organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2S,4R)-7-tert-But­­oxy­bi­cyclo­[2.2.1]hept-5-en-2-yl (2S)-2-(6-meth­­oxy­naphthalen-2-yl)propano­ate

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 13 June 2011; accepted 20 June 2011; online 30 June 2011)

In the title mol­ecule, C25H30O4, the napthalene ring system is slightly bowed, with a dihedral angle of 4.37 (13)° between the two benzene rings.

Related literature

For the synthesis of anti-2,7-disubstituted norbornadienes from racemic 7-tert-but­oxy-bicyclo­[2.2.1]hepta-5-en-2-ol, see: Tsui et al. (2009[Tsui, G. C., Le Marquand, P., Allen, A. & Tam, W. (2009). Synthesis, pp. 609-619.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30O4

  • Mr = 394.49

  • Monoclinic, P 21

  • a = 11.8328 (11) Å

  • b = 6.0084 (4) Å

  • c = 15.2205 (15) Å

  • β = 96.705 (4)°

  • V = 1074.72 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.50 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.480, Tmax = 0.990

  • 8333 measured reflections

  • 2649 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.05

  • 2649 reflections

  • 267 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have investigated the synthesis of anti-2,7-disubstituted norbornadienes from racemic 7-tert-butoxy-bicyclo[2.2.1]hepta-5-en-2-ol (±) (I) (Tsui et al., 2009). In order to synthesize a chiral anti-2,7-disubstituted norbornadiene, we have studied the resolution of the racemic mixture of 7-tert-butoxy-bicyclo[2.2.1]hepta-5-en-2-ol (±) (I) through the use of α-chiral carboxylic acids as resolving agents. We found that when (S)-(+)-6-methoxy-α-methyl-2-naphthaleneacetic acid (II) (See Fig. 2) is used as the resolving agent, the diastereomeric mixture of (III) and (IV) is obtained. This mixture has been resolved using fractional crystallization which afforded diastereomer (IV) with dr > 99:1. The absolute position of the ester on the bicyclic framework has been elucidated by this single-crystal x-ray analysis.

Related literature top

For the synthesis of anti-2,7-disubstituted norbornadienes from racemic 7-tert-butoxy-bicyclo[2.2.1]hepta-5-en-2-ol, see: Tsui et al. (2009).

Experimental top

7-tert-butoxy-bicyclo[2.2.1]hepta-5-en-2-ol (±)-I (1.2 g, 6.4 mmol), (S)-(+)-6-methoxy-a-methyl-2-napthaleneacetic acid (II) (1.63 g, 7.08 mmol), DCC (1.58 g, 7.68 mmol), and DMAP (0.156 g, 1.28 mmol) were weighted into a dry round bottom flask and purged with nitrogen. Dried CH2Cl2 (64 ml) was added through a vented septum to dissolve all solids forming a 0.1 M solution with respect to (±)-I. The reaction vessel was sealed and its contents were stirred at room temperature for 21 h while monitoring the reaction progression by TLC. The crude product was purified using flash column chromatography (EtOAc:hexanes = 30:70) to provide diastereomers (III) and (IV) in equal ratio as an off white semi-solid (2.33 g, 5.9 mmol, 92%). Fractional crystallization with MeOH was used to separate these species and to grow suitable crystals of (IV).

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl). In the absence of significant anomalous dispersion effects the Friedel pairs were merged before refinement. The absolute stereochemistry was determined by an unchanging chiral center in the synthesis.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probabilty level.
[Figure 2] Fig. 2. The reaction scheme
(1S,2S,4R)-7-tert-Butoxybicyclo[2.2.1]hept-5-en-2-yl (2S)-2-(6-methoxynaphthalen-2-yl)propanoate top
Crystal data top
C25H30O4F(000) = 424
Mr = 394.49Dx = 1.219 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8333 reflections
a = 11.8328 (11) Åθ = 2.7–27.5°
b = 6.0084 (4) ŵ = 0.08 mm1
c = 15.2205 (15) ÅT = 150 K
β = 96.705 (4)°Needle, colourless
V = 1074.72 (16) Å30.50 × 0.20 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2649 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ scans and ω scans with κ offsetsh = 1515
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 76
Tmin = 0.480, Tmax = 0.990l = 1619
8333 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0914P]
where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C25H30O4V = 1074.72 (16) Å3
Mr = 394.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.8328 (11) ŵ = 0.08 mm1
b = 6.0084 (4) ÅT = 150 K
c = 15.2205 (15) Å0.50 × 0.20 × 0.12 mm
β = 96.705 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2649 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2023 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.990Rint = 0.071
8333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2649 reflectionsΔρmin = 0.25 e Å3
267 parameters
Special details top

Experimental. multi-scan from symmetry-related measurements (SORTAV (Blessing 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69010 (15)0.8083 (4)0.08425 (13)0.0433 (5)
O20.58736 (15)0.8603 (3)0.34025 (12)0.0371 (4)
O30.49435 (16)0.5653 (4)0.38828 (14)0.0478 (5)
O41.21074 (16)0.2459 (4)0.25951 (14)0.0490 (5)
C10.5058 (2)0.8713 (5)0.26074 (17)0.0378 (6)
H1A0.42780.82580.27290.045*
C20.5477 (2)0.7305 (5)0.18658 (18)0.0368 (6)
H2A0.57600.57790.20370.044*
C30.4558 (2)0.7435 (5)0.10890 (19)0.0430 (7)
H30.40700.62580.08660.052*
C40.4559 (2)0.9493 (5)0.0778 (2)0.0430 (7)
H40.40611.00590.02950.052*
C50.5482 (2)1.0785 (5)0.13189 (18)0.0406 (7)
H5A0.57671.21400.10330.049*
C60.5073 (2)1.1131 (5)0.2247 (2)0.0407 (7)
H6A0.56101.20790.26290.049*
H6B0.43061.18090.21960.049*
C70.6362 (2)0.8921 (5)0.15578 (18)0.0377 (6)
H7A0.69340.93730.20620.045*
C80.8098 (2)0.8585 (6)0.0853 (2)0.0432 (7)
C90.8780 (3)0.7327 (6)0.1619 (2)0.0514 (8)
H9A0.85900.57400.15780.077*
H9B0.85890.79160.21840.077*
H9C0.95960.75240.15850.077*
C100.8387 (3)0.7701 (6)0.0023 (2)0.0559 (9)
H10A0.82320.60990.00590.084*
H10B0.91940.79650.00720.084*
H10C0.79220.84650.05070.084*
C110.8306 (3)1.1075 (6)0.0922 (2)0.0506 (8)
H11A0.78561.18290.04280.076*
H11B0.91161.13790.09000.076*
H11C0.80821.16240.14830.076*
C120.5739 (2)0.6939 (5)0.39715 (18)0.0364 (6)
C130.6718 (2)0.6822 (5)0.46982 (18)0.0374 (6)
H13A0.69690.83710.48630.045*
C140.6351 (3)0.5668 (6)0.55187 (19)0.0474 (7)
H14A0.57190.64940.57270.071*
H14B0.69930.56290.59870.071*
H14C0.61050.41450.53660.071*
C150.7694 (2)0.5613 (5)0.43366 (17)0.0359 (6)
C160.8758 (2)0.6525 (5)0.43437 (18)0.0384 (6)
H16A0.89120.79330.46160.046*
C170.9630 (2)0.5422 (5)0.39564 (18)0.0376 (6)
C181.0740 (2)0.6343 (5)0.3944 (2)0.0437 (7)
H18A1.09280.77090.42400.052*
C191.1535 (2)0.5292 (5)0.3513 (2)0.0448 (7)
H19A1.22710.59250.35180.054*
C201.1274 (2)0.3266 (5)0.30572 (19)0.0422 (7)
C211.0239 (2)0.2270 (5)0.31015 (18)0.0396 (6)
H21A1.00830.08670.28250.048*
C220.9399 (2)0.3308 (5)0.35548 (18)0.0370 (6)
C230.8319 (2)0.2348 (5)0.35925 (18)0.0386 (6)
H23A0.81630.09100.33490.046*
C240.7492 (2)0.3453 (5)0.39745 (18)0.0377 (6)
H24A0.67730.27660.39980.045*
C251.1868 (3)0.0424 (6)0.2127 (2)0.0524 (8)
H25A1.25040.00540.17940.079*
H25B1.11710.05920.17160.079*
H25C1.17650.07710.25480.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (10)0.0518 (12)0.0400 (11)0.0032 (9)0.0080 (8)0.0110 (9)
O20.0376 (10)0.0382 (11)0.0349 (10)0.0034 (9)0.0014 (8)0.0028 (9)
O30.0458 (11)0.0428 (12)0.0533 (13)0.0078 (11)0.0001 (9)0.0072 (11)
O40.0406 (11)0.0560 (14)0.0512 (13)0.0009 (10)0.0087 (9)0.0020 (11)
C10.0360 (14)0.0447 (16)0.0323 (14)0.0030 (13)0.0021 (11)0.0009 (13)
C20.0401 (15)0.0320 (14)0.0378 (14)0.0003 (12)0.0022 (11)0.0012 (12)
C30.0420 (16)0.0466 (17)0.0394 (16)0.0026 (14)0.0008 (12)0.0077 (14)
C40.0418 (16)0.0510 (18)0.0348 (16)0.0032 (13)0.0010 (12)0.0006 (14)
C50.0477 (16)0.0373 (16)0.0366 (15)0.0004 (13)0.0045 (12)0.0007 (13)
C60.0425 (15)0.0393 (16)0.0400 (15)0.0031 (13)0.0042 (12)0.0012 (13)
C70.0386 (14)0.0395 (16)0.0347 (14)0.0009 (12)0.0027 (12)0.0024 (13)
C80.0391 (15)0.0453 (17)0.0459 (17)0.0037 (14)0.0078 (12)0.0055 (15)
C90.0491 (18)0.0473 (18)0.0562 (19)0.0028 (15)0.0004 (15)0.0025 (16)
C100.0509 (18)0.068 (2)0.0508 (19)0.0006 (17)0.0142 (15)0.0085 (18)
C110.0463 (17)0.0502 (19)0.056 (2)0.0064 (15)0.0090 (14)0.0006 (16)
C120.0388 (15)0.0354 (15)0.0359 (15)0.0021 (12)0.0076 (11)0.0010 (12)
C130.0455 (16)0.0323 (15)0.0343 (14)0.0020 (12)0.0037 (12)0.0028 (12)
C140.0584 (18)0.0465 (18)0.0372 (16)0.0009 (16)0.0053 (13)0.0014 (15)
C150.0395 (14)0.0357 (15)0.0309 (14)0.0003 (13)0.0034 (11)0.0043 (13)
C160.0446 (16)0.0323 (14)0.0364 (15)0.0023 (12)0.0039 (12)0.0015 (12)
C170.0400 (14)0.0367 (15)0.0343 (14)0.0034 (12)0.0027 (11)0.0062 (13)
C180.0436 (16)0.0407 (16)0.0442 (17)0.0060 (13)0.0055 (13)0.0050 (13)
C190.0372 (15)0.0489 (18)0.0472 (17)0.0064 (14)0.0005 (13)0.0099 (15)
C200.0379 (15)0.0473 (18)0.0410 (16)0.0021 (13)0.0026 (12)0.0070 (14)
C210.0419 (16)0.0388 (16)0.0371 (15)0.0002 (13)0.0007 (12)0.0001 (13)
C220.0390 (14)0.0372 (15)0.0332 (14)0.0001 (12)0.0025 (11)0.0022 (12)
C230.0402 (15)0.0346 (15)0.0394 (15)0.0034 (12)0.0015 (11)0.0006 (13)
C240.0356 (13)0.0381 (15)0.0382 (15)0.0057 (12)0.0001 (11)0.0003 (13)
C250.0499 (17)0.062 (2)0.0463 (18)0.0049 (17)0.0088 (14)0.0044 (17)
Geometric parameters (Å, º) top
O1—C71.417 (3)C10—H10C0.9800
O1—C81.446 (3)C11—H11A0.9800
O2—C121.344 (3)C11—H11B0.9800
O2—C11.459 (3)C11—H11C0.9800
O3—C121.214 (3)C12—C131.507 (4)
O4—C201.365 (3)C13—C151.520 (4)
O4—C251.427 (4)C13—C141.535 (4)
C1—C21.538 (4)C13—H13A1.0000
C1—C61.554 (4)C14—H14A0.9800
C1—H1A1.0000C14—H14B0.9800
C2—C31.513 (4)C14—H14C0.9800
C2—C71.540 (4)C15—C161.372 (4)
C2—H2A1.0000C15—C241.419 (4)
C3—C41.324 (4)C16—C171.412 (4)
C3—H30.9500C16—H16A0.9500
C4—C51.504 (4)C17—C221.422 (4)
C4—H40.9500C17—C181.428 (4)
C5—C71.543 (4)C18—C191.363 (4)
C5—C61.560 (4)C18—H18A0.9500
C5—H5A1.0000C19—C201.417 (5)
C6—H6A0.9900C19—H19A0.9500
C6—H6B0.9900C20—C211.371 (4)
C7—H7A1.0000C21—C221.420 (4)
C8—C101.512 (4)C21—H21A0.9500
C8—C111.518 (5)C22—C231.409 (4)
C8—C91.537 (5)C23—C241.367 (4)
C9—H9A0.9800C23—H23A0.9500
C9—H9B0.9800C24—H24A0.9500
C9—H9C0.9800C25—H25A0.9800
C10—H10A0.9800C25—H25B0.9800
C10—H10B0.9800C25—H25C0.9800
C7—O1—C8116.4 (2)C8—C11—H11A109.5
C12—O2—C1116.9 (2)C8—C11—H11B109.5
C20—O4—C25116.6 (2)H11A—C11—H11B109.5
O2—C1—C2110.2 (2)C8—C11—H11C109.5
O2—C1—C6107.5 (2)H11A—C11—H11C109.5
C2—C1—C6103.7 (2)H11B—C11—H11C109.5
O2—C1—H1A111.7O3—C12—O2123.4 (3)
C2—C1—H1A111.7O3—C12—C13124.9 (3)
C6—C1—H1A111.7O2—C12—C13111.7 (2)
C3—C2—C1106.3 (2)C12—C13—C15107.9 (2)
C3—C2—C7100.5 (2)C12—C13—C14110.6 (2)
C1—C2—C799.5 (2)C15—C13—C14112.2 (2)
C3—C2—H2A116.0C12—C13—H13A108.7
C1—C2—H2A116.0C15—C13—H13A108.7
C7—C2—H2A116.0C14—C13—H13A108.7
C4—C3—C2107.2 (3)C13—C14—H14A109.5
C4—C3—H3126.4C13—C14—H14B109.5
C2—C3—H3126.4H14A—C14—H14B109.5
C3—C4—C5108.5 (3)C13—C14—H14C109.5
C3—C4—H4125.7H14A—C14—H14C109.5
C5—C4—H4125.7H14B—C14—H14C109.5
C4—C5—C7100.4 (2)C16—C15—C24118.7 (3)
C4—C5—C6106.4 (2)C16—C15—C13122.8 (3)
C7—C5—C698.9 (2)C24—C15—C13118.5 (2)
C4—C5—H5A116.2C15—C16—C17121.6 (3)
C7—C5—H5A116.2C15—C16—H16A119.2
C6—C5—H5A116.2C17—C16—H16A119.2
C1—C6—C5102.3 (2)C16—C17—C22119.1 (2)
C1—C6—H6A111.3C16—C17—C18122.8 (3)
C5—C6—H6A111.3C22—C17—C18118.1 (3)
C1—C6—H6B111.3C19—C18—C17121.0 (3)
C5—C6—H6B111.3C19—C18—H18A119.5
H6A—C6—H6B109.2C17—C18—H18A119.5
O1—C7—C2113.1 (2)C18—C19—C20120.7 (3)
O1—C7—C5115.4 (2)C18—C19—H19A119.6
C2—C7—C593.8 (2)C20—C19—H19A119.6
O1—C7—H7A111.2O4—C20—C21125.0 (3)
C2—C7—H7A111.2O4—C20—C19115.3 (3)
C5—C7—H7A111.2C21—C20—C19119.7 (3)
O1—C8—C10103.8 (2)C20—C21—C22120.8 (3)
O1—C8—C11110.9 (3)C20—C21—H21A119.6
C10—C8—C11110.8 (3)C22—C21—H21A119.6
O1—C8—C9109.5 (3)C23—C22—C21122.0 (3)
C10—C8—C9110.1 (3)C23—C22—C17118.5 (2)
C11—C8—C9111.4 (3)C21—C22—C17119.4 (2)
C8—C9—H9A109.5C24—C23—C22121.1 (3)
C8—C9—H9B109.5C24—C23—H23A119.5
H9A—C9—H9B109.5C22—C23—H23A119.5
C8—C9—H9C109.5C23—C24—C15120.9 (2)
H9A—C9—H9C109.5C23—C24—H24A119.6
H9B—C9—H9C109.5C15—C24—H24A119.6
C8—C10—H10A109.5O4—C25—H25A109.5
C8—C10—H10B109.5O4—C25—H25B109.5
H10A—C10—H10B109.5H25A—C25—H25B109.5
C8—C10—H10C109.5O4—C25—H25C109.5
H10A—C10—H10C109.5H25A—C25—H25C109.5
H10B—C10—H10C109.5H25B—C25—H25C109.5

Experimental details

Crystal data
Chemical formulaC25H30O4
Mr394.49
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)11.8328 (11), 6.0084 (4), 15.2205 (15)
β (°) 96.705 (4)
V3)1074.72 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.480, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8333, 2649, 2023
Rint0.071
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.05
No. of reflections2649
No. of parameters267
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsui, G. C., Le Marquand, P., Allen, A. & Tam, W. (2009). Synthesis, pp. 609–619.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds