metal-organic compounds
Diazido{(S)-1-phenyl-N,N-bis[(2-pyridyl)methyl]ethanamine}copper(II)
aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, bDepartment of Applied Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and cDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr
In the title compound, [Cu(N3)2(C20H21N3)], the CuII ion is coordinated by the three N atoms of the (S)-1-phenyl-N,N-bis[(2-pyridyl)methyl]ethanamine ligand and two N atoms from two azide anions, resulting in a distorted square-pyramidal environment. A weak intermolecular C—H⋯N hydrogen-bonding interaction between one pyridine group of the ligand and an azide N atom of an adjacent complex unit gives a one-dimensional chain structure parallel to the c axis.
Related literature
For the potential applications of chiral complexes in chiral recognition, chiral catalysis and enantioselective sorption, see: Lehn (1995); Seo et al. (2000). Chiral NiII macrocyclic complexes and two-dimensional chiral open-framework compounds have been described by Han et al. (2008); Ryoo et al. (2010). A homochiral metal–organic framework with a cerium(III) ion has been described by Dang et al. (2010). For the preparation of (S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine, see: Lucas et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811021234/pk2326sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021234/pk2326Isup2.hkl
(S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine (S-ppme) was prepared according to slightly modified literature procedure (Lucas et al., 2009) except that (S)-(-)-α-methylbenzylamine instead of benzylamine (yield: 0.86 g, 60%). A mixture of MeCN and H2O (2:1, v/v, 3 ml) solution of CuCl2.2H2O (29 mg, 0.17 mmol) was added to an MeCN solution (3 ml) of S-ppme (51 mg, 0.17 mmol) and a MeOH solution (4 ml) of sodium azide (22 mg, 0.34 mmol). The resulting solution was stirred for 1 h at room temperature, resulting in a color change to blue-green. Diffusion of diethyl ether into the mixture gave green crystals of the title compound after a few days. These crystals were filtered and washed with diethyl ether and dried in air (yield: 42 mg, 56%).
All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) and 0.96–0.98 Å (open chain H atoms), and with Uiso(H) values of 1.2 or 1.5 times the equivalent anisotropic displacement parameters of the parent C atom.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(N3)2(C20H21N3)] | F(000) = 466 |
Mr = 451.00 | Dx = 1.451 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2059 reflections |
a = 6.9972 (12) Å | θ = 2.5–23.1° |
b = 14.506 (3) Å | µ = 1.09 mm−1 |
c = 10.2828 (17) Å | T = 296 K |
β = 98.413 (4)° | Plate, green |
V = 1032.5 (3) Å3 | 0.23 × 0.19 × 0.04 mm |
Z = 2 |
Siemens SMART CCD diffractometer | 4630 independent reflections |
Radiation source: fine-focus sealed tube | 2863 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→9 |
Tmin = 0.749, Tmax = 0.958 | k = −19→16 |
7801 measured reflections | l = −13→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + 0.2609P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
4630 reflections | Δρmax = 0.74 e Å−3 |
272 parameters | Δρmin = −0.90 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1941 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (3) |
[Cu(N3)2(C20H21N3)] | V = 1032.5 (3) Å3 |
Mr = 451.00 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.9972 (12) Å | µ = 1.09 mm−1 |
b = 14.506 (3) Å | T = 296 K |
c = 10.2828 (17) Å | 0.23 × 0.19 × 0.04 mm |
β = 98.413 (4)° |
Siemens SMART CCD diffractometer | 4630 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2863 reflections with I > 2σ(I) |
Tmin = 0.749, Tmax = 0.958 | Rint = 0.049 |
7801 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.115 | Δρmax = 0.74 e Å−3 |
S = 1.09 | Δρmin = −0.90 e Å−3 |
4630 reflections | Absolute structure: Flack (1983), 1941 Friedel pairs |
272 parameters | Absolute structure parameter: 0.02 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.97299 (8) | 0.03627 (6) | 0.09599 (6) | 0.03987 (19) | |
N1 | 0.9182 (6) | 0.1005 (4) | 0.2601 (5) | 0.0397 (13) | |
N2 | 1.1219 (6) | −0.0557 (3) | 0.2383 (5) | 0.0352 (12) | |
N3 | 0.7954 (6) | −0.0873 (4) | 0.0636 (5) | 0.0391 (13) | |
N4 | 0.8063 (8) | 0.1251 (5) | −0.0106 (6) | 0.0594 (18) | |
N5 | 0.7529 (8) | 0.1156 (4) | −0.1229 (7) | 0.0571 (16) | |
N6 | 0.6948 (12) | 0.1098 (6) | −0.2324 (7) | 0.113 (3) | |
N7 | 1.1556 (7) | 0.0125 (5) | −0.0299 (6) | 0.056 (2) | |
N8 | 1.1260 (9) | −0.0280 (5) | −0.1291 (7) | 0.0662 (19) | |
N9 | 1.1054 (13) | −0.0689 (8) | −0.2243 (9) | 0.150 (5) | |
C1 | 0.8573 (8) | 0.1875 (5) | 0.2688 (7) | 0.0476 (17) | |
H1 | 0.8397 | 0.2237 | 0.1934 | 0.057* | |
C2 | 0.8202 (9) | 0.2249 (5) | 0.3835 (8) | 0.061 (2) | |
H2 | 0.7774 | 0.2854 | 0.3864 | 0.073* | |
C3 | 0.8470 (10) | 0.1716 (7) | 0.4955 (8) | 0.071 (2) | |
H3 | 0.8182 | 0.1951 | 0.5745 | 0.085* | |
C4 | 0.9162 (9) | 0.0839 (5) | 0.4894 (7) | 0.055 (2) | |
H4 | 0.9390 | 0.0474 | 0.5645 | 0.066* | |
C5 | 0.9513 (7) | 0.0509 (5) | 0.3707 (5) | 0.0375 (17) | |
C6 | 1.0194 (8) | −0.0470 (5) | 0.3535 (6) | 0.0433 (16) | |
H6A | 1.1050 | −0.0656 | 0.4319 | 0.052* | |
H6B | 0.9088 | −0.0881 | 0.3428 | 0.052* | |
C7 | 1.0910 (8) | −0.1481 (4) | 0.1814 (6) | 0.0412 (15) | |
H7A | 1.1169 | −0.1934 | 0.2512 | 0.049* | |
H7B | 1.1829 | −0.1583 | 0.1207 | 0.049* | |
C8 | 0.8881 (8) | −0.1635 (4) | 0.1091 (6) | 0.0376 (14) | |
C9 | 0.8111 (8) | −0.2496 (5) | 0.0895 (6) | 0.0518 (18) | |
H9 | 0.8782 | −0.3010 | 0.1257 | 0.062* | |
C10 | 0.6315 (10) | −0.2587 (6) | 0.0148 (7) | 0.066 (2) | |
H10 | 0.5770 | −0.3167 | −0.0025 | 0.079* | |
C11 | 0.5346 (10) | −0.1809 (6) | −0.0334 (6) | 0.059 (2) | |
H11 | 0.4125 | −0.1853 | −0.0828 | 0.071* | |
C12 | 0.6200 (8) | −0.0968 (5) | −0.0079 (6) | 0.0535 (19) | |
H12 | 0.5541 | −0.0442 | −0.0413 | 0.064* | |
C13 | 1.3354 (8) | −0.0333 (5) | 0.2654 (6) | 0.0376 (17) | |
H13 | 1.3882 | −0.0501 | 0.1855 | 0.045* | |
C14 | 1.4474 (7) | −0.0887 (5) | 0.3751 (6) | 0.0397 (15) | |
C15 | 1.4879 (9) | −0.0563 (5) | 0.5031 (6) | 0.0551 (18) | |
H15 | 1.4398 | 0.0005 | 0.5249 | 0.066* | |
C16 | 1.6004 (11) | −0.1086 (6) | 0.5992 (7) | 0.072 (2) | |
H16 | 1.6268 | −0.0864 | 0.6848 | 0.087* | |
C17 | 1.6718 (10) | −0.1919 (7) | 0.5691 (9) | 0.077 (3) | |
H17 | 1.7478 | −0.2257 | 0.6341 | 0.092* | |
C18 | 1.6329 (10) | −0.2265 (6) | 0.4442 (8) | 0.068 (2) | |
H18 | 1.6803 | −0.2838 | 0.4238 | 0.082* | |
C19 | 1.5211 (8) | −0.1742 (5) | 0.3486 (6) | 0.0508 (18) | |
H19 | 1.4948 | −0.1975 | 0.2635 | 0.061* | |
C20 | 1.3706 (8) | 0.0698 (5) | 0.2839 (8) | 0.050 (2) | |
H20A | 1.3169 | 0.0905 | 0.3595 | 0.075* | |
H20B | 1.3102 | 0.1021 | 0.2074 | 0.075* | |
H20C | 1.5070 | 0.0817 | 0.2966 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0360 (3) | 0.0420 (4) | 0.0411 (4) | 0.0039 (5) | 0.0038 (2) | 0.0023 (5) |
N1 | 0.034 (3) | 0.048 (4) | 0.036 (3) | −0.002 (2) | 0.001 (2) | −0.005 (3) |
N2 | 0.033 (3) | 0.029 (3) | 0.044 (3) | 0.000 (2) | 0.005 (2) | −0.001 (2) |
N3 | 0.029 (2) | 0.042 (4) | 0.046 (3) | −0.004 (2) | 0.005 (2) | −0.005 (3) |
N4 | 0.063 (4) | 0.070 (5) | 0.042 (4) | 0.017 (3) | −0.002 (3) | 0.001 (3) |
N5 | 0.062 (4) | 0.058 (5) | 0.051 (4) | 0.014 (3) | 0.006 (3) | 0.012 (3) |
N6 | 0.169 (8) | 0.112 (7) | 0.050 (5) | 0.037 (6) | −0.012 (5) | 0.006 (4) |
N7 | 0.044 (3) | 0.074 (6) | 0.052 (3) | 0.008 (3) | 0.009 (2) | −0.003 (3) |
N8 | 0.064 (4) | 0.075 (5) | 0.057 (4) | 0.022 (3) | 0.002 (3) | −0.017 (4) |
N9 | 0.134 (8) | 0.207 (12) | 0.103 (7) | 0.055 (7) | −0.002 (6) | −0.088 (8) |
C1 | 0.039 (3) | 0.039 (5) | 0.065 (5) | 0.006 (3) | 0.008 (3) | −0.009 (3) |
C2 | 0.052 (4) | 0.052 (6) | 0.079 (6) | 0.004 (4) | 0.013 (4) | −0.032 (5) |
C3 | 0.059 (5) | 0.099 (8) | 0.058 (5) | −0.008 (5) | 0.021 (4) | −0.034 (5) |
C4 | 0.054 (4) | 0.062 (6) | 0.052 (4) | 0.005 (3) | 0.015 (3) | −0.010 (3) |
C5 | 0.031 (2) | 0.043 (5) | 0.039 (3) | 0.002 (3) | 0.007 (2) | −0.008 (4) |
C6 | 0.043 (4) | 0.042 (5) | 0.048 (4) | −0.009 (3) | 0.017 (3) | 0.007 (3) |
C7 | 0.034 (3) | 0.035 (4) | 0.053 (4) | 0.001 (3) | 0.002 (3) | −0.004 (3) |
C8 | 0.035 (3) | 0.027 (4) | 0.051 (4) | −0.001 (3) | 0.008 (3) | −0.012 (3) |
C9 | 0.037 (3) | 0.052 (5) | 0.067 (5) | −0.005 (3) | 0.011 (3) | −0.021 (4) |
C10 | 0.055 (5) | 0.065 (6) | 0.081 (6) | −0.016 (4) | 0.023 (4) | −0.032 (5) |
C11 | 0.048 (4) | 0.068 (7) | 0.058 (5) | −0.012 (4) | −0.002 (3) | −0.019 (4) |
C12 | 0.038 (3) | 0.067 (6) | 0.054 (4) | −0.002 (4) | 0.002 (3) | −0.003 (4) |
C13 | 0.032 (3) | 0.038 (5) | 0.042 (4) | −0.003 (3) | 0.002 (3) | 0.006 (3) |
C14 | 0.029 (3) | 0.039 (4) | 0.049 (4) | 0.002 (3) | −0.001 (3) | 0.003 (3) |
C15 | 0.053 (4) | 0.058 (5) | 0.052 (4) | 0.003 (4) | −0.001 (3) | 0.003 (4) |
C16 | 0.076 (5) | 0.085 (8) | 0.051 (5) | −0.017 (5) | −0.007 (4) | 0.020 (5) |
C17 | 0.055 (5) | 0.078 (8) | 0.089 (7) | −0.003 (4) | −0.017 (4) | 0.048 (5) |
C18 | 0.050 (4) | 0.059 (6) | 0.091 (6) | 0.003 (4) | −0.002 (4) | 0.020 (5) |
C19 | 0.041 (3) | 0.057 (5) | 0.053 (4) | −0.004 (3) | 0.002 (3) | 0.003 (3) |
C20 | 0.027 (3) | 0.054 (6) | 0.067 (5) | −0.005 (3) | −0.003 (3) | 0.010 (3) |
Cu1—N4 | 1.961 (6) | C7—H7A | 0.9700 |
Cu1—N7 | 1.978 (5) | C7—H7B | 0.9700 |
Cu1—N1 | 2.013 (5) | C8—C9 | 1.363 (8) |
Cu1—N2 | 2.135 (5) | C9—C10 | 1.380 (8) |
Cu1—N3 | 2.178 (5) | C9—H9 | 0.9300 |
N1—C5 | 1.337 (7) | C10—C11 | 1.371 (10) |
N1—C1 | 1.339 (8) | C10—H10 | 0.9300 |
N2—C7 | 1.466 (7) | C11—C12 | 1.367 (9) |
N2—C6 | 1.477 (6) | C11—H11 | 0.9300 |
N2—C13 | 1.514 (7) | C12—H12 | 0.9300 |
N3—C8 | 1.332 (7) | C13—C14 | 1.508 (9) |
N3—C12 | 1.342 (7) | C13—C20 | 1.522 (8) |
N4—N5 | 1.169 (8) | C13—H13 | 0.9800 |
N5—N6 | 1.144 (7) | C14—C19 | 1.386 (8) |
N7—N8 | 1.168 (7) | C14—C15 | 1.388 (8) |
N8—N9 | 1.137 (8) | C15—C16 | 1.395 (9) |
C1—C2 | 1.357 (9) | C15—H15 | 0.9300 |
C1—H1 | 0.9300 | C16—C17 | 1.360 (11) |
C2—C3 | 1.377 (10) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—C18 | 1.369 (10) |
C3—C4 | 1.366 (10) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.389 (9) |
C4—C5 | 1.366 (8) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—H19 | 0.9300 |
C5—C6 | 1.517 (10) | C20—H20A | 0.9600 |
C6—H6A | 0.9700 | C20—H20B | 0.9600 |
C6—H6B | 0.9700 | C20—H20C | 0.9600 |
C7—C8 | 1.520 (7) | ||
N4—Cu1—N7 | 97.9 (2) | C8—C7—H7A | 108.8 |
N4—Cu1—N1 | 89.6 (2) | N2—C7—H7B | 108.8 |
N7—Cu1—N1 | 148.2 (2) | C8—C7—H7B | 108.8 |
N4—Cu1—N2 | 169.7 (2) | H7A—C7—H7B | 107.7 |
N7—Cu1—N2 | 92.4 (2) | N3—C8—C9 | 123.2 (5) |
N1—Cu1—N2 | 81.3 (2) | N3—C8—C7 | 115.0 (5) |
N4—Cu1—N3 | 100.1 (2) | C9—C8—C7 | 121.8 (6) |
N7—Cu1—N3 | 99.5 (2) | C8—C9—C10 | 118.6 (7) |
N1—Cu1—N3 | 109.55 (19) | C8—C9—H9 | 120.7 |
N2—Cu1—N3 | 78.53 (19) | C10—C9—H9 | 120.7 |
C5—N1—C1 | 117.9 (6) | C11—C10—C9 | 118.9 (7) |
C5—N1—Cu1 | 115.7 (5) | C11—C10—H10 | 120.5 |
C1—N1—Cu1 | 126.4 (4) | C9—C10—H10 | 120.5 |
C7—N2—C6 | 109.7 (5) | C12—C11—C10 | 119.1 (7) |
C7—N2—C13 | 110.7 (4) | C12—C11—H11 | 120.5 |
C6—N2—C13 | 114.5 (5) | C10—C11—H11 | 120.5 |
C7—N2—Cu1 | 105.6 (3) | N3—C12—C11 | 122.4 (7) |
C6—N2—Cu1 | 104.5 (3) | N3—C12—H12 | 118.8 |
C13—N2—Cu1 | 111.2 (4) | C11—C12—H12 | 118.8 |
C8—N3—C12 | 117.8 (6) | C14—C13—N2 | 114.5 (5) |
C8—N3—Cu1 | 113.0 (4) | C14—C13—C20 | 111.9 (6) |
C12—N3—Cu1 | 128.6 (5) | N2—C13—C20 | 111.8 (6) |
N5—N4—Cu1 | 123.6 (5) | C14—C13—H13 | 106.0 |
N6—N5—N4 | 176.8 (8) | N2—C13—H13 | 106.0 |
N8—N7—Cu1 | 127.6 (5) | C20—C13—H13 | 106.0 |
N9—N8—N7 | 176.9 (8) | C19—C14—C15 | 117.3 (6) |
N1—C1—C2 | 122.5 (7) | C19—C14—C13 | 119.9 (6) |
N1—C1—H1 | 118.7 | C15—C14—C13 | 122.7 (6) |
C2—C1—H1 | 118.7 | C14—C15—C16 | 120.3 (7) |
C1—C2—C3 | 118.8 (8) | C14—C15—H15 | 119.9 |
C1—C2—H2 | 120.6 | C16—C15—H15 | 119.9 |
C3—C2—H2 | 120.6 | C17—C16—C15 | 120.7 (8) |
C4—C3—C2 | 119.4 (7) | C17—C16—H16 | 119.7 |
C4—C3—H3 | 120.3 | C15—C16—H16 | 119.7 |
C2—C3—H3 | 120.3 | C16—C17—C18 | 120.7 (7) |
C5—C4—C3 | 118.5 (7) | C16—C17—H17 | 119.7 |
C5—C4—H4 | 120.7 | C18—C17—H17 | 119.7 |
C3—C4—H4 | 120.7 | C17—C18—C19 | 118.6 (8) |
N1—C5—C4 | 122.7 (7) | C17—C18—H18 | 120.7 |
N1—C5—C6 | 115.0 (5) | C19—C18—H18 | 120.7 |
C4—C5—C6 | 122.2 (6) | C14—C19—C18 | 122.4 (7) |
N2—C6—C5 | 111.8 (5) | C14—C19—H19 | 118.8 |
N2—C6—H6A | 109.3 | C18—C19—H19 | 118.8 |
C5—C6—H6A | 109.3 | C13—C20—H20A | 109.5 |
N2—C6—H6B | 109.3 | C13—C20—H20B | 109.5 |
C5—C6—H6B | 109.3 | H20A—C20—H20B | 109.5 |
H6A—C6—H6B | 107.9 | C13—C20—H20C | 109.5 |
N2—C7—C8 | 113.7 (5) | H20A—C20—H20C | 109.5 |
N2—C7—H7A | 108.8 | H20B—C20—H20C | 109.5 |
N4—Cu1—N1—C5 | 159.9 (4) | Cu1—N1—C5—C4 | −178.2 (4) |
N7—Cu1—N1—C5 | −95.6 (6) | C1—N1—C5—C6 | 179.8 (5) |
N2—Cu1—N1—C5 | −15.2 (4) | Cu1—N1—C5—C6 | −1.7 (6) |
N3—Cu1—N1—C5 | 59.3 (4) | C3—C4—C5—N1 | −0.9 (9) |
N4—Cu1—N1—C1 | −21.8 (5) | C3—C4—C5—C6 | −177.1 (6) |
N7—Cu1—N1—C1 | 82.7 (6) | C7—N2—C6—C5 | −148.8 (5) |
N2—Cu1—N1—C1 | 163.1 (5) | C13—N2—C6—C5 | 86.0 (6) |
N3—Cu1—N1—C1 | −122.4 (5) | Cu1—N2—C6—C5 | −35.9 (5) |
N4—Cu1—N2—C7 | 114.6 (13) | N1—C5—C6—N2 | 27.1 (7) |
N7—Cu1—N2—C7 | −68.0 (4) | C4—C5—C6—N2 | −156.5 (5) |
N1—Cu1—N2—C7 | 143.3 (4) | C6—N2—C7—C8 | 72.5 (6) |
N3—Cu1—N2—C7 | 31.2 (3) | C13—N2—C7—C8 | −160.1 (5) |
N4—Cu1—N2—C6 | −1.1 (15) | Cu1—N2—C7—C8 | −39.6 (5) |
N7—Cu1—N2—C6 | 176.3 (4) | C12—N3—C8—C9 | −1.9 (9) |
N1—Cu1—N2—C6 | 27.6 (3) | Cu1—N3—C8—C9 | −174.1 (5) |
N3—Cu1—N2—C6 | −84.5 (4) | C12—N3—C8—C7 | 176.1 (5) |
N4—Cu1—N2—C13 | −125.2 (13) | Cu1—N3—C8—C7 | 3.9 (6) |
N7—Cu1—N2—C13 | 52.2 (4) | N2—C7—C8—N3 | 24.9 (7) |
N1—Cu1—N2—C13 | −96.5 (4) | N2—C7—C8—C9 | −157.1 (5) |
N3—Cu1—N2—C13 | 151.4 (4) | N3—C8—C9—C10 | 2.5 (9) |
N4—Cu1—N3—C8 | 170.0 (4) | C7—C8—C9—C10 | −175.4 (6) |
N7—Cu1—N3—C8 | 70.2 (4) | C8—C9—C10—C11 | −2.0 (10) |
N1—Cu1—N3—C8 | −96.7 (4) | C9—C10—C11—C12 | 1.0 (10) |
N2—Cu1—N3—C8 | −20.4 (4) | C8—N3—C12—C11 | 0.8 (9) |
N4—Cu1—N3—C12 | −1.1 (6) | Cu1—N3—C12—C11 | 171.6 (5) |
N7—Cu1—N3—C12 | −101.0 (5) | C10—C11—C12—N3 | −0.4 (10) |
N1—Cu1—N3—C12 | 92.1 (5) | C7—N2—C13—C14 | −68.9 (7) |
N2—Cu1—N3—C12 | 168.5 (5) | C6—N2—C13—C14 | 55.8 (7) |
N7—Cu1—N4—N5 | 43.4 (7) | Cu1—N2—C13—C14 | 174.0 (4) |
N1—Cu1—N4—N5 | −167.6 (6) | C7—N2—C13—C20 | 162.5 (6) |
N2—Cu1—N4—N5 | −139.2 (11) | C6—N2—C13—C20 | −72.8 (7) |
N3—Cu1—N4—N5 | −57.8 (6) | Cu1—N2—C13—C20 | 45.4 (7) |
N4—Cu1—N7—N8 | −71.0 (7) | N2—C13—C14—C19 | 86.4 (7) |
N1—Cu1—N7—N8 | −173.1 (6) | C20—C13—C14—C19 | −145.1 (6) |
N2—Cu1—N7—N8 | 109.5 (7) | N2—C13—C14—C15 | −96.2 (7) |
N3—Cu1—N7—N8 | 30.7 (7) | C20—C13—C14—C15 | 32.3 (9) |
C5—N1—C1—C2 | −3.1 (9) | C13—C14—C15—C16 | −176.8 (6) |
Cu1—N1—C1—C2 | 178.7 (5) | C15—C16—C17—C18 | −0.7 (12) |
N1—C1—C2—C3 | 0.3 (10) | C16—C17—C18—C19 | 0.8 (11) |
C1—C2—C3—C4 | 2.2 (10) | C15—C14—C19—C18 | −0.6 (9) |
C2—C3—C4—C5 | −1.9 (10) | C13—C14—C19—C18 | 177.0 (6) |
C1—N1—C5—C4 | 3.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N6i | 0.93 | 2.59 | 3.261 (11) | 129 |
Symmetry code: (i) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(N3)2(C20H21N3)] |
Mr | 451.00 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 6.9972 (12), 14.506 (3), 10.2828 (17) |
β (°) | 98.413 (4) |
V (Å3) | 1032.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.23 × 0.19 × 0.04 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.749, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7801, 4630, 2863 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.115, 1.09 |
No. of reflections | 4630 |
No. of parameters | 272 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.90 |
Absolute structure | Flack (1983), 1941 Friedel pairs |
Absolute structure parameter | 0.02 (3) |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N6i | 0.93 | 2.59 | 3.261 (11) | 129 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. R01-2008-000-20955-0). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.
References
Dang, D., Wu, P., He, C., Xie, Z. & Duan, C. (2010). J. Am. Chem. Soc. 132, 14321–14323. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745–748. Web of Science CSD CrossRef CAS Google Scholar
Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH. Google Scholar
Lucas, H. R., Li, L., Sarjeant, A. A. N., Vance, M. A., Solomon, E. I. & Karlin, K. D. (2009). J. Am. Chem. Soc. 131, 3230–3245. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234. Web of Science CrossRef CAS PubMed Google Scholar
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jin, Y. & Kim, K. (2000). Nature (London), 404, 982–986. PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral complexes have attracted considerable interest because of their potential and practical applications, such as chiral recognition, chiral catalysis, and enantioselective sorption (Lehn, 1995; Seo et al., 2000). Very recently, a two-dimensional chiral open framework, [Ni(LR,R)]3[C6H3(COO)3]2.12H2O.CH3CN [LR,R=1,8-bis[(R)-α-methylbenzyl]-1,3,6,8,10,13-\ hexaazacyclotetradecane] has been shown to have selective chiral recognition in rac-1,1'-bi-2-naphthol (Han et al., 2008; Ryoo et al., 2010). Furthermore, a homochiral metal-organic framework composed of a cerium(III) ion and chiral organic building block has large chiral one-dimensional channels and exhibited excellent catalytic activity and high enantioselectivity for the asymmetric cyanosilylation of aromatic aldehydes (Dang et al., 2010). Here, we report the synthesis and crystal structure of a five-coordinated CuII complex with (S)-1-phenyl-N,N-[bis(2-pyridyl)methyl]ethanamine (S-ppme), the title compound [Cu(S-ppme)(N3)2].
In the title compound (Fig. 1), the CuII ion is five-coordinated and shows a distorted square pyramidal geometry, the equatorial plane being defined by the three nitrogen atoms of the S-ppme ligand and one nitrogen atom of an azide ion. The coordination geometry is completed by the axial coordination of the nitrogen atom of the second azide anion. The Cu—Leq bond lengths are in the range of 1.961 (6) and 2.178 (5) Å and the Cu—Nax bond length is 1.978 (5) Å. Both azide ions are bonded in η1-fashion and fully delocalized. The bond angles around the copper atom range from 76.95 (12) to 165.48 (15)°. The packing structure involves a weak C—H···N hydrogen bonding interaction between the one pyridine group of the S-ppme ligand and an azide N atom of an adjacent complex unit (Table 1), giving a one-dimensional chain structure parallel to the c axis (Fig. 2).