organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­chloro-N-phenyl­benzamide

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Environment, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.com

(Received 28 April 2011; accepted 20 May 2011; online 18 June 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C13H9Cl2NO, in which the dihedral angles between the phenyl and dichloro­phenyl rings have significantly different values [48.5 (3) and 65.1 (3)°]. In the crystal, the mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into chains running parallel to the c axis.

Related literature

For the synthesis, see: Houlihan et al. (1981[Houlihan, W. J., Uike, Y. & Parrino, V. A. (1981). J. Org. Chem. 46, 4515-17.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Cockroft et al. (2007[Cockroft, S. L., Perkins, J., Zontas, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062-1080.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Monoclinic, P 21 /c

  • a = 12.378 (3) Å

  • b = 11.657 (2) Å

  • c = 17.525 (4) Å

  • β = 91.43 (3)°

  • V = 2527.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.866, Tmax = 0.952

  • 4807 measured reflections

  • 4586 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.168

  • S = 1.00

  • 4586 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.09 2.927 (5) 163
N2—H2B⋯O1ii 0.86 1.99 2.830 (5) 165
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). There are two independent molecules in an asymmetric unit. The dihedral angle between phenyl (C1–C6) and dichlorophenyl (C8–C13) rings in one molecule is 48.5 (3)° compared to 65.1 (3)° in the other molecule. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains running parallel to the c-axis (Fig. 2). The structure is further stabilized by intramolecular interactions of the type C—H···O (Table 1).

Related literature top

For the synthesis, see: Houlihan et al. (1981). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Cockroft et al. (2007).

Experimental top

The title compound was prepared by following a reported procedure (Houlihan et al., 1981). A mixture of aniline (2.8 g, 0.03 mol), 2,6-dichlorobenzoyl chloride (6.3 g, 0.03 mol), and 6 ml triethylamine in 50 ml anhydrous tetrahydrofuran was stirred and refluxed for 8 h and then allowed to stand at room temperature. The resulting solid was filtered off and washed with water (2× 30 ml), dried over sodium sulfate (yield: 7.2 g, 90%). The title compound was purified by crystallizing from ethanol yielding crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. The intermolecular hydrogen bonds are shown as dashed lines; H-atoms not involved in H-bonding have been excluded for clarity.
2,6-Dichloro-N-phenylbenzamide top
Crystal data top
C13H9Cl2NOF(000) = 1088
Mr = 266.11Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.378 (3) Åθ = 9–13°
b = 11.657 (2) ŵ = 0.50 mm1
c = 17.525 (4) ÅT = 293 K
β = 91.43 (3)°Block, colourless
V = 2527.9 (9) Å30.30 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2154 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.866, Tmax = 0.952l = 2121
4807 measured reflections3 standard reflections every 200 reflections
4586 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H9Cl2NOV = 2527.9 (9) Å3
Mr = 266.11Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.378 (3) ŵ = 0.50 mm1
b = 11.657 (2) ÅT = 293 K
c = 17.525 (4) Å0.30 × 0.10 × 0.10 mm
β = 91.43 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2154 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.866, Tmax = 0.9523 standard reflections every 200 reflections
4807 measured reflections intensity decay: 1%
4586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
4586 reflectionsΔρmin = 0.36 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97924 (12)0.86429 (16)0.00070 (10)0.1283 (6)
N11.2544 (2)0.8856 (3)0.00933 (17)0.0602 (9)
H1A1.24640.88460.05790.072*
O11.2151 (2)0.7888 (3)0.10032 (14)0.0815 (9)
C11.3839 (4)0.9621 (4)0.0806 (3)0.0815 (13)
H1B1.38990.89050.10350.098*
Cl21.31603 (18)0.57910 (17)0.01462 (10)0.1680 (9)
C21.4429 (4)1.0533 (5)0.1066 (3)0.0895 (15)
H2A1.48881.04210.14710.107*
C31.4363 (4)1.1573 (5)0.0756 (3)0.0950 (16)
H3A1.47691.21790.09420.114*
C41.3676 (5)1.1736 (4)0.0149 (3)0.1019 (17)
H4A1.36201.24570.00750.122*
C51.3076 (4)1.0833 (4)0.0123 (3)0.0827 (13)
H5A1.26151.09450.05280.099*
C61.3161 (3)0.9770 (4)0.0205 (2)0.0566 (10)
C71.2075 (3)0.8004 (3)0.0308 (2)0.0564 (10)
C81.1439 (4)0.7168 (4)0.0145 (2)0.0638 (11)
C91.1858 (5)0.6147 (5)0.0379 (3)0.1027 (19)
C101.1226 (9)0.5356 (7)0.0811 (4)0.147 (3)
H10A1.15060.46580.09810.177*
C111.0196 (9)0.5681 (8)0.0959 (5)0.164 (5)
H11A0.97700.51850.12380.197*
C120.9770 (6)0.6660 (7)0.0728 (3)0.129 (2)
H12A0.90610.68410.08430.155*
C131.0376 (5)0.7408 (4)0.0320 (2)0.0881 (15)
Cl30.66623 (13)0.16121 (13)0.29111 (9)0.1217 (6)
Cl40.69136 (12)0.58215 (11)0.17119 (8)0.1060 (5)
O20.7863 (2)0.4326 (3)0.32969 (15)0.0806 (9)
N20.8572 (2)0.3470 (3)0.22519 (16)0.0549 (8)
H2B0.83890.31640.18210.066*
C141.0337 (3)0.2715 (4)0.2072 (2)0.0687 (11)
H14A1.00210.21780.17430.082*
C151.1440 (4)0.2708 (4)0.2186 (3)0.0863 (14)
H15A1.18660.21760.19350.104*
C161.1907 (4)0.3504 (5)0.2678 (3)0.0919 (15)
H16A1.26510.35100.27620.110*
C171.1277 (4)0.4273 (5)0.3037 (3)0.0875 (15)
H17A1.15960.48070.33660.105*
C181.0159 (4)0.4280 (4)0.2922 (2)0.0740 (12)
H18A0.97350.48110.31740.089*
C190.9687 (3)0.3490 (3)0.2431 (2)0.0562 (10)
C200.7758 (3)0.3869 (3)0.2669 (2)0.0579 (10)
C210.6667 (3)0.3711 (4)0.2297 (2)0.0549 (10)
C220.6084 (4)0.2723 (4)0.2402 (2)0.0726 (12)
C230.5063 (5)0.2590 (5)0.2082 (3)0.0966 (17)
H23A0.46840.19110.21540.116*
C240.4610 (4)0.3457 (7)0.1659 (3)0.109 (2)
H24A0.39150.33770.14520.131*
C250.5177 (4)0.4442 (6)0.1540 (3)0.0988 (18)
H25A0.48740.50270.12440.119*
C260.6198 (4)0.4571 (4)0.1857 (2)0.0722 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1012 (11)0.1715 (16)0.1128 (12)0.0422 (11)0.0185 (9)0.0025 (11)
N10.071 (2)0.075 (2)0.0347 (16)0.0089 (19)0.0004 (15)0.0037 (16)
O10.096 (2)0.110 (2)0.0395 (16)0.0249 (19)0.0091 (14)0.0131 (16)
C10.086 (3)0.092 (4)0.067 (3)0.003 (3)0.011 (3)0.003 (3)
Cl20.227 (2)0.1771 (17)0.0973 (12)0.1220 (17)0.0434 (12)0.0265 (11)
C20.082 (3)0.112 (4)0.076 (3)0.012 (3)0.016 (3)0.022 (3)
C30.103 (4)0.099 (4)0.082 (4)0.024 (4)0.009 (3)0.028 (3)
C40.134 (5)0.073 (4)0.098 (4)0.017 (4)0.005 (4)0.008 (3)
C50.100 (4)0.079 (3)0.069 (3)0.011 (3)0.005 (3)0.005 (3)
C60.058 (2)0.069 (3)0.043 (2)0.006 (2)0.0025 (19)0.006 (2)
C70.065 (3)0.064 (3)0.041 (2)0.000 (2)0.0014 (19)0.004 (2)
C80.094 (3)0.058 (3)0.039 (2)0.012 (3)0.001 (2)0.000 (2)
C90.177 (6)0.077 (4)0.053 (3)0.011 (4)0.020 (3)0.000 (3)
C100.277 (11)0.083 (5)0.080 (5)0.002 (7)0.042 (6)0.012 (4)
C110.269 (13)0.133 (8)0.091 (5)0.096 (9)0.009 (7)0.028 (5)
C120.142 (6)0.162 (7)0.084 (4)0.058 (6)0.031 (4)0.007 (4)
C130.108 (4)0.109 (4)0.048 (3)0.043 (3)0.014 (3)0.002 (3)
Cl30.1448 (13)0.1094 (11)0.1111 (11)0.0318 (10)0.0069 (9)0.0454 (9)
Cl40.1334 (12)0.0765 (9)0.1080 (10)0.0172 (8)0.0024 (9)0.0099 (8)
O20.092 (2)0.109 (2)0.0412 (15)0.0032 (19)0.0053 (14)0.0202 (16)
N20.056 (2)0.067 (2)0.0414 (17)0.0034 (17)0.0032 (15)0.0082 (15)
C140.067 (3)0.063 (3)0.076 (3)0.003 (2)0.005 (2)0.009 (2)
C150.061 (3)0.103 (4)0.095 (4)0.014 (3)0.000 (3)0.006 (3)
C160.067 (3)0.113 (4)0.095 (4)0.000 (3)0.010 (3)0.005 (3)
C170.079 (4)0.103 (4)0.080 (3)0.016 (3)0.023 (3)0.007 (3)
C180.072 (3)0.081 (3)0.069 (3)0.002 (3)0.010 (2)0.011 (2)
C190.063 (3)0.060 (3)0.045 (2)0.003 (2)0.0066 (19)0.0000 (19)
C200.068 (3)0.066 (3)0.039 (2)0.001 (2)0.008 (2)0.000 (2)
C210.055 (2)0.068 (3)0.042 (2)0.007 (2)0.0118 (18)0.006 (2)
C220.068 (3)0.091 (4)0.059 (3)0.005 (3)0.015 (2)0.006 (3)
C230.074 (4)0.130 (5)0.088 (4)0.020 (4)0.032 (3)0.027 (4)
C240.049 (3)0.182 (7)0.097 (4)0.011 (4)0.000 (3)0.047 (5)
C250.069 (4)0.143 (6)0.083 (4)0.039 (4)0.008 (3)0.021 (4)
C260.066 (3)0.088 (3)0.062 (3)0.021 (3)0.006 (2)0.011 (3)
Geometric parameters (Å, º) top
Cl1—C131.704 (6)Cl3—C221.719 (5)
N1—C71.341 (4)Cl4—C261.728 (5)
N1—C61.418 (5)O2—C201.226 (4)
N1—H1A0.8600N2—C201.343 (4)
O1—C71.232 (4)N2—C191.409 (4)
C1—C21.374 (6)N2—H2B0.8600
C1—C61.374 (5)C14—C191.373 (5)
C1—H1B0.9300C14—C151.375 (5)
Cl2—C91.723 (7)C14—H14A0.9300
C2—C31.331 (7)C15—C161.384 (6)
C2—H2A0.9300C15—H15A0.9300
C3—C41.393 (7)C16—C171.354 (6)
C3—H3A0.9300C16—H16A0.9300
C4—C51.380 (6)C17—C181.393 (6)
C4—H4A0.9300C17—H17A0.9300
C5—C61.371 (6)C18—C191.380 (5)
C5—H5A0.9300C18—H18A0.9300
C7—C81.494 (5)C20—C211.496 (5)
C8—C91.358 (6)C21—C221.374 (5)
C8—C131.387 (6)C21—C261.383 (5)
C9—C101.437 (10)C22—C231.378 (6)
C10—C111.361 (11)C23—C241.367 (7)
C10—H10A0.9300C23—H23A0.9300
C11—C121.317 (10)C24—C251.365 (8)
C11—H11A0.9300C24—H24A0.9300
C12—C131.365 (7)C25—C261.375 (6)
C12—H12A0.9300C25—H25A0.9300
C7—N1—C6126.4 (3)C20—N2—C19128.2 (3)
C7—N1—H1A116.8C20—N2—H2B115.9
C6—N1—H1A116.8C19—N2—H2B115.9
C2—C1—C6119.8 (5)C19—C14—C15121.9 (4)
C2—C1—H1B120.1C19—C14—H14A119.0
C6—C1—H1B120.1C15—C14—H14A119.0
C3—C2—C1122.1 (5)C14—C15—C16118.9 (5)
C3—C2—H2A119.0C14—C15—H15A120.5
C1—C2—H2A119.0C16—C15—H15A120.5
C2—C3—C4118.7 (5)C17—C16—C15119.9 (5)
C2—C3—H3A120.6C17—C16—H16A120.1
C4—C3—H3A120.6C15—C16—H16A120.1
C5—C4—C3120.3 (5)C16—C17—C18121.2 (5)
C5—C4—H4A119.9C16—C17—H17A119.4
C3—C4—H4A119.9C18—C17—H17A119.4
C6—C5—C4119.8 (5)C19—C18—C17119.3 (4)
C6—C5—H5A120.1C19—C18—H18A120.4
C4—C5—H5A120.1C17—C18—H18A120.4
C5—C6—C1119.4 (4)C14—C19—C18118.8 (4)
C5—C6—N1118.5 (4)C14—C19—N2118.0 (3)
C1—C6—N1122.1 (4)C18—C19—N2123.2 (4)
O1—C7—N1123.9 (4)O2—C20—N2125.1 (4)
O1—C7—C8120.6 (4)O2—C20—C21121.3 (4)
N1—C7—C8115.6 (3)N2—C20—C21113.7 (3)
C9—C8—C13117.9 (5)C22—C21—C26117.9 (4)
C9—C8—C7122.0 (5)C22—C21—C20121.1 (4)
C13—C8—C7120.1 (4)C26—C21—C20121.0 (4)
C8—C9—C10120.8 (7)C21—C22—C23121.3 (5)
C8—C9—Cl2119.5 (5)C21—C22—Cl3119.2 (4)
C10—C9—Cl2119.7 (6)C23—C22—Cl3119.4 (5)
C11—C10—C9116.5 (8)C24—C23—C22119.8 (5)
C11—C10—H10A121.7C24—C23—H23A120.1
C9—C10—H10A121.7C22—C23—H23A120.1
C12—C11—C10123.6 (10)C25—C24—C23119.9 (5)
C12—C11—H11A118.2C25—C24—H24A120.0
C10—C11—H11A118.2C23—C24—H24A120.0
C11—C12—C13119.6 (8)C24—C25—C26120.1 (6)
C11—C12—H12A120.2C24—C25—H25A119.9
C13—C12—H12A120.2C26—C25—H25A119.9
C12—C13—C8121.6 (6)C25—C26—C21121.0 (5)
C12—C13—Cl1118.8 (5)C25—C26—Cl4120.1 (4)
C8—C13—Cl1119.5 (4)C21—C26—Cl4118.9 (4)
C6—C1—C2—C30.3 (8)C19—C14—C15—C160.2 (7)
C1—C2—C3—C40.1 (8)C14—C15—C16—C170.1 (8)
C2—C3—C4—C50.0 (8)C15—C16—C17—C180.2 (8)
C3—C4—C5—C60.2 (8)C16—C17—C18—C190.3 (7)
C4—C5—C6—C10.5 (7)C15—C14—C19—C180.4 (6)
C4—C5—C6—N1179.2 (4)C15—C14—C19—N2176.9 (4)
C2—C1—C6—C50.5 (7)C17—C18—C19—C140.4 (6)
C2—C1—C6—N1179.2 (4)C17—C18—C19—N2176.8 (4)
C7—N1—C6—C5143.6 (4)C20—N2—C19—C14158.0 (4)
C7—N1—C6—C136.8 (6)C20—N2—C19—C1824.8 (6)
C6—N1—C7—O12.4 (6)C19—N2—C20—O20.4 (6)
C6—N1—C7—C8178.1 (4)C19—N2—C20—C21179.5 (4)
O1—C7—C8—C981.7 (5)O2—C20—C21—C2291.6 (5)
N1—C7—C8—C997.9 (5)N2—C20—C21—C2288.5 (4)
O1—C7—C8—C1396.4 (5)O2—C20—C21—C2686.2 (5)
N1—C7—C8—C1384.1 (5)N2—C20—C21—C2693.7 (4)
C13—C8—C9—C101.6 (7)C26—C21—C22—C230.2 (6)
C7—C8—C9—C10179.7 (5)C20—C21—C22—C23177.7 (4)
C13—C8—C9—Cl2177.8 (3)C26—C21—C22—Cl3177.3 (3)
C7—C8—C9—Cl20.3 (6)C20—C21—C22—Cl34.9 (5)
C8—C9—C10—C110.9 (10)C21—C22—C23—C240.8 (7)
Cl2—C9—C10—C11178.5 (6)Cl3—C22—C23—C24178.2 (4)
C9—C10—C11—C120.0 (13)C22—C23—C24—C251.4 (8)
C10—C11—C12—C130.2 (13)C23—C24—C25—C261.2 (8)
C11—C12—C13—C80.6 (9)C24—C25—C26—C210.2 (7)
C11—C12—C13—Cl1177.3 (6)C24—C25—C26—Cl4179.6 (4)
C9—C8—C13—C121.5 (7)C22—C21—C26—C250.5 (6)
C7—C8—C13—C12179.6 (4)C20—C21—C26—C25177.4 (4)
C9—C8—C13—Cl1176.4 (3)C22—C21—C26—Cl4179.8 (3)
C7—C8—C13—Cl11.7 (5)C20—C21—C26—Cl42.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.092.927 (5)163
N2—H2B···O1ii0.861.992.830 (5)165
C1—H1B···O10.932.462.920 (7)110
C18—H18A···O20.932.412.937 (6)116
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.378 (3), 11.657 (2), 17.525 (4)
β (°) 91.43 (3)
V3)2527.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.866, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
4807, 4586, 2154
Rint0.029
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.168, 1.00
No. of reflections4586
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.092.927 (5)163
N2—H2B···O1ii0.861.992.830 (5)165
C1—H1B···O10.932.462.920 (7)110
C18—H18A···O20.932.412.937 (6)116
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Bonian Liu from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCockroft, S. L., Perkins, J., Zontas, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062–1080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoulihan, W. J., Uike, Y. & Parrino, V. A. (1981). J. Org. Chem. 46, 4515–17.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds