organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-[1-(4-Bromo­phen­yl)-1-hy­dr­oxy­ethyl]-5,5-di­methyl-1,3,2-dioxaphos­phinane 2-oxide

aKey Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 5 March 2011; accepted 29 May 2011; online 18 June 2011)

In the crystal structure of the title mol­ecule, C13H18BrO4P, the phospho­nate ring adopts a chair conformation. Mol­ecules are linked by an O—H⋯O hydrogen bond [O⋯O = 2.780 (3) Å] to form chains parallel to the c axis. Two C—H⋯O inter­actions help to stabilize the crystal structure.

Related literature

For the synthesis and biological activity of hy­droxy­phospho­nate derivatives, see: Peng et al. (2007[Peng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871-1880.]); Liu et al. (2006[Liu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207-11217.]). For the synthesis of hy­droxy­phospho­nates, see: Zhou et al. (2008[Zhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392-394.]). For standard bond lengths, see: (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18BrO4P

  • Mr = 349.15

  • Orthorhombic, P 21 21 21

  • a = 11.0662 (17) Å

  • b = 11.3149 (18) Å

  • c = 11.9609 (19) Å

  • V = 1497.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 298 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 10072 measured reflections

  • 3627 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 0.93

  • 3627 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1517 Friedel pairs

  • Flack parameter: −0.011 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.01 2.780 (3) 156
C9—H9B⋯O1 0.97 2.58 3.163 (4) 119
C11—H11A⋯O2i 0.97 2.57 3.517 (4) 165
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON and SHELXL97.

Supporting information


Comment top

Acyclic and cyclic α-hydroxyphosphonates can be used as very viable intermediates and they are also an attractive class of biologically active compounds (Peng et al., 2007; Liu et al., 2006). In our research work aimed at searching for novel agrochemicals, we attempted to synthesize hydroxyphosphonates according to published literature procedures. Here we report the synthesis and crystal structure of the chiral title compound (I) (Fig. 1). The bond lengths and angles show normal values (Allen et al., 1987). In the crystal structure, the cyclic phosphonate ring adopts a chair conformation.

Related literature top

For the synthesis and biological activity of hydroxyphosphonate derivatives, see: Peng et al. (2007); Liu et al. (2006). For the synthesis of hydroxyphosphonates, see: Zhou et al. (2008). For standard bond lengths, see: (Allen et al., 1987).

Experimental top

Hydroxyphosphonate (I) was prepared according to a literature procedure (Zhou et al., 2008). Diethylaluminium chloride (1 mmol) was added to a solution of (S,E)-2-(adamantan-1-yl)-4-(tert-butyl)-6(((1-hydroxy-3-methylbutan-2-yl)imino)methyl)-phenol (1 mmol) in dichloromethane (10 ml). The mixture was stirred at room temperature for 1 h. The ketone (11 mmol) and the cyclic phosphate (10 mmol) were added and the mixture was stirred for 2 h. The reaction was quenched by diluted hydrochloric acid (15:1, v/v). The pure hydroxyphosphonate was afforded by column chromatography on silica gel (acetone/petroleum ether = 1:2), 71% yield, [α]D = -64.8 ° (c = 0.56, chloroform). Then recrystallization from acetic ester over a period of one week gave colourless crystals of (I).

Refinement top

C-bound H atoms were geometrically positioned (C—H = 0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq–1.5Ueq(C). The O-bound H atom was located from a difference Fourier map and refined as riding, with O—H = 0.81 (2) Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the labeling scheme and 50% probability thermal ellipsoids.
[Figure 2] Fig. 2. Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.
(S)-2-[1-(4-Bromophenyl)-1-hydroxyethyl]-5,5-dimethyl-1,3,2- dioxaphosphinane 2-oxide top
Crystal data top
C13H18BrO4PF(000) = 712
Mr = 349.15Dx = 1.549 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3882 reflections
a = 11.0662 (17) Åθ = 2.5–26.7°
b = 11.3149 (18) ŵ = 2.86 mm1
c = 11.9609 (19) ÅT = 298 K
V = 1497.7 (4) Å3Block, colourless
Z = 40.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2691 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.114
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
ϕ and ω scansh = 1414
10072 measured reflectionsk = 1414
3627 independent reflectionsl = 1512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
3627 reflectionsΔρmax = 0.46 e Å3
176 parametersΔρmin = 0.45 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1517 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (10)
Crystal data top
C13H18BrO4PV = 1497.7 (4) Å3
Mr = 349.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.0662 (17) ŵ = 2.86 mm1
b = 11.3149 (18) ÅT = 298 K
c = 11.9609 (19) Å0.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2691 reflections with I > 2σ(I)
10072 measured reflectionsRint = 0.114
3627 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.46 e Å3
S = 0.93Δρmin = 0.45 e Å3
3627 reflectionsAbsolute structure: Flack (1983), with 1517 Friedel pairs
176 parametersAbsolute structure parameter: 0.011 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07457 (4)0.16872 (4)0.69930 (5)0.0869 (2)
C10.0650 (3)0.2689 (3)0.7001 (3)0.0535 (8)
C20.0982 (3)0.3216 (3)0.7973 (3)0.0533 (8)
H20.05200.31130.86150.064*
C30.2007 (3)0.3905 (3)0.8000 (3)0.0429 (7)
H30.22440.42500.86710.052*
C40.2690 (2)0.4094 (2)0.7050 (3)0.0373 (6)
C50.2317 (3)0.3561 (3)0.6058 (3)0.0498 (8)
H50.27620.36790.54080.060*
C60.1288 (3)0.2857 (3)0.6026 (3)0.0542 (9)
H60.10370.25070.53620.065*
C70.3824 (3)0.4854 (2)0.7128 (3)0.0364 (6)
C80.4129 (4)0.5472 (3)0.6033 (3)0.0557 (9)
H8A0.34640.59650.58130.084*
H8B0.42770.48920.54640.084*
H8C0.48380.59490.61330.084*
C90.5250 (3)0.4228 (4)0.9724 (3)0.0608 (10)
H9A0.51860.37691.04060.073*
H9B0.47120.49020.97910.073*
C100.6530 (3)0.4663 (4)0.9596 (3)0.0598 (10)
C110.6616 (3)0.5380 (3)0.8524 (3)0.0544 (9)
H11A0.61130.60790.85920.065*
H11B0.74440.56380.84190.065*
C120.6801 (5)0.5486 (6)1.0566 (4)0.1081 (19)
H12A0.62970.61741.05140.162*
H12B0.76350.57201.05400.162*
H12C0.66440.50851.12580.162*
C130.7422 (4)0.3633 (4)0.9547 (5)0.0885 (15)
H13A0.72810.31121.01670.133*
H13B0.82330.39320.95850.133*
H13C0.73140.32080.88600.133*
O10.36447 (19)0.56809 (16)0.80211 (19)0.0426 (5)
H10.39950.63010.78740.064*
O20.5245 (2)0.28766 (19)0.6800 (2)0.0596 (6)
O30.48668 (19)0.34977 (18)0.8773 (2)0.0497 (5)
O40.6236 (2)0.4709 (2)0.7554 (2)0.0520 (6)
P10.50921 (6)0.38934 (6)0.75398 (7)0.03831 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0855 (3)0.0813 (3)0.0938 (3)0.0491 (2)0.0168 (3)0.0076 (2)
C10.0510 (16)0.0373 (14)0.072 (2)0.0124 (14)0.013 (2)0.0034 (18)
C20.0555 (18)0.0470 (16)0.057 (2)0.0092 (15)0.0010 (18)0.0093 (18)
C30.0469 (15)0.0378 (14)0.0441 (16)0.0061 (13)0.0027 (15)0.0018 (16)
C40.0366 (13)0.0287 (12)0.0464 (16)0.0067 (11)0.0042 (14)0.0006 (13)
C50.0528 (17)0.0502 (19)0.0464 (18)0.0022 (17)0.0007 (15)0.0032 (16)
C60.0547 (18)0.0492 (18)0.059 (2)0.0037 (18)0.0127 (18)0.0109 (17)
C70.0373 (13)0.0317 (12)0.0400 (15)0.0021 (11)0.0015 (13)0.0030 (12)
C80.064 (2)0.0477 (17)0.055 (2)0.0051 (19)0.0061 (18)0.0061 (16)
C90.0599 (19)0.077 (2)0.0454 (19)0.006 (2)0.0014 (17)0.0083 (18)
C100.0461 (17)0.067 (2)0.067 (2)0.0070 (18)0.0158 (18)0.002 (2)
C110.0437 (16)0.0476 (19)0.072 (2)0.0055 (15)0.0129 (17)0.0052 (18)
C120.104 (4)0.146 (5)0.074 (3)0.010 (4)0.031 (3)0.029 (4)
C130.063 (2)0.079 (3)0.124 (4)0.015 (2)0.022 (3)0.020 (3)
O10.0476 (11)0.0263 (9)0.0540 (13)0.0040 (8)0.0070 (11)0.0088 (10)
O20.0618 (13)0.0404 (11)0.0768 (17)0.0148 (12)0.0035 (13)0.0178 (11)
O30.0441 (10)0.0430 (11)0.0619 (13)0.0006 (11)0.0005 (11)0.0105 (10)
O40.0416 (10)0.0596 (13)0.0548 (13)0.0138 (11)0.0053 (11)0.0026 (12)
P10.0339 (3)0.0299 (3)0.0511 (4)0.0027 (3)0.0014 (3)0.0047 (3)
Geometric parameters (Å, º) top
Br1—C11.915 (3)C9—C101.508 (5)
C1—C21.357 (5)C9—H9A0.9700
C1—C61.377 (5)C9—H9B0.9700
C2—C31.377 (4)C10—C121.518 (7)
C2—H20.9300C10—C111.520 (5)
C3—C41.382 (5)C10—C131.528 (5)
C3—H30.9300C11—O41.449 (4)
C4—C51.393 (5)C11—H11A0.9700
C4—C71.524 (4)C11—H11B0.9700
C5—C61.391 (5)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C7—O11.434 (4)C13—H13A0.9600
C7—C81.522 (5)C13—H13B0.9600
C7—P11.842 (3)C13—H13C0.9600
C8—H8A0.9600O1—H10.8200
C8—H8B0.9600O2—P11.461 (2)
C8—H8C0.9600O3—P11.562 (2)
C9—O31.469 (4)O4—P11.566 (2)
C2—C1—C6121.7 (3)H9A—C9—H9B107.9
C2—C1—Br1118.9 (3)C9—C10—C12107.9 (4)
C6—C1—Br1119.4 (3)C9—C10—C11108.6 (3)
C1—C2—C3119.5 (3)C12—C10—C11107.8 (4)
C1—C2—H2120.3C9—C10—C13111.3 (3)
C3—C2—H2120.3C12—C10—C13111.7 (4)
C2—C3—C4121.3 (3)C11—C10—C13109.6 (3)
C2—C3—H3119.4O4—C11—C10112.2 (3)
C4—C3—H3119.4O4—C11—H11A109.2
C3—C4—C5118.1 (3)C10—C11—H11A109.2
C3—C4—C7119.2 (3)O4—C11—H11B109.2
C5—C4—C7122.7 (3)C10—C11—H11B109.2
C6—C5—C4120.9 (3)H11A—C11—H11B107.9
C6—C5—H5119.5C10—C12—H12A109.5
C4—C5—H5119.5C10—C12—H12B109.5
C1—C6—C5118.4 (3)H12A—C12—H12B109.5
C1—C6—H6120.8C10—C12—H12C109.5
C5—C6—H6120.8H12A—C12—H12C109.5
O1—C7—C8111.8 (2)H12B—C12—H12C109.5
O1—C7—C4107.5 (2)C10—C13—H13A109.5
C8—C7—C4112.9 (3)C10—C13—H13B109.5
O1—C7—P1106.92 (19)H13A—C13—H13B109.5
C8—C7—P1109.4 (2)C10—C13—H13C109.5
C4—C7—P1108.11 (18)H13A—C13—H13C109.5
C7—C8—H8A109.5H13B—C13—H13C109.5
C7—C8—H8B109.5C7—O1—H1109.5
H8A—C8—H8B109.5C9—O3—P1121.6 (2)
C7—C8—H8C109.5C11—O4—P1123.5 (2)
H8A—C8—H8C109.5O2—P1—O3111.41 (14)
H8B—C8—H8C109.5O2—P1—O4112.12 (14)
O3—C9—C10112.1 (3)O3—P1—O4106.72 (12)
O3—C9—H9A109.2O2—P1—C7112.97 (13)
C10—C9—H9A109.2O3—P1—C7107.47 (13)
O3—C9—H9B109.2O4—P1—C7105.74 (13)
C10—C9—H9B109.2
C6—C1—C2—C32.4 (5)C12—C10—C11—O4173.3 (4)
Br1—C1—C2—C3177.7 (2)C13—C10—C11—O465.0 (4)
C1—C2—C3—C41.6 (5)C10—C9—O3—P147.2 (4)
C2—C3—C4—C50.3 (4)C10—C11—O4—P143.1 (4)
C2—C3—C4—C7179.4 (3)C9—O3—P1—O2150.2 (2)
C3—C4—C5—C60.2 (4)C9—O3—P1—O427.5 (3)
C7—C4—C5—C6178.8 (3)C9—O3—P1—C785.6 (2)
C2—C1—C6—C51.8 (5)C11—O4—P1—O2148.2 (2)
Br1—C1—C6—C5178.3 (2)C11—O4—P1—O325.9 (3)
C4—C5—C6—C10.5 (5)C11—O4—P1—C788.3 (3)
C3—C4—C7—O128.2 (3)O1—C7—P1—O2169.99 (19)
C5—C4—C7—O1152.7 (3)C8—C7—P1—O268.8 (2)
C3—C4—C7—C8152.0 (3)C4—C7—P1—O254.6 (2)
C5—C4—C7—C829.0 (4)O1—C7—P1—O346.7 (2)
C3—C4—C7—P186.8 (3)C8—C7—P1—O3167.9 (2)
C5—C4—C7—P192.2 (3)C4—C7—P1—O368.8 (2)
O3—C9—C10—C12175.4 (4)O1—C7—P1—O467.0 (2)
O3—C9—C10—C1158.9 (4)C8—C7—P1—O454.2 (2)
O3—C9—C10—C1361.8 (4)C4—C7—P1—O4177.5 (2)
C9—C10—C11—O456.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.012.780 (3)156
C9—H9B···O10.972.583.163 (4)119
C11—H11A···O2i0.972.573.517 (4)165
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H18BrO4P
Mr349.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.0662 (17), 11.3149 (18), 11.9609 (19)
V3)1497.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10072, 3627, 2691
Rint0.114
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 0.93
No. of reflections3627
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.45
Absolute structureFlack (1983), with 1517 Friedel pairs
Absolute structure parameter0.011 (10)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.012.780 (3)156.2
C9—H9B···O10.972.583.163 (4)118.8
C11—H11A···O2i0.972.573.517 (4)164.6
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the National Basic Research Program of China (grant No. 2010CB126100) and the National Natural Science Foundation of China (grant No. 20772042,21002037). This work was supported in part by the PCSIRT (grant No. IRT0953).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207–11217.  CrossRef CAS Google Scholar
First citationPeng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871–1880.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392–394.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds