C5—C6178.83 (16)C7—C9—C10—O3127.84 (17)
C3—C4—C5—C61.3 (3)C13—C9—C10—O3106.54 (18)
N1—C1—C6—C5178.63 (14)O2—C9—C10—O4173.15 (13)
C2—C1—C6—C53.1 (2)C7—C9—C10—O453.40 (18)
N1—C1—C6—C70.41 (17)C13—C9—C10—O472.22 (17)
C2—C1—C6—C7177.88 (14)C10—O4—C11—C1283.2 (2)
C4—C5—C6—C11.5 (2)O2—C9—C13—F154.98 (18)
C4—C5—C6—C7179.74 (16)C7—C9—C13—F164.61 (19)
C1—C6—C7—C80.69 (17)C10—C9—C13—F1170.92 (14)
C5—C6—C7—C8178.15 (17)O2—C9—C13—F3176.06 (15)
C1—C6—C7—C9176.89 (13)C7—C9—C13—F356.5 (2)
C5—C6—C7—C94.3 (3)C10—C9—C13—F367.99 (19)
C1—N1—C8—C70.48 (19)O2—C9—C13—F264.04 (18)
C6—C7—C8—N10.73 (18)C7—C9—C13—F2176.37 (13)
C9—C7—C8—N1176.66 (14)C10—C9—C13—F251.91 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (2)2.11 (2)2.9166 (18)156.8 (18)
O2—H2B···O3ii0.80 (2)2.03 (2)2.7798 (17)156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H14F3NO4
Mr317.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6277 (4), 15.9760 (6), 9.9738 (4)
β (°) 109.314 (5)
V3)1447.75 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.15
Crystal size (mm)0.55 × 0.45 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5738, 2911, 2319
Rint0.018
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.06
No. of reflections2911
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (2)2.11 (2)2.9166 (18)156.8 (18)
O2—H2B···O3ii0.80 (2)2.03 (2)2.7798 (17)156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

This work was supported by the Grant of Fundamental Research of the Center of Science and Technology, Republic of Uzbekistan (grant No. F3-142).

References

First citationAbid, M., Teixeira, L. & Torok, B. (2008). Org. Lett. 10, 933–935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNakamura, Sh., Hyodo, K., Nakamura, Yu., Shibata, N. & Toru, T. (2008). Adv. Synth. Catal. 350, 1443–1448.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds