metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m873-m874

Di­azido­{(S)-1-phenyl-N,N-bis­­[(2-pyrid­yl)meth­yl]ethanamine}­copper(II)

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, bDepartment of Applied Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and cDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 12 May 2011; accepted 2 June 2011; online 11 June 2011)

In the title compound, [Cu(N3)2(C20H21N3)], the CuII ion is coordinated by the three N atoms of the (S)-1-phenyl-N,N-bis­[(2-pyrid­yl)meth­yl]ethanamine ligand and two N atoms from two azide anions, resulting in a distorted square-pyramidal environment. A weak inter­molecular C—H⋯N hydrogen-bonding inter­action between one pyridine group of the ligand and an azide N atom of an adjacent complex unit gives a one-dimensional chain structure parallel to the c axis.

Related literature

For the potential applications of chiral complexes in chiral recognition, chiral catalysis and enanti­oselective sorption, see: Lehn (1995[Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]); Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin, Y. & Kim, K. (2000). Nature (London), 404, 982-986.]). Chiral NiII macrocyclic complexes and two-dimensional chiral open-framework compounds have been described by Han et al. (2008[Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745-748.]); Ryoo et al. (2010[Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232-7234.]). A homochiral metal–organic framework with a cerium(III) ion has been described by Dang et al. (2010[Dang, D., Wu, P., He, C., Xie, Z. & Duan, C. (2010). J. Am. Chem. Soc. 132, 14321-14323.]). For the preparation of (S)-1-phenyl-N,N-[bis­(2-pyrid­yl)meth­yl]ethanamine, see: Lucas et al. (2009[Lucas, H. R., Li, L., Sarjeant, A. A. N., Vance, M. A., Solomon, E. I. & Karlin, K. D. (2009). J. Am. Chem. Soc. 131, 3230-3245.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(N3)2(C20H21N3)]

  • Mr = 451.00

  • Monoclinic, P 21

  • a = 6.9972 (12) Å

  • b = 14.506 (3) Å

  • c = 10.2828 (17) Å

  • β = 98.413 (4)°

  • V = 1032.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 K

  • 0.23 × 0.19 × 0.04 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.749, Tmax = 0.958

  • 7801 measured reflections

  • 4630 independent reflections

  • 2863 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.115

  • S = 1.09

  • 4630 reflections

  • 272 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1941 Friedel pairs

  • Flack parameter: 0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N6i 0.93 2.59 3.261 (11) 129
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral complexes have attracted considerable interest because of their potential and practical applications, such as chiral recognition, chiral catalysis, and enantioselective sorption (Lehn, 1995; Seo et al., 2000). Very recently, a two-dimensional chiral open framework, [Ni(LR,R)]3[C6H3(COO)3]2.12H2O.CH3CN [LR,R=1,8-bis[(R)-α-methylbenzyl]-1,3,6,8,10,13-\ hexaazacyclotetradecane] has been shown to have selective chiral recognition in rac-1,1'-bi-2-naphthol (Han et al., 2008; Ryoo et al., 2010). Furthermore, a homochiral metal-organic framework composed of a cerium(III) ion and chiral organic building block has large chiral one-dimensional channels and exhibited excellent catalytic activity and high enantioselectivity for the asymmetric cyanosilylation of aromatic aldehydes (Dang et al., 2010). Here, we report the synthesis and crystal structure of a five-coordinated CuII complex with (S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine (S-ppme), the title compound [Cu(S-ppme)(N3)2].

In the title compound (Fig. 1), the CuII ion is five-coordinated and shows a distorted square pyramidal geometry, the equatorial plane being defined by the three nitrogen atoms of the S-ppme ligand and one nitrogen atom of an azide ion. The coordination geometry is completed by the axial coordination of the nitrogen atom of the second azide anion. The Cu—Leq bond lengths are in the range of 1.961 (6) and 2.178 (5) Å and the Cu—Nax bond length is 1.978 (5) Å. Both azide ions are bonded in η1-fashion and fully delocalized. The bond angles around the copper atom range from 76.95 (12) to 165.48 (15)°. The packing structure involves a weak C—H···N hydrogen bonding interaction between the one pyridine group of the S-ppme ligand and an azide N atom of an adjacent complex unit (Table 1), giving a one-dimensional chain structure parallel to the c axis (Fig. 2).

Related literature top

For the potential applications of chiral complexes in chiral recognition, chiral catalysis and enantioselective sorption, see: Lehn (1995); Seo et al. (2000). Chiral NiII macrocyclic complexes and two-dimensional chiral open-framework compounds have been described by Han et al. (2008); Ryoo et al. (2010). A homochiral metal–organic framework with a cerium(III) ion has been described by Dang et al. (2010). For the preparation of (S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine, see: Lucas et al. (2009).

Experimental top

(S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine (S-ppme) was prepared according to slightly modified literature procedure (Lucas et al., 2009) except that (S)-(-)-α-methylbenzylamine instead of benzylamine (yield: 0.86 g, 60%). A mixture of MeCN and H2O (2:1, v/v, 3 ml) solution of CuCl2.2H2O (29 mg, 0.17 mmol) was added to an MeCN solution (3 ml) of S-ppme (51 mg, 0.17 mmol) and a MeOH solution (4 ml) of sodium azide (22 mg, 0.34 mmol). The resulting solution was stirred for 1 h at room temperature, resulting in a color change to blue-green. Diffusion of diethyl ether into the mixture gave green crystals of the title compound after a few days. These crystals were filtered and washed with diethyl ether and dried in air (yield: 42 mg, 56%).

Refinement top

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) and 0.96–0.98 Å (open chain H atoms), and with Uiso(H) values of 1.2 or 1.5 times the equivalent anisotropic displacement parameters of the parent C atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (30% probability) of the title compound. Hydrogen atoms are drawn as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Perspective view of the title compound showing a one-dimensional chain formed by C—H···N hydrogen bonding interactions.
Diazido{(S)-1-phenyl-N,N-bis[(2- pyridyl)methyl]ethanamine}copper(II) top
Crystal data top
[Cu(N3)2(C20H21N3)]F(000) = 466
Mr = 451.00Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2059 reflections
a = 6.9972 (12) Åθ = 2.5–23.1°
b = 14.506 (3) ŵ = 1.09 mm1
c = 10.2828 (17) ÅT = 296 K
β = 98.413 (4)°Plate, green
V = 1032.5 (3) Å30.23 × 0.19 × 0.04 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
4630 independent reflections
Radiation source: fine-focus sealed tube2863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.749, Tmax = 0.958k = 1916
7801 measured reflectionsl = 138
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + 0.2609P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4630 reflectionsΔρmax = 0.74 e Å3
272 parametersΔρmin = 0.90 e Å3
1 restraintAbsolute structure: Flack (1983), 1941 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Cu(N3)2(C20H21N3)]V = 1032.5 (3) Å3
Mr = 451.00Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.9972 (12) ŵ = 1.09 mm1
b = 14.506 (3) ÅT = 296 K
c = 10.2828 (17) Å0.23 × 0.19 × 0.04 mm
β = 98.413 (4)°
Data collection top
Siemens SMART CCD
diffractometer
4630 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2863 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.958Rint = 0.049
7801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.74 e Å3
S = 1.09Δρmin = 0.90 e Å3
4630 reflectionsAbsolute structure: Flack (1983), 1941 Friedel pairs
272 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.97299 (8)0.03627 (6)0.09599 (6)0.03987 (19)
N10.9182 (6)0.1005 (4)0.2601 (5)0.0397 (13)
N21.1219 (6)0.0557 (3)0.2383 (5)0.0352 (12)
N30.7954 (6)0.0873 (4)0.0636 (5)0.0391 (13)
N40.8063 (8)0.1251 (5)0.0106 (6)0.0594 (18)
N50.7529 (8)0.1156 (4)0.1229 (7)0.0571 (16)
N60.6948 (12)0.1098 (6)0.2324 (7)0.113 (3)
N71.1556 (7)0.0125 (5)0.0299 (6)0.056 (2)
N81.1260 (9)0.0280 (5)0.1291 (7)0.0662 (19)
N91.1054 (13)0.0689 (8)0.2243 (9)0.150 (5)
C10.8573 (8)0.1875 (5)0.2688 (7)0.0476 (17)
H10.83970.22370.19340.057*
C20.8202 (9)0.2249 (5)0.3835 (8)0.061 (2)
H20.77740.28540.38640.073*
C30.8470 (10)0.1716 (7)0.4955 (8)0.071 (2)
H30.81820.19510.57450.085*
C40.9162 (9)0.0839 (5)0.4894 (7)0.055 (2)
H40.93900.04740.56450.066*
C50.9513 (7)0.0509 (5)0.3707 (5)0.0375 (17)
C61.0194 (8)0.0470 (5)0.3535 (6)0.0433 (16)
H6A1.10500.06560.43190.052*
H6B0.90880.08810.34280.052*
C71.0910 (8)0.1481 (4)0.1814 (6)0.0412 (15)
H7A1.11690.19340.25120.049*
H7B1.18290.15830.12070.049*
C80.8881 (8)0.1635 (4)0.1091 (6)0.0376 (14)
C90.8111 (8)0.2496 (5)0.0895 (6)0.0518 (18)
H90.87820.30100.12570.062*
C100.6315 (10)0.2587 (6)0.0148 (7)0.066 (2)
H100.57700.31670.00250.079*
C110.5346 (10)0.1809 (6)0.0334 (6)0.059 (2)
H110.41250.18530.08280.071*
C120.6200 (8)0.0968 (5)0.0079 (6)0.0535 (19)
H120.55410.04420.04130.064*
C131.3354 (8)0.0333 (5)0.2654 (6)0.0376 (17)
H131.38820.05010.18550.045*
C141.4474 (7)0.0887 (5)0.3751 (6)0.0397 (15)
C151.4879 (9)0.0563 (5)0.5031 (6)0.0551 (18)
H151.43980.00050.52490.066*
C161.6004 (11)0.1086 (6)0.5992 (7)0.072 (2)
H161.62680.08640.68480.087*
C171.6718 (10)0.1919 (7)0.5691 (9)0.077 (3)
H171.74780.22570.63410.092*
C181.6329 (10)0.2265 (6)0.4442 (8)0.068 (2)
H181.68030.28380.42380.082*
C191.5211 (8)0.1742 (5)0.3486 (6)0.0508 (18)
H191.49480.19750.26350.061*
C201.3706 (8)0.0698 (5)0.2839 (8)0.050 (2)
H20A1.31690.09050.35950.075*
H20B1.31020.10210.20740.075*
H20C1.50700.08170.29660.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0360 (3)0.0420 (4)0.0411 (4)0.0039 (5)0.0038 (2)0.0023 (5)
N10.034 (3)0.048 (4)0.036 (3)0.002 (2)0.001 (2)0.005 (3)
N20.033 (3)0.029 (3)0.044 (3)0.000 (2)0.005 (2)0.001 (2)
N30.029 (2)0.042 (4)0.046 (3)0.004 (2)0.005 (2)0.005 (3)
N40.063 (4)0.070 (5)0.042 (4)0.017 (3)0.002 (3)0.001 (3)
N50.062 (4)0.058 (5)0.051 (4)0.014 (3)0.006 (3)0.012 (3)
N60.169 (8)0.112 (7)0.050 (5)0.037 (6)0.012 (5)0.006 (4)
N70.044 (3)0.074 (6)0.052 (3)0.008 (3)0.009 (2)0.003 (3)
N80.064 (4)0.075 (5)0.057 (4)0.022 (3)0.002 (3)0.017 (4)
N90.134 (8)0.207 (12)0.103 (7)0.055 (7)0.002 (6)0.088 (8)
C10.039 (3)0.039 (5)0.065 (5)0.006 (3)0.008 (3)0.009 (3)
C20.052 (4)0.052 (6)0.079 (6)0.004 (4)0.013 (4)0.032 (5)
C30.059 (5)0.099 (8)0.058 (5)0.008 (5)0.021 (4)0.034 (5)
C40.054 (4)0.062 (6)0.052 (4)0.005 (3)0.015 (3)0.010 (3)
C50.031 (2)0.043 (5)0.039 (3)0.002 (3)0.007 (2)0.008 (4)
C60.043 (4)0.042 (5)0.048 (4)0.009 (3)0.017 (3)0.007 (3)
C70.034 (3)0.035 (4)0.053 (4)0.001 (3)0.002 (3)0.004 (3)
C80.035 (3)0.027 (4)0.051 (4)0.001 (3)0.008 (3)0.012 (3)
C90.037 (3)0.052 (5)0.067 (5)0.005 (3)0.011 (3)0.021 (4)
C100.055 (5)0.065 (6)0.081 (6)0.016 (4)0.023 (4)0.032 (5)
C110.048 (4)0.068 (7)0.058 (5)0.012 (4)0.002 (3)0.019 (4)
C120.038 (3)0.067 (6)0.054 (4)0.002 (4)0.002 (3)0.003 (4)
C130.032 (3)0.038 (5)0.042 (4)0.003 (3)0.002 (3)0.006 (3)
C140.029 (3)0.039 (4)0.049 (4)0.002 (3)0.001 (3)0.003 (3)
C150.053 (4)0.058 (5)0.052 (4)0.003 (4)0.001 (3)0.003 (4)
C160.076 (5)0.085 (8)0.051 (5)0.017 (5)0.007 (4)0.020 (5)
C170.055 (5)0.078 (8)0.089 (7)0.003 (4)0.017 (4)0.048 (5)
C180.050 (4)0.059 (6)0.091 (6)0.003 (4)0.002 (4)0.020 (5)
C190.041 (3)0.057 (5)0.053 (4)0.004 (3)0.002 (3)0.003 (3)
C200.027 (3)0.054 (6)0.067 (5)0.005 (3)0.003 (3)0.010 (3)
Geometric parameters (Å, º) top
Cu1—N41.961 (6)C7—H7A0.9700
Cu1—N71.978 (5)C7—H7B0.9700
Cu1—N12.013 (5)C8—C91.363 (8)
Cu1—N22.135 (5)C9—C101.380 (8)
Cu1—N32.178 (5)C9—H90.9300
N1—C51.337 (7)C10—C111.371 (10)
N1—C11.339 (8)C10—H100.9300
N2—C71.466 (7)C11—C121.367 (9)
N2—C61.477 (6)C11—H110.9300
N2—C131.514 (7)C12—H120.9300
N3—C81.332 (7)C13—C141.508 (9)
N3—C121.342 (7)C13—C201.522 (8)
N4—N51.169 (8)C13—H130.9800
N5—N61.144 (7)C14—C191.386 (8)
N7—N81.168 (7)C14—C151.388 (8)
N8—N91.137 (8)C15—C161.395 (9)
C1—C21.357 (9)C15—H150.9300
C1—H10.9300C16—C171.360 (11)
C2—C31.377 (10)C16—H160.9300
C2—H20.9300C17—C181.369 (10)
C3—C41.366 (10)C17—H170.9300
C3—H30.9300C18—C191.389 (9)
C4—C51.366 (8)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.517 (10)C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9600
C7—C81.520 (7)
N4—Cu1—N797.9 (2)C8—C7—H7A108.8
N4—Cu1—N189.6 (2)N2—C7—H7B108.8
N7—Cu1—N1148.2 (2)C8—C7—H7B108.8
N4—Cu1—N2169.7 (2)H7A—C7—H7B107.7
N7—Cu1—N292.4 (2)N3—C8—C9123.2 (5)
N1—Cu1—N281.3 (2)N3—C8—C7115.0 (5)
N4—Cu1—N3100.1 (2)C9—C8—C7121.8 (6)
N7—Cu1—N399.5 (2)C8—C9—C10118.6 (7)
N1—Cu1—N3109.55 (19)C8—C9—H9120.7
N2—Cu1—N378.53 (19)C10—C9—H9120.7
C5—N1—C1117.9 (6)C11—C10—C9118.9 (7)
C5—N1—Cu1115.7 (5)C11—C10—H10120.5
C1—N1—Cu1126.4 (4)C9—C10—H10120.5
C7—N2—C6109.7 (5)C12—C11—C10119.1 (7)
C7—N2—C13110.7 (4)C12—C11—H11120.5
C6—N2—C13114.5 (5)C10—C11—H11120.5
C7—N2—Cu1105.6 (3)N3—C12—C11122.4 (7)
C6—N2—Cu1104.5 (3)N3—C12—H12118.8
C13—N2—Cu1111.2 (4)C11—C12—H12118.8
C8—N3—C12117.8 (6)C14—C13—N2114.5 (5)
C8—N3—Cu1113.0 (4)C14—C13—C20111.9 (6)
C12—N3—Cu1128.6 (5)N2—C13—C20111.8 (6)
N5—N4—Cu1123.6 (5)C14—C13—H13106.0
N6—N5—N4176.8 (8)N2—C13—H13106.0
N8—N7—Cu1127.6 (5)C20—C13—H13106.0
N9—N8—N7176.9 (8)C19—C14—C15117.3 (6)
N1—C1—C2122.5 (7)C19—C14—C13119.9 (6)
N1—C1—H1118.7C15—C14—C13122.7 (6)
C2—C1—H1118.7C14—C15—C16120.3 (7)
C1—C2—C3118.8 (8)C14—C15—H15119.9
C1—C2—H2120.6C16—C15—H15119.9
C3—C2—H2120.6C17—C16—C15120.7 (8)
C4—C3—C2119.4 (7)C17—C16—H16119.7
C4—C3—H3120.3C15—C16—H16119.7
C2—C3—H3120.3C16—C17—C18120.7 (7)
C5—C4—C3118.5 (7)C16—C17—H17119.7
C5—C4—H4120.7C18—C17—H17119.7
C3—C4—H4120.7C17—C18—C19118.6 (8)
N1—C5—C4122.7 (7)C17—C18—H18120.7
N1—C5—C6115.0 (5)C19—C18—H18120.7
C4—C5—C6122.2 (6)C14—C19—C18122.4 (7)
N2—C6—C5111.8 (5)C14—C19—H19118.8
N2—C6—H6A109.3C18—C19—H19118.8
C5—C6—H6A109.3C13—C20—H20A109.5
N2—C6—H6B109.3C13—C20—H20B109.5
C5—C6—H6B109.3H20A—C20—H20B109.5
H6A—C6—H6B107.9C13—C20—H20C109.5
N2—C7—C8113.7 (5)H20A—C20—H20C109.5
N2—C7—H7A108.8H20B—C20—H20C109.5
N4—Cu1—N1—C5159.9 (4)Cu1—N1—C5—C4178.2 (4)
N7—Cu1—N1—C595.6 (6)C1—N1—C5—C6179.8 (5)
N2—Cu1—N1—C515.2 (4)Cu1—N1—C5—C61.7 (6)
N3—Cu1—N1—C559.3 (4)C3—C4—C5—N10.9 (9)
N4—Cu1—N1—C121.8 (5)C3—C4—C5—C6177.1 (6)
N7—Cu1—N1—C182.7 (6)C7—N2—C6—C5148.8 (5)
N2—Cu1—N1—C1163.1 (5)C13—N2—C6—C586.0 (6)
N3—Cu1—N1—C1122.4 (5)Cu1—N2—C6—C535.9 (5)
N4—Cu1—N2—C7114.6 (13)N1—C5—C6—N227.1 (7)
N7—Cu1—N2—C768.0 (4)C4—C5—C6—N2156.5 (5)
N1—Cu1—N2—C7143.3 (4)C6—N2—C7—C872.5 (6)
N3—Cu1—N2—C731.2 (3)C13—N2—C7—C8160.1 (5)
N4—Cu1—N2—C61.1 (15)Cu1—N2—C7—C839.6 (5)
N7—Cu1—N2—C6176.3 (4)C12—N3—C8—C91.9 (9)
N1—Cu1—N2—C627.6 (3)Cu1—N3—C8—C9174.1 (5)
N3—Cu1—N2—C684.5 (4)C12—N3—C8—C7176.1 (5)
N4—Cu1—N2—C13125.2 (13)Cu1—N3—C8—C73.9 (6)
N7—Cu1—N2—C1352.2 (4)N2—C7—C8—N324.9 (7)
N1—Cu1—N2—C1396.5 (4)N2—C7—C8—C9157.1 (5)
N3—Cu1—N2—C13151.4 (4)N3—C8—C9—C102.5 (9)
N4—Cu1—N3—C8170.0 (4)C7—C8—C9—C10175.4 (6)
N7—Cu1—N3—C870.2 (4)C8—C9—C10—C112.0 (10)
N1—Cu1—N3—C896.7 (4)C9—C10—C11—C121.0 (10)
N2—Cu1—N3—C820.4 (4)C8—N3—C12—C110.8 (9)
N4—Cu1—N3—C121.1 (6)Cu1—N3—C12—C11171.6 (5)
N7—Cu1—N3—C12101.0 (5)C10—C11—C12—N30.4 (10)
N1—Cu1—N3—C1292.1 (5)C7—N2—C13—C1468.9 (7)
N2—Cu1—N3—C12168.5 (5)C6—N2—C13—C1455.8 (7)
N7—Cu1—N4—N543.4 (7)Cu1—N2—C13—C14174.0 (4)
N1—Cu1—N4—N5167.6 (6)C7—N2—C13—C20162.5 (6)
N2—Cu1—N4—N5139.2 (11)C6—N2—C13—C2072.8 (7)
N3—Cu1—N4—N557.8 (6)Cu1—N2—C13—C2045.4 (7)
N4—Cu1—N7—N871.0 (7)N2—C13—C14—C1986.4 (7)
N1—Cu1—N7—N8173.1 (6)C20—C13—C14—C19145.1 (6)
N2—Cu1—N7—N8109.5 (7)N2—C13—C14—C1596.2 (7)
N3—Cu1—N7—N830.7 (7)C20—C13—C14—C1532.3 (9)
C5—N1—C1—C23.1 (9)C13—C14—C15—C16176.8 (6)
Cu1—N1—C1—C2178.7 (5)C15—C16—C17—C180.7 (12)
N1—C1—C2—C30.3 (10)C16—C17—C18—C190.8 (11)
C1—C2—C3—C42.2 (10)C15—C14—C19—C180.6 (9)
C2—C3—C4—C51.9 (10)C13—C14—C19—C18177.0 (6)
C1—N1—C5—C43.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N6i0.932.593.261 (11)129
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(N3)2(C20H21N3)]
Mr451.00
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.9972 (12), 14.506 (3), 10.2828 (17)
β (°) 98.413 (4)
V3)1032.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.23 × 0.19 × 0.04
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.749, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7801, 4630, 2863
Rint0.049
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.115, 1.09
No. of reflections4630
No. of parameters272
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.90
Absolute structureFlack (1983), 1941 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N6i0.932.593.261 (11)129
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. R01-2008-000-20955-0). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.

References

First citationDang, D., Wu, P., He, C., Xie, Z. & Duan, C. (2010). J. Am. Chem. Soc. 132, 14321–14323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745–748.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationLucas, H. R., Li, L., Sarjeant, A. A. N., Vance, M. A., Solomon, E. I. & Karlin, K. D. (2009). J. Am. Chem. Soc. 131, 3230–3245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRyoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin, Y. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m873-m874
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds