metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m853-m854

Crystallographic coincidence of two bridging species in a dinuclear CoIII ethynyl­benzene complex

aDepartment of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
*Correspondence e-mail: matthew.shores@colostate.edu

(Received 20 April 2011; accepted 25 May 2011; online 4 June 2011)

In the title compound, trans,trans-[μ-(m-phenyl­ene)bis­(ethyne-1,2-di­yl)]bis­[chlorido(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)cobalt(III)]–trans,trans-[μ-(5-bromo-m-phenyl­ene)bis­(ethyne-1,2-di­yl)]bis­[chlorido(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)cobalt(III)]–tetra­phenyl­borate–acetone (0.88/0.12/2/4), [Co2(C12H4)Cl2(C10H24N4)2]0.88[Co2(C10H3Br)Cl2(C10H24N4)2]0.12(C24H20B)2·4C3H6O, with the exception of the acetyl­ene and bromine groups, all atomic postitions are the same in the two compounds and are modeled at full occupancy. The CoIII ions are six-coordinate with acetyl­ide and chloride ligands bound to the axial sites and the N atoms from the cyclam rings coordinated at the equatorial positions. N—H⋯O and N—H⋯Cl hydrogen-bonding interactions help to consolidate the crystal packing.

Related literature

Metallodendrimers are of inter­est for their unique catalytic and optical properties, see: Mery & Astruc (2006[Mery, D. & Astruc, D. (2006). Coord. Chem. Rev. 250, 1965-1979.]); Onitsuka & Takahashi (2003[Onitsuka, K. & Takahashi, S. (2003). Top. Curr. Chem. 228, 39-63.]). For Pt(II)- and Ru(II)-containing dendrimers based on a 1,3,5-triethynyl­benzene (H3TEB) linkage, see: Onitsuka et al. (2004[Onitsuka, K., Fujimoto, M., Kitajima, H., Ohshiro, N., Takei, F. & Takahashi, S. (2004). Chem. Eur. J. 10, 6433-6446.]); McDonagh et al. (2003[McDonagh, A. M., Powell, C. E., Morall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.]). For a discussion of the structural similarity between halogen and ethynyl substituents, see: Robinson et al. (1998[Robinson, J. M. A., Kariuki, B. M., Harris, K. D. M. & Philp, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2459-2470.]). For related metal–acetyl­ide structures, see: Weyland et al. (1998[Weyland, T., Costuas, K., Mari, A., Halet, J.-F. & Lapinte, C. (1998). Organometallics, 17, 5569-5579.]); Onitsuka et al. (2004[Onitsuka, K., Fujimoto, M., Kitajima, H., Ohshiro, N., Takei, F. & Takahashi, S. (2004). Chem. Eur. J. 10, 6433-6446.]). For the structure of [(cyclam)CoCl2]Cl, see: Ivaniková et al. (2006[Ivaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553-m1554.]). For the preparation of trans-[(cyclam)CoCl2]Cl, see: Bosnich et al. (1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]). General Sonogashira conditions were used to prepare a mixture of 1,3,5-triethynyl­benzene and 1-bromo-3,5-diethynyl­benzene (Weber et al., 1988[Weber, E., Hecker, M., Koepp, E., Orlia, W., Czugler, M. & Csöregh, I. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1251-1257.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C12H4)Cl2(C10H24N4)2]0.88[Co2(C10H3Br)Cl2(C10H24N4)2]0.12·(C24H20B)2·4C3H6O

  • Mr = 1614.61

  • Triclinic, [P \overline 1]

  • a = 10.1434 (4) Å

  • b = 17.1412 (7) Å

  • c = 25.5250 (11) Å

  • α = 92.609 (1)°

  • β = 96.864 (1)°

  • γ = 104.323 (1)°

  • V = 4256.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 120 K

  • 0.60 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.729, Tmax = 0.850

  • 40567 measured reflections

  • 25801 independent reflections

  • 20379 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.02

  • 25801 reflections

  • 1001 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯Cl2i 0.93 2.48 3.2377 (12) 139
N6—H6⋯O3 0.93 2.15 2.9440 (19) 143
N7—H7⋯O2 0.93 2.11 2.9894 (17) 157
N8—H8⋯O1 0.93 2.03 2.8730 (17) 149
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

From a technological standpoint, metallodendrimers are of interest for their unique catalytic and optical properties (Mery & Astruc, 2006; Onitsuka & Takahashi, 2003). A particular subset of metallodendrimers based on ethynylbenzene have been pursued because of their structural rigidity and topological anisotropy. Although a variety of Pt(II)- and Ru(II)-containing dendrimers based on a 1,3,5-triethynylbenzene (H3TEB) linkage have been reported (Onitsuka et al., 2004; McDonagh et al., 2003), we are interested in the properties of first row transition metal TEB complexes for potential applications in molecular magnetism (Weyland et al., 1998). For elaboration to higher nuclearity species, the inclusion of an axially coordinated anionic ligand that is poized for substitution is vital.

The synthesis of these macromolecules can be accomplished by divergent or convergent pathways; regardlesss, each strategy hinges upon the isolation of structurally characterized "building blocks" prior to dendrimer assembly. The preparation of complexes that contain first-row metals is synthetically challenging because of their high kinetic lability relative to their second and third row counterparts. In that respect, our initial synthetic targets contain CoIII because of its relative inertness.

The combination of H3TEB with two equivalents of trans-[(cyclam)CoCl2]Cl produces the dinuclear CoIII arylacetylide-bridged complex 1 in good yield (Figure 1). Initial refinement attempts on high quality X-ray data did not converge satisfactorily, as the third aromatic substituent showed apparent disorder of the alkynyl group. However, structure refinement proceeds smoothly if compositional disorder is invoked. The accepted method for the preparation of 1,3,5-triethynylbenzene involves Sonogashira coupling between 1,3,5-tribromobenzene and trimethylsilylacetylene (Weber et al., 1988). On one occasion, following the protocol resulted in a batch of TEB containing a sizeable amount of 1-bromo-3,5-diethynylbenzene (Robinson et al., 1998), indicating incomplete substitution. The impurity was carried through several purification steps, eventually affording a mixture of the ethynyl- (1) and bromo- (2) substituted complexes. The crystal structure revealed that both components of the ligand mixture were incorporated into metal complexes and the atomic sites were superimposed. During structure refinement, the compositional disorder at the aromatic 1 position was modeled with a free variable. Final site occupancy factors indicate that the two ligand components are present in an 88:12 1:2 ratio. This compares favorably with subsequent 1H NMR analysis of the batch of "H3TEB" ligand, which shows resonance integrations in an 87:13 H3TEB:H2BrTEB ratio.

The molecular structure of the complex cations in 1 and 2 are shown in Figure 1. Each pseudo-octahedral CoIII center coordinates four nitrogen atoms from the cyclam rings at the equitorial positions with an average Co—N bond length of 1.9767 (11) Å, which is only slightly longer than the corresponding bond length from the reported structure of trans-[(cyclam)CoCl2]Cl (1.9741 (12); Ivaniková et al., 2006). Anionic chloride and acetylide ligands occupy the axial CoIII coordination sites with average metal-ligand distances of 2.3076 (4) and 1.8770 (14) respectively. The former bond length is significantly longer than the average Co—Cl distance in trans-[(cyclam)CoCl2]Cl, suggesting that the arylacetylide ligand imparts a stronger trans influence than chloride. The cationic charge is balanced by the presence of two tetraphenylborate anions, and the asymmetric unit includes four molecules of acetone.

Shown in Figure 2, the crystal packing in 1 and 2 is influenced by several weak hydrogen bonding interactions. Notably, the complex cations experience a dimeric interaction through pairwise N—H···Cl contacts with a complex in a neighboring unit cell. Furthermore, three of the four acetone molecules participate in hydrogen bonds through the cyclam N–H groups.

In summary, a mixture of H3TEB and 1-bromo-3,5-diethynylbenzene combined with trans-[(cyclam)CoCl2]Cl to yield a co-crystallized mixture of 1 and 2. The compounds are superimposed in the solid state with the exception of the 5-position acetylene and bromine groups. Using a free variable to model the compositional disorder, we conclude that the two compounds are present in a 88:12 ratio. The first coordination sphere for each CoIII ion includes an axially replaceable chloride ligand, which is a necessary condition for future metallodendrimer assembly. This result exemplifies the key role of crystallographic analysis in organometallic synthesis development.

Related literature top

Metallodendrimers are of interest for their unique catalytic and optical properties, see: Mery & Astruc (2006); Onitsuka & Takahashi (2003). For Pt(II)- and Ru(II)-containing dendrimers based on a 1,3,5-triethynylbenzene (H3TEB) linkage, see: Onitsuka et al. (2004); McDonagh et al. (2003). For a discussion of the structural similarity between halogen and ethynyl substituents, see: Robinson et al. (1998). For related metal–acetylide structures, see: Weyland et al. (1998); Onitsuka et al. (2004). For the structure of [(cyclam)CoCl2]Cl, see: Ivaniková et al. (2006). For the preparation of trans-[(cyclam)CoCl2]Clrelated literature, see: Bosnich et al. (1965). General Sonogashira conditions were used to prepare a mixture of 1,3,5-triethynylbenzene and 1-bromo-3,5-diethynylbenzene (Weber et al., 1988).

Experimental top

trans-[(cyclam)CoCl2]Cl was prepared by a previously descibed method (Bosnich et al. 1965). General Sonogashira conditions were used to prepare a mixture of 1,3,5-triethynylbenzene and 1-bromo-3,5-diethynylbenzene (Weber et al., 1988). Triethylamine was purchased from Sigma-Aldrich and was distilled prior to use.

Elemental analysis was performed by Robertson Microlit in Madison, NJ.

Preparation of 1 and 2: Triethylamine (0.34 ml, 2.42 mmol) was added to a 100 ml round-bottomed flask containing a green methanolic (10 ml) solution of [(cyclam)CoCl2]Cl (233 mg, 0.637 mmol) and freshly sublimed mixture (45.5 mg) of 1,3,5-triethynylbenzene (87% by 1H NMR) and 1-bromo-3,5-diethynylbenzene (13% by 1H NMR). The flask was fitted with a condenser tube and the solution was refluxed for 24 h, during which time the solution turned orange-brown. The solvent was removed by rotary evaporation, and the resulting red-brown residue was washed with 10 ml of absolute ethanol, causing an orange solid to precipitate. The solid was isolated by filtration, washed with ethanol (3 × 3 ml) and diethyl ether (3 × 3 ml) and dried in air to afford 92.1 mg of an orange solid. The orange solid was dissolved in methanol (10 ml) and a solution of excess sodium tetraphenylborate in methanol (5 ml) was added, causing a salmon-colored solid to precipitate. The solid was isolated by filtration, washed with methanol (3 × 3 ml) and diethyl ether (3 × 3 ml) and dried in air to afford 131 mg of product (0.094 mmol, 30% based on [(cyclam)CoCl2]Cl). Anal. Calcd. for C85.74H103.87B2Br0.13Cl2Co2N8O2: C, 68.68; H, 6.98; N, 7.47. Found: C, 68.33; H, 7.02; N, 7.85. Single crystals suitable for X-ray analysis were grown by diffusing diethyl ether vapor into a concentrated solution of the compound in acetone for 2 days.

Refinement top

Displacement parameters for all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to ideal positions and were refined using a riding model where the displacement parameters were set at 1.2 times those of the attached carbon or nitrogen atoms (1.5 times for methyl protons).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the superimposed complex cations present in 1 and 2 with atomic numbering scheme and thermal ellipsoids rendered at 40° probability. Orange, green, blue, gray, and red ellipsoids represent cobalt, chlorine, nitrogen, carbon, and bromine atoms respectively. With the exception of the acetylenic hydrogen (H1A, represented by a gray shaded sphere), hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonding interactions present in the solid state structures of 1 and 2. Thermal ellipsoids are rendered at 40% probability. Red ellipsoids represent oxygen atoms. Otherwise, the color scheme is identical to that found in Figure 1. Tetraphenylborate anions, the acetone molecule that includes O4 (which does not participate in H-bonding), the bromine substituent present in 2, and hydrogen atoms that do not participate in H-bonding have been omitted.
trans,trans-[µ-(m-phenylene)bis(ethyne-1,2- diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]– trans,trans-[µ-(5-bromo-m-phenylene)bis(ethyne-1,2- diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]– tetraphenylborate–acetone (0.88/0.12/2/4) top
Crystal data top
[Co2(C12H4)Cl2(C10H24N4)2]0.88[Co2(C10H3Br)Cl2(C10H24N4)2]0.12·(C24H20B)2·4C3H6OZ = 2
Mr = 1614.61F(000) = 1711.8
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1434 (4) ÅCell parameters from 9660 reflections
b = 17.1412 (7) Åθ = 2.1–33.1°
c = 25.5250 (11) ŵ = 0.56 mm1
α = 92.609 (1)°T = 120 K
β = 96.864 (1)°Block, orange
γ = 104.323 (1)°0.60 × 0.30 × 0.30 mm
V = 4256.2 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
25801 independent reflections
Radiation source: fine-focus sealed tube20379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.729, Tmax = 0.850k = 2423
40567 measured reflectionsl = 3635
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.6289P]
where P = (Fo2 + 2Fc2)/3
25801 reflections(Δ/σ)max = 0.002
1001 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co2(C12H4)Cl2(C10H24N4)2]0.88[Co2(C10H3Br)Cl2(C10H24N4)2]0.12·(C24H20B)2·4C3H6Oγ = 104.323 (1)°
Mr = 1614.61V = 4256.2 (3) Å3
Triclinic, P1Z = 2
a = 10.1434 (4) ÅMo Kα radiation
b = 17.1412 (7) ŵ = 0.56 mm1
c = 25.5250 (11) ÅT = 120 K
α = 92.609 (1)°0.60 × 0.30 × 0.30 mm
β = 96.864 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
25801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
20379 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.850Rint = 0.016
40567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
25801 reflectionsΔρmin = 0.42 e Å3
1001 parameters
Special details top

Experimental. Although we cannot explain the source of the Hirshfield tests that give rise to the B– and C-level alerts, there is no evidence of substitutional disorder at the atomic sites mentioned in the alerts. The reason for the presence of a non-integer number of atoms is due to substitutional disorder between bromine and acetylene substituents as descibed in the text. Four reflections were omitted from refinement due to beamstop interference. Probable reasons for the missing cusp of data include beamstop interference and data truncation at resolutions higher than 0.70 Å during the initial stages of refinement. The low "solvent" Ueq in C88 C91 (the central C atoms in two of the acetone molecules) compared to neighboring atoms cannot be explained by substitutional disorder or incorrect atom type. However, we note that the differences in Ueq are relatively minor. The four D—H groups on the cyclam rings do not interact with acceptors. This has been checked and the exception is apparently common for N—H groups. One of the tetraphenylborate anions and one of the acetone molecules do not have their centers of gravity within the unit cell. Since neither molecule is the main species, there is no cause for alarm. The s.u. values for the unit cell angles have been checked, and the fact that all angles have the same s.u. is purely coincedental. The long C(sp2)-C(sp1) bonds noted for C5—C9 and C7—C11 appear to be real. Since these bonds include an aromatic carbon, this may be a false alarm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.569900 (17)0.158047 (10)0.401709 (7)0.01310 (4)
Co20.839505 (18)0.470946 (10)0.098236 (7)0.01540 (4)
Cl10.42722 (3)0.056323 (18)0.439190 (13)0.01862 (6)
Cl20.78675 (3)0.45872 (2)0.006915 (13)0.02340 (7)
N10.72417 (11)0.10677 (6)0.41499 (4)0.0158 (2)
H10.79610.13770.39950.019*
N20.50440 (11)0.10322 (7)0.33001 (4)0.0173 (2)
H20.55740.13420.30740.021*
N30.63209 (11)0.21325 (6)0.47314 (4)0.0163 (2)
H30.57390.18430.49500.020*
N40.41663 (11)0.20999 (7)0.38934 (4)0.0170 (2)
H40.34770.18180.40740.020*
N51.03433 (12)0.51527 (7)0.09070 (5)0.0187 (2)
H51.03940.50990.05460.022*
N60.85298 (12)0.35773 (7)0.09466 (5)0.0208 (2)
H60.84490.34190.05880.025*
N70.64379 (12)0.42663 (7)0.10699 (5)0.0215 (2)
H70.63930.43240.14310.026*
N80.82626 (12)0.58398 (7)0.10179 (5)0.0202 (2)
H80.83320.59970.13760.024*
B11.27714 (15)0.10990 (8)0.14789 (6)0.0172 (3)
B20.21036 (15)0.23378 (8)0.57547 (6)0.0156 (3)
O10.87863 (16)0.68935 (8)0.19688 (5)0.0460 (3)
O20.54710 (14)0.43689 (8)0.21263 (5)0.0436 (3)
O30.86420 (18)0.24635 (10)0.00500 (7)0.0645 (5)
O41.3523 (2)0.69047 (12)0.18809 (10)0.1043 (8)
C11.3457 (4)0.50591 (15)0.40696 (12)0.0352 (6)0.8771 (17)
H1A1.43330.52620.42740.042*0.8771 (17)
C21.2357 (3)0.48043 (18)0.38132 (13)0.0226 (6)0.8771 (17)
C31.10471 (13)0.44906 (7)0.35041 (5)0.0168 (2)
C41.00746 (13)0.38761 (7)0.36879 (5)0.0166 (2)
H4A1.02800.36760.40210.020*
C50.87944 (13)0.35534 (7)0.33824 (5)0.0156 (2)
C60.85153 (13)0.38488 (7)0.28917 (5)0.0162 (2)
H6A0.76530.36270.26810.019*
C70.94862 (13)0.44665 (7)0.27051 (5)0.0156 (2)
C81.07510 (13)0.47938 (7)0.30170 (5)0.0169 (2)
H8A1.14090.52220.28980.020*
C90.77736 (14)0.29242 (8)0.35681 (5)0.0176 (2)
C100.69030 (13)0.24154 (8)0.37286 (5)0.0174 (2)
C110.91742 (14)0.47036 (8)0.21806 (5)0.0188 (3)
C120.88563 (13)0.47697 (8)0.17195 (5)0.0181 (2)
C130.65879 (16)0.01084 (9)0.33459 (6)0.0256 (3)
H13A0.66400.04340.32140.031*
H13B0.72310.05130.31710.031*
C140.51399 (15)0.01905 (8)0.31905 (6)0.0237 (3)
H14A0.48550.00270.28080.028*
H14B0.45030.01770.33900.028*
C150.36217 (14)0.11045 (9)0.31500 (6)0.0217 (3)
H15A0.29680.07100.33280.026*
H15B0.33540.10000.27620.026*
C160.36136 (15)0.19552 (9)0.33246 (6)0.0223 (3)
H16A0.41900.23450.31180.027*
H16B0.26660.20220.32680.027*
C170.44139 (14)0.29657 (8)0.40764 (6)0.0209 (3)
H17A0.35560.31390.39920.025*
H17B0.51190.32940.38840.025*
C180.48881 (14)0.31183 (8)0.46657 (6)0.0214 (3)
H18A0.42150.27550.48540.026*
H18B0.48990.36810.47770.026*
C190.63025 (14)0.29889 (8)0.48330 (6)0.0212 (3)
H19A0.69770.33350.46360.025*
H19B0.65810.31530.52150.025*
C200.77018 (14)0.20181 (8)0.49135 (6)0.0209 (3)
H20A0.79000.20990.53040.025*
H20B0.84150.24130.47620.025*
C210.76967 (14)0.11677 (8)0.47297 (5)0.0195 (3)
H21A0.86280.10820.48070.023*
H21B0.70590.07720.49120.023*
C220.70448 (14)0.02212 (8)0.39365 (6)0.0208 (3)
H22A0.63480.01390.41170.025*
H22B0.79190.00630.40140.025*
C230.95084 (16)0.63438 (9)0.08301 (6)0.0252 (3)
H23A0.96490.69180.09540.030*
H23B0.94070.62980.04390.030*
C241.07054 (15)0.60369 (8)0.10543 (6)0.0243 (3)
H24A1.15430.63090.09060.029*
H24B1.08790.61440.14440.029*
C251.13921 (14)0.47734 (9)0.11654 (6)0.0240 (3)
H25A1.14350.48480.15550.029*
H25B1.23040.50440.10710.029*
C261.10616 (16)0.38797 (10)0.09968 (6)0.0276 (3)
H26A1.09300.38090.06050.033*
H26B1.18570.36710.11270.033*
C270.97936 (16)0.33818 (9)0.11963 (6)0.0259 (3)
H27A0.97230.28010.11180.031*
H27B0.98800.34870.15850.031*
C280.72867 (16)0.30731 (9)0.11401 (7)0.0278 (3)
H28A0.74010.31180.15320.033*
H28B0.71400.24990.10150.033*
C290.60835 (16)0.33832 (9)0.09228 (7)0.0279 (3)
H29A0.58990.32770.05330.034*
H29B0.52520.31090.10740.034*
C300.53936 (15)0.46438 (10)0.08077 (7)0.0294 (3)
H30A0.44820.43780.09040.035*
H30B0.53480.45590.04190.035*
C310.57201 (17)0.55400 (11)0.09648 (7)0.0325 (4)
H31A0.58450.56230.13560.039*
H31B0.49270.57460.08270.039*
C320.69956 (16)0.60282 (10)0.07628 (7)0.0291 (3)
H32A0.69110.59120.03750.035*
H32B0.70670.66110.08340.035*
C331.16400 (14)0.02199 (8)0.13641 (6)0.0193 (3)
C341.15249 (15)0.03715 (8)0.17315 (6)0.0235 (3)
H341.21840.02780.20400.028*
C351.04886 (17)0.10891 (9)0.16644 (7)0.0295 (3)
H351.04510.14710.19240.035*
C360.95161 (17)0.12430 (9)0.12182 (8)0.0351 (4)
H360.88010.17280.11700.042*
C370.95980 (18)0.06811 (10)0.08420 (8)0.0368 (4)
H370.89410.07820.05330.044*
C381.06453 (16)0.00323 (9)0.09168 (7)0.0277 (3)
H381.06840.04070.06520.033*
C391.21641 (13)0.16870 (8)0.18652 (5)0.0183 (2)
C401.10744 (14)0.13930 (8)0.21550 (6)0.0214 (3)
H401.06690.08280.21300.026*
C411.05613 (15)0.18934 (9)0.24777 (6)0.0252 (3)
H410.98280.16650.26680.030*
C421.11142 (15)0.27216 (9)0.25222 (6)0.0261 (3)
H421.07660.30650.27400.031*
C431.21814 (16)0.30364 (9)0.22429 (6)0.0258 (3)
H431.25680.36040.22670.031*
C441.26997 (15)0.25332 (8)0.19253 (6)0.0221 (3)
H441.34430.27690.17420.027*
C451.42846 (14)0.09960 (8)0.17397 (5)0.0181 (2)
C461.52986 (14)0.16203 (8)0.20381 (6)0.0206 (3)
H461.50580.20970.21500.025*
C471.66472 (15)0.15672 (9)0.21771 (6)0.0264 (3)
H471.73010.20030.23800.032*
C481.70339 (16)0.08796 (10)0.20199 (7)0.0312 (3)
H481.79540.08450.21070.037*
C491.60600 (16)0.02451 (10)0.17341 (7)0.0311 (3)
H491.63070.02320.16280.037*
C501.47178 (15)0.03053 (8)0.16026 (6)0.0245 (3)
H501.40640.01420.14110.029*
C511.30157 (14)0.15000 (7)0.09106 (5)0.0183 (2)
C521.22093 (15)0.19872 (8)0.06825 (6)0.0237 (3)
H521.15240.21110.08710.028*
C531.23718 (17)0.22961 (9)0.01927 (6)0.0293 (3)
H531.18030.26240.00540.035*
C541.33574 (17)0.21279 (9)0.00925 (6)0.0290 (3)
H541.34800.23420.04250.035*
C551.41599 (17)0.16437 (10)0.01146 (6)0.0302 (3)
H551.48320.15170.00790.036*
C561.39934 (15)0.13410 (9)0.06036 (6)0.0249 (3)
H561.45650.10120.07370.030*
C570.12531 (13)0.17868 (7)0.61823 (5)0.0161 (2)
C580.18508 (15)0.16756 (9)0.66888 (6)0.0217 (3)
H580.27980.19260.67940.026*
C590.11139 (17)0.12135 (9)0.70445 (6)0.0276 (3)
H590.15640.11560.73840.033*
C600.02683 (16)0.08372 (9)0.69081 (6)0.0265 (3)
H600.07690.05190.71490.032*
C610.09077 (15)0.09338 (8)0.64126 (6)0.0225 (3)
H610.18570.06850.63120.027*
C620.01504 (14)0.13983 (8)0.60623 (6)0.0193 (3)
H620.06090.14550.57250.023*
C630.15508 (12)0.19151 (7)0.51470 (5)0.0147 (2)
C640.13326 (13)0.10780 (7)0.50289 (5)0.0164 (2)
H640.14570.07520.53120.020*
C650.09449 (13)0.07054 (8)0.45201 (6)0.0189 (3)
H650.08320.01400.44620.023*
C660.07204 (14)0.11584 (8)0.40941 (6)0.0203 (3)
H660.04600.09090.37440.024*
C670.08858 (14)0.19838 (8)0.41920 (6)0.0201 (3)
H670.07220.23010.39080.024*
C680.12925 (13)0.23501 (8)0.47066 (5)0.0174 (2)
H680.13990.29150.47620.021*
C690.18314 (14)0.32439 (7)0.57628 (5)0.0178 (2)
C700.05760 (15)0.33885 (8)0.58577 (6)0.0231 (3)
H700.00870.29680.59810.028*
C710.02615 (18)0.41240 (10)0.57785 (7)0.0334 (4)
H710.06060.41940.58450.040*
C720.1206 (2)0.47546 (10)0.56037 (7)0.0386 (4)
H720.09930.52560.55460.046*
C730.2465 (2)0.46410 (9)0.55142 (7)0.0358 (4)
H730.31300.50690.53990.043*
C740.27607 (16)0.38996 (8)0.55925 (6)0.0262 (3)
H740.36330.38360.55270.031*
C750.37407 (13)0.23679 (7)0.59177 (5)0.0170 (2)
C760.46187 (15)0.29513 (9)0.62896 (6)0.0255 (3)
H760.42890.33850.64200.031*
C770.59527 (16)0.29242 (10)0.64763 (7)0.0310 (3)
H770.65120.33380.67260.037*
C780.64713 (15)0.22949 (9)0.62999 (6)0.0265 (3)
H780.73770.22710.64290.032*
C790.56393 (14)0.17049 (8)0.59322 (6)0.0207 (3)
H790.59700.12670.58100.025*
C800.43166 (13)0.17531 (7)0.57407 (5)0.0165 (2)
H800.37800.13520.54790.020*
C810.7888 (2)0.63258 (11)0.27193 (8)0.0423 (4)
H81A0.69980.62920.25100.063*
H81B0.79450.66230.30620.063*
H81C0.79850.57800.27770.063*
C820.90102 (18)0.67547 (9)0.24293 (7)0.0303 (3)
C831.04117 (19)0.70107 (12)0.27313 (8)0.0429 (4)
H83A1.10910.71300.24840.064*
H83B1.05790.65750.29450.064*
H83C1.04900.74950.29640.064*
C840.5345 (2)0.44214 (14)0.30441 (8)0.0484 (5)
H84A0.56790.39320.30320.073*
H84B0.44970.43150.32060.073*
H84C0.60420.48590.32550.073*
C850.50690 (16)0.46621 (10)0.24968 (7)0.0301 (3)
C860.42688 (18)0.52871 (11)0.24327 (8)0.0384 (4)
H86A0.42990.54780.20770.058*
H86B0.46710.57430.26970.058*
H86C0.33130.50500.24820.058*
C870.7971 (3)0.10881 (17)0.02143 (12)0.0735 (8)
H87A0.87240.12270.05090.110*
H87B0.80460.06160.00000.110*
H87C0.70910.09650.03540.110*
C880.8052 (2)0.17801 (12)0.01189 (9)0.0450 (5)
C890.7376 (2)0.16136 (14)0.06804 (9)0.0539 (6)
H89A0.73170.21230.08290.081*
H89B0.64500.12600.06920.081*
H89C0.79170.13480.08880.081*
C901.5688 (4)0.7675 (2)0.17338 (18)0.1143 (14)
H90A1.63210.74450.19600.171*
H90B1.60820.82570.17260.171*
H90C1.55390.74150.13740.171*
C911.4373 (2)0.75380 (12)0.19444 (10)0.0533 (6)
C921.4179 (4)0.82311 (16)0.22727 (13)0.0810 (9)
H92A1.32070.81410.23160.121*
H92B1.44720.87300.20970.121*
H92C1.47290.82790.26210.121*
Br11.2806 (2)0.49635 (14)0.39366 (9)0.0274 (7)0.1229 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01090 (8)0.01514 (7)0.01354 (9)0.00275 (6)0.00258 (6)0.00494 (6)
Co20.01629 (9)0.01909 (8)0.01086 (9)0.00354 (6)0.00324 (6)0.00316 (6)
Cl10.01463 (14)0.01972 (13)0.02121 (16)0.00177 (11)0.00450 (12)0.00756 (11)
Cl20.02111 (16)0.03513 (17)0.01254 (15)0.00387 (13)0.00314 (12)0.00303 (12)
N10.0138 (5)0.0186 (5)0.0157 (5)0.0043 (4)0.0025 (4)0.0045 (4)
N20.0155 (5)0.0211 (5)0.0154 (5)0.0048 (4)0.0015 (4)0.0039 (4)
N30.0130 (5)0.0194 (5)0.0166 (6)0.0033 (4)0.0030 (4)0.0036 (4)
N40.0141 (5)0.0209 (5)0.0176 (6)0.0061 (4)0.0034 (4)0.0063 (4)
N50.0186 (5)0.0240 (5)0.0129 (5)0.0038 (4)0.0030 (4)0.0030 (4)
N60.0246 (6)0.0201 (5)0.0181 (6)0.0051 (4)0.0054 (5)0.0019 (4)
N70.0196 (6)0.0270 (6)0.0173 (6)0.0036 (4)0.0045 (5)0.0020 (4)
N80.0244 (6)0.0219 (5)0.0159 (6)0.0071 (4)0.0049 (5)0.0052 (4)
B10.0170 (7)0.0165 (6)0.0175 (7)0.0038 (5)0.0016 (5)0.0006 (5)
B20.0143 (6)0.0161 (6)0.0166 (7)0.0041 (5)0.0026 (5)0.0007 (5)
O10.0724 (10)0.0352 (6)0.0257 (7)0.0093 (6)0.0001 (6)0.0037 (5)
O20.0429 (7)0.0486 (7)0.0382 (7)0.0023 (6)0.0244 (6)0.0037 (6)
O30.0676 (11)0.0562 (9)0.0624 (11)0.0088 (8)0.0078 (8)0.0306 (8)
O40.0910 (15)0.0516 (11)0.139 (2)0.0102 (10)0.0482 (14)0.0027 (12)
C10.0255 (13)0.0393 (12)0.0347 (14)0.0008 (10)0.0039 (11)0.0006 (9)
C20.0237 (16)0.0235 (12)0.0203 (15)0.0048 (10)0.0033 (10)0.0035 (9)
C30.0169 (6)0.0161 (5)0.0172 (6)0.0039 (4)0.0029 (5)0.0002 (4)
C40.0184 (6)0.0175 (5)0.0149 (6)0.0055 (5)0.0037 (5)0.0037 (4)
C50.0170 (6)0.0158 (5)0.0157 (6)0.0051 (4)0.0064 (5)0.0031 (4)
C60.0156 (6)0.0177 (5)0.0154 (6)0.0031 (4)0.0041 (5)0.0027 (4)
C70.0194 (6)0.0160 (5)0.0130 (6)0.0053 (4)0.0054 (5)0.0025 (4)
C80.0183 (6)0.0162 (5)0.0163 (6)0.0024 (4)0.0057 (5)0.0027 (4)
C90.0188 (6)0.0200 (6)0.0154 (6)0.0061 (5)0.0036 (5)0.0042 (5)
C100.0171 (6)0.0197 (6)0.0164 (6)0.0070 (5)0.0016 (5)0.0024 (5)
C110.0200 (6)0.0181 (5)0.0185 (7)0.0037 (5)0.0055 (5)0.0037 (5)
C120.0175 (6)0.0182 (5)0.0183 (7)0.0032 (5)0.0037 (5)0.0035 (5)
C130.0266 (7)0.0259 (7)0.0260 (8)0.0124 (6)0.0005 (6)0.0034 (6)
C140.0255 (7)0.0220 (6)0.0227 (7)0.0076 (5)0.0022 (6)0.0032 (5)
C150.0171 (6)0.0283 (7)0.0193 (7)0.0065 (5)0.0013 (5)0.0028 (5)
C160.0204 (6)0.0295 (7)0.0189 (7)0.0104 (5)0.0001 (5)0.0072 (5)
C170.0219 (7)0.0189 (6)0.0254 (7)0.0087 (5)0.0077 (5)0.0075 (5)
C180.0230 (7)0.0192 (6)0.0245 (7)0.0071 (5)0.0084 (6)0.0028 (5)
C190.0207 (6)0.0197 (6)0.0223 (7)0.0032 (5)0.0046 (5)0.0000 (5)
C200.0145 (6)0.0277 (6)0.0194 (7)0.0050 (5)0.0001 (5)0.0001 (5)
C210.0159 (6)0.0275 (6)0.0163 (6)0.0079 (5)0.0009 (5)0.0044 (5)
C220.0201 (6)0.0184 (6)0.0251 (7)0.0082 (5)0.0005 (5)0.0035 (5)
C230.0308 (8)0.0219 (6)0.0227 (7)0.0030 (6)0.0085 (6)0.0062 (5)
C240.0240 (7)0.0240 (6)0.0214 (7)0.0010 (5)0.0042 (6)0.0000 (5)
C250.0173 (6)0.0368 (8)0.0188 (7)0.0079 (6)0.0023 (5)0.0067 (6)
C260.0270 (7)0.0368 (8)0.0248 (8)0.0171 (6)0.0062 (6)0.0063 (6)
C270.0319 (8)0.0252 (7)0.0251 (8)0.0134 (6)0.0066 (6)0.0064 (6)
C280.0310 (8)0.0207 (6)0.0292 (8)0.0008 (6)0.0098 (6)0.0029 (6)
C290.0236 (7)0.0277 (7)0.0273 (8)0.0043 (6)0.0067 (6)0.0020 (6)
C300.0181 (7)0.0452 (9)0.0260 (8)0.0088 (6)0.0038 (6)0.0062 (7)
C310.0267 (8)0.0452 (9)0.0327 (9)0.0189 (7)0.0088 (7)0.0099 (7)
C320.0324 (8)0.0326 (7)0.0284 (8)0.0173 (6)0.0054 (6)0.0112 (6)
C330.0195 (6)0.0177 (5)0.0209 (7)0.0045 (5)0.0050 (5)0.0013 (5)
C340.0273 (7)0.0211 (6)0.0216 (7)0.0040 (5)0.0069 (6)0.0005 (5)
C350.0352 (8)0.0213 (6)0.0314 (9)0.0016 (6)0.0142 (7)0.0021 (6)
C360.0281 (8)0.0233 (7)0.0477 (11)0.0052 (6)0.0079 (7)0.0034 (7)
C370.0286 (8)0.0302 (8)0.0425 (10)0.0026 (6)0.0082 (7)0.0029 (7)
C380.0256 (7)0.0227 (6)0.0301 (8)0.0011 (5)0.0035 (6)0.0007 (6)
C390.0167 (6)0.0199 (6)0.0176 (6)0.0056 (5)0.0014 (5)0.0001 (5)
C400.0157 (6)0.0238 (6)0.0232 (7)0.0040 (5)0.0001 (5)0.0023 (5)
C410.0160 (6)0.0348 (7)0.0246 (8)0.0072 (5)0.0020 (5)0.0030 (6)
C420.0249 (7)0.0326 (7)0.0227 (7)0.0162 (6)0.0043 (6)0.0069 (6)
C430.0311 (8)0.0205 (6)0.0253 (8)0.0095 (6)0.0029 (6)0.0031 (5)
C440.0244 (7)0.0198 (6)0.0221 (7)0.0061 (5)0.0024 (6)0.0011 (5)
C450.0194 (6)0.0199 (6)0.0149 (6)0.0044 (5)0.0026 (5)0.0031 (5)
C460.0217 (7)0.0217 (6)0.0181 (7)0.0042 (5)0.0033 (5)0.0023 (5)
C470.0205 (7)0.0297 (7)0.0252 (8)0.0011 (5)0.0007 (6)0.0022 (6)
C480.0200 (7)0.0375 (8)0.0361 (9)0.0090 (6)0.0001 (6)0.0048 (7)
C490.0275 (8)0.0294 (7)0.0393 (10)0.0141 (6)0.0024 (7)0.0010 (6)
C500.0232 (7)0.0219 (6)0.0275 (8)0.0066 (5)0.0007 (6)0.0012 (5)
C510.0177 (6)0.0165 (5)0.0181 (7)0.0013 (5)0.0006 (5)0.0014 (5)
C520.0247 (7)0.0247 (6)0.0228 (7)0.0091 (5)0.0020 (6)0.0019 (5)
C530.0370 (9)0.0279 (7)0.0241 (8)0.0125 (6)0.0021 (7)0.0044 (6)
C540.0357 (9)0.0307 (7)0.0183 (7)0.0049 (6)0.0013 (6)0.0048 (6)
C550.0299 (8)0.0411 (8)0.0223 (8)0.0111 (7)0.0088 (6)0.0033 (6)
C560.0258 (7)0.0292 (7)0.0223 (7)0.0108 (6)0.0041 (6)0.0037 (6)
C570.0173 (6)0.0154 (5)0.0163 (6)0.0056 (4)0.0030 (5)0.0001 (4)
C580.0202 (6)0.0267 (6)0.0185 (7)0.0067 (5)0.0017 (5)0.0017 (5)
C590.0321 (8)0.0337 (7)0.0174 (7)0.0087 (6)0.0033 (6)0.0060 (6)
C600.0329 (8)0.0258 (7)0.0212 (7)0.0042 (6)0.0111 (6)0.0047 (5)
C610.0214 (7)0.0220 (6)0.0221 (7)0.0007 (5)0.0070 (5)0.0014 (5)
C620.0189 (6)0.0214 (6)0.0168 (7)0.0036 (5)0.0025 (5)0.0014 (5)
C630.0111 (5)0.0160 (5)0.0175 (6)0.0037 (4)0.0034 (5)0.0015 (4)
C640.0129 (6)0.0177 (5)0.0190 (6)0.0041 (4)0.0028 (5)0.0024 (5)
C650.0143 (6)0.0192 (6)0.0232 (7)0.0038 (5)0.0043 (5)0.0021 (5)
C660.0153 (6)0.0275 (6)0.0174 (7)0.0042 (5)0.0035 (5)0.0021 (5)
C670.0169 (6)0.0268 (6)0.0175 (7)0.0063 (5)0.0031 (5)0.0054 (5)
C680.0161 (6)0.0177 (5)0.0192 (7)0.0052 (4)0.0036 (5)0.0027 (5)
C690.0213 (6)0.0168 (5)0.0155 (6)0.0056 (5)0.0025 (5)0.0013 (4)
C700.0246 (7)0.0222 (6)0.0236 (7)0.0082 (5)0.0045 (6)0.0014 (5)
C710.0366 (9)0.0311 (8)0.0389 (10)0.0197 (7)0.0084 (7)0.0014 (7)
C720.0589 (12)0.0230 (7)0.0418 (10)0.0226 (7)0.0122 (9)0.0040 (7)
C730.0510 (11)0.0175 (6)0.0427 (10)0.0089 (7)0.0200 (8)0.0051 (6)
C740.0301 (8)0.0190 (6)0.0321 (8)0.0066 (5)0.0134 (6)0.0014 (5)
C750.0154 (6)0.0174 (5)0.0175 (6)0.0024 (4)0.0034 (5)0.0023 (5)
C760.0200 (7)0.0256 (7)0.0289 (8)0.0050 (5)0.0001 (6)0.0071 (6)
C770.0208 (7)0.0339 (8)0.0325 (9)0.0025 (6)0.0055 (6)0.0099 (6)
C780.0159 (6)0.0346 (7)0.0277 (8)0.0061 (6)0.0014 (6)0.0014 (6)
C790.0191 (6)0.0230 (6)0.0222 (7)0.0073 (5)0.0056 (5)0.0057 (5)
C800.0155 (6)0.0178 (5)0.0155 (6)0.0025 (4)0.0029 (5)0.0034 (4)
C810.0384 (10)0.0387 (9)0.0443 (11)0.0006 (8)0.0092 (8)0.0065 (8)
C820.0371 (9)0.0226 (7)0.0287 (9)0.0052 (6)0.0030 (7)0.0070 (6)
C830.0327 (9)0.0412 (10)0.0517 (12)0.0068 (8)0.0011 (8)0.0010 (8)
C840.0492 (12)0.0715 (14)0.0376 (11)0.0296 (10)0.0210 (9)0.0222 (10)
C850.0248 (7)0.0333 (8)0.0317 (9)0.0023 (6)0.0121 (6)0.0036 (6)
C860.0303 (9)0.0391 (9)0.0453 (11)0.0075 (7)0.0058 (8)0.0050 (8)
C870.0743 (18)0.0729 (17)0.082 (2)0.0328 (14)0.0154 (15)0.0105 (15)
C880.0359 (10)0.0458 (10)0.0536 (12)0.0137 (8)0.0084 (9)0.0158 (9)
C890.0457 (12)0.0625 (13)0.0488 (13)0.0077 (10)0.0092 (10)0.0198 (10)
C900.110 (3)0.072 (2)0.180 (4)0.039 (2)0.065 (3)0.002 (2)
C910.0527 (13)0.0383 (10)0.0602 (14)0.0082 (9)0.0199 (11)0.0069 (9)
C920.109 (2)0.0525 (14)0.089 (2)0.0184 (15)0.0442 (19)0.0199 (14)
Br10.0193 (17)0.0347 (12)0.0254 (14)0.0051 (11)0.0031 (10)0.0002 (8)
Geometric parameters (Å, º) top
Co1—C101.8783 (13)C34—C351.395 (2)
Co1—N31.9724 (11)C34—H340.9500
Co1—N41.9755 (11)C35—C361.384 (2)
Co1—N11.9792 (10)C35—H350.9500
Co1—N21.9793 (11)C36—C371.386 (3)
Co1—Cl12.2988 (3)C36—H360.9500
Co2—C121.8756 (14)C37—C381.396 (2)
Co2—N51.9700 (11)C37—H370.9500
Co2—N81.9737 (11)C38—H380.9500
Co2—N61.9777 (11)C39—C401.406 (2)
Co2—N71.9858 (12)C39—C441.4116 (18)
Co2—Cl22.3164 (4)C40—C411.394 (2)
N1—C221.4835 (17)C40—H400.9500
N1—C211.4855 (17)C41—C421.385 (2)
N1—H10.9300C41—H410.9500
N2—C151.4847 (17)C42—C431.379 (2)
N2—C141.4861 (17)C42—H420.9500
N2—H20.9300C43—C441.393 (2)
N3—C191.4843 (17)C43—H430.9500
N3—C201.4849 (17)C44—H440.9500
N3—H30.9300C45—C501.4048 (19)
N4—C161.4791 (18)C45—C461.4061 (19)
N4—C171.4860 (17)C46—C471.398 (2)
N4—H40.9300C46—H460.9500
N5—C251.4842 (17)C47—C481.388 (2)
N5—C241.4877 (18)C47—H470.9500
N5—H50.9300C48—C491.384 (2)
N6—C271.4827 (19)C48—H480.9500
N6—C281.4931 (18)C49—C501.393 (2)
N6—H60.9300C49—H490.9500
N7—C301.4825 (19)C50—H500.9500
N7—C291.4861 (19)C51—C561.404 (2)
N7—H70.9300C51—C521.4049 (19)
N8—C321.4848 (19)C52—C531.392 (2)
N8—C231.4884 (18)C52—H520.9500
N8—H80.9300C53—C541.382 (2)
B1—C331.6425 (19)C53—H530.9500
B1—C391.652 (2)C54—C551.379 (2)
B1—C511.652 (2)C54—H540.9500
B1—C451.653 (2)C55—C561.386 (2)
B2—C691.6431 (18)C55—H550.9500
B2—C751.6503 (19)C56—H560.9500
B2—C631.654 (2)C57—C581.4028 (19)
B2—C571.656 (2)C57—C621.4044 (18)
O1—C821.216 (2)C58—C591.395 (2)
O2—C851.210 (2)C58—H580.9500
O3—C881.209 (2)C59—C601.385 (2)
O4—C911.198 (3)C59—H590.9500
C1—C21.192 (5)C60—C611.387 (2)
C1—H1A0.9500C60—H600.9500
C2—C31.426 (3)C61—C621.3963 (19)
C3—C41.3943 (18)C61—H610.9500
C3—C81.3973 (18)C62—H620.9500
C3—Br11.947 (3)C63—C641.4095 (17)
C4—C51.4013 (18)C63—C681.4109 (18)
C4—H4A0.9500C64—C651.3883 (19)
C5—C61.3960 (18)C64—H640.9500
C5—C91.4392 (18)C65—C661.394 (2)
C6—C71.4000 (17)C65—H650.9500
C6—H6A0.9500C66—C671.3903 (19)
C7—C81.3978 (18)C66—H660.9500
C7—C111.4384 (18)C67—C681.3987 (19)
C8—H8A0.9500C67—H670.9500
C9—C101.2027 (18)C68—H680.9500
C11—C121.2007 (19)C69—C741.3997 (19)
C13—C221.512 (2)C69—C701.4022 (19)
C13—C141.517 (2)C70—C711.392 (2)
C13—H13A0.9900C70—H700.9500
C13—H13B0.9900C71—C721.386 (3)
C14—H14A0.9900C71—H710.9500
C14—H14B0.9900C72—C731.381 (3)
C15—C161.508 (2)C72—H720.9500
C15—H15A0.9900C73—C741.394 (2)
C15—H15B0.9900C73—H730.9500
C16—H16A0.9900C74—H740.9500
C16—H16B0.9900C75—C761.4019 (19)
C17—C181.514 (2)C75—C801.4072 (17)
C17—H17A0.9900C76—C771.393 (2)
C17—H17B0.9900C76—H760.9500
C18—C191.5197 (19)C77—C781.391 (2)
C18—H18A0.9900C77—H770.9500
C18—H18B0.9900C78—C791.385 (2)
C19—H19A0.9900C78—H780.9500
C19—H19B0.9900C79—C801.3956 (18)
C20—C211.5094 (19)C79—H790.9500
C20—H20A0.9900C80—H800.9500
C20—H20B0.9900C81—C821.490 (3)
C21—H21A0.9900C81—H81A0.9800
C21—H21B0.9900C81—H81B0.9800
C22—H22A0.9900C81—H81C0.9800
C22—H22B0.9900C82—C831.485 (2)
C23—C241.502 (2)C83—H83A0.9800
C23—H23A0.9900C83—H83B0.9800
C23—H23B0.9900C83—H83C0.9800
C24—H24A0.9900C84—C851.489 (3)
C24—H24B0.9900C84—H84A0.9800
C25—C261.515 (2)C84—H84B0.9800
C25—H25A0.9900C84—H84C0.9800
C25—H25B0.9900C85—C861.499 (2)
C26—C271.515 (2)C86—H86A0.9800
C26—H26A0.9900C86—H86B0.9800
C26—H26B0.9900C86—H86C0.9800
C27—H27A0.9900C87—C881.482 (4)
C27—H27B0.9900C87—H87A0.9800
C28—C291.505 (2)C87—H87B0.9800
C28—H28A0.9900C87—H87C0.9800
C28—H28B0.9900C88—C891.496 (3)
C29—H29A0.9900C89—H89A0.9800
C29—H29B0.9900C89—H89B0.9800
C30—C311.514 (2)C89—H89C0.9800
C30—H30A0.9900C90—C911.466 (4)
C30—H30B0.9900C90—H90A0.9800
C31—C321.518 (2)C90—H90B0.9800
C31—H31A0.9900C90—H90C0.9800
C31—H31B0.9900C91—C921.489 (4)
C32—H32A0.9900C92—H92A0.9800
C32—H32B0.9900C92—H92B0.9800
C33—C381.398 (2)C92—H92C0.9800
C33—C341.4053 (19)
C10—Co1—N390.39 (5)C31—C30—H30A109.2
C10—Co1—N492.33 (5)N7—C30—H30B109.2
N3—Co1—N492.75 (5)C31—C30—H30B109.2
C10—Co1—N187.66 (5)H30A—C30—H30B107.9
N3—Co1—N186.53 (4)C30—C31—C32113.79 (13)
N4—Co1—N1179.27 (5)C30—C31—H31A108.8
C10—Co1—N289.89 (5)C32—C31—H31A108.8
N3—Co1—N2178.99 (4)C30—C31—H31B108.8
N4—Co1—N286.27 (5)C32—C31—H31B108.8
N1—Co1—N294.45 (5)H31A—C31—H31B107.7
C10—Co1—Cl1178.32 (4)N8—C32—C31111.89 (12)
N3—Co1—Cl188.24 (3)N8—C32—H32A109.2
N4—Co1—Cl188.70 (3)C31—C32—H32A109.2
N1—Co1—Cl191.29 (3)N8—C32—H32B109.2
N2—Co1—Cl191.49 (3)C31—C32—H32B109.2
C12—Co2—N589.92 (5)H32A—C32—H32B107.9
C12—Co2—N890.84 (5)C38—C33—C34115.02 (13)
N5—Co2—N886.22 (5)C38—C33—B1122.53 (12)
C12—Co2—N689.17 (5)C34—C33—B1122.23 (12)
N5—Co2—N693.72 (5)C35—C34—C33123.09 (15)
N8—Co2—N6179.94 (6)C35—C34—H34118.5
C12—Co2—N789.23 (5)C33—C34—H34118.5
N5—Co2—N7179.14 (5)C36—C35—C34119.77 (15)
N8—Co2—N793.66 (5)C36—C35—H35120.1
N6—Co2—N786.40 (5)C34—C35—H35120.1
C12—Co2—Cl2177.48 (4)C35—C36—C37119.17 (14)
N5—Co2—Cl289.35 (4)C35—C36—H36120.4
N8—Co2—Cl291.52 (4)C37—C36—H36120.4
N6—Co2—Cl288.47 (4)C36—C37—C38120.08 (16)
N7—Co2—Cl291.50 (4)C36—C37—H37120.0
C22—N1—C21111.44 (10)C38—C37—H37120.0
C22—N1—Co1118.63 (8)C37—C38—C33122.86 (15)
C21—N1—Co1107.18 (8)C37—C38—H38118.6
C22—N1—H1106.3C33—C38—H38118.6
C21—N1—H1106.3C40—C39—C44114.61 (12)
Co1—N1—H1106.3C40—C39—B1123.29 (11)
C15—N2—C14111.18 (11)C44—C39—B1122.10 (12)
C15—N2—Co1107.35 (8)C41—C40—C39122.97 (13)
C14—N2—Co1119.67 (9)C41—C40—H40118.5
C15—N2—H2105.9C39—C40—H40118.5
C14—N2—H2105.9C42—C41—C40120.40 (14)
Co1—N2—H2105.9C42—C41—H41119.8
C19—N3—C20110.57 (10)C40—C41—H41119.8
C19—N3—Co1120.30 (9)C43—C42—C41118.57 (13)
C20—N3—Co1107.98 (8)C43—C42—H42120.7
C19—N3—H3105.6C41—C42—H42120.7
C20—N3—H3105.6C42—C43—C44120.81 (13)
Co1—N3—H3105.6C42—C43—H43119.6
C16—N4—C17110.99 (10)C44—C43—H43119.6
C16—N4—Co1107.97 (8)C43—C44—C39122.63 (14)
C17—N4—Co1118.43 (8)C43—C44—H44118.7
C16—N4—H4106.2C39—C44—H44118.7
C17—N4—H4106.2C50—C45—C46115.03 (12)
Co1—N4—H4106.2C50—C45—B1120.59 (12)
C25—N5—C24111.17 (11)C46—C45—B1123.65 (11)
C25—N5—Co2119.50 (9)C47—C46—C45122.58 (13)
C24—N5—Co2108.19 (9)C47—C46—H46118.7
C25—N5—H5105.7C45—C46—H46118.7
C24—N5—H5105.7C48—C47—C46120.18 (14)
Co2—N5—H5105.7C48—C47—H47119.9
C27—N6—C28110.89 (11)C46—C47—H47119.9
C27—N6—Co2119.69 (9)C49—C48—C47119.04 (14)
C28—N6—Co2107.78 (9)C49—C48—H48120.5
C27—N6—H6105.8C47—C48—H48120.5
C28—N6—H6105.8C48—C49—C50120.04 (14)
Co2—N6—H6105.8C48—C49—H49120.0
C30—N7—C29111.23 (12)C50—C49—H49120.0
C30—N7—Co2118.84 (9)C49—C50—C45123.10 (14)
C29—N7—Co2107.59 (9)C49—C50—H50118.5
C30—N7—H7106.1C45—C50—H50118.5
C29—N7—H7106.1C56—C51—C52114.81 (13)
Co2—N7—H7106.1C56—C51—B1122.44 (12)
C32—N8—C23111.27 (11)C52—C51—B1122.65 (12)
C32—N8—Co2119.11 (10)C53—C52—C51122.80 (14)
C23—N8—Co2107.87 (9)C53—C52—H52118.6
C32—N8—H8105.9C51—C52—H52118.6
C23—N8—H8105.9C54—C53—C52120.21 (14)
Co2—N8—H8105.9C54—C53—H53119.9
C33—B1—C39108.24 (11)C52—C53—H53119.9
C33—B1—C51109.11 (11)C55—C54—C53118.82 (14)
C39—B1—C51110.31 (10)C55—C54—H54120.6
C33—B1—C45111.16 (10)C53—C54—H54120.6
C39—B1—C45112.18 (11)C54—C55—C56120.55 (15)
C51—B1—C45105.80 (11)C54—C55—H55119.7
C69—B2—C75112.19 (10)C56—C55—H55119.7
C69—B2—C63106.59 (10)C55—C56—C51122.82 (14)
C75—B2—C63110.50 (10)C55—C56—H56118.6
C69—B2—C57111.05 (10)C51—C56—H56118.6
C75—B2—C57106.73 (10)C58—C57—C62114.62 (12)
C63—B2—C57109.81 (10)C58—C57—B2123.68 (12)
C2—C1—H1A180.0C62—C57—B2121.70 (11)
C1—C2—C3179.3 (4)C59—C58—C57122.79 (14)
C4—C3—C8120.41 (12)C59—C58—H58118.6
C4—C3—C2119.67 (17)C57—C58—H58118.6
C8—C3—C2119.91 (17)C60—C59—C58120.61 (14)
C4—C3—Br1120.24 (12)C60—C59—H59119.7
C8—C3—Br1119.31 (12)C58—C59—H59119.7
C3—C4—C5120.10 (12)C59—C60—C61118.73 (14)
C3—C4—H4A120.0C59—C60—H60120.6
C5—C4—H4A120.0C61—C60—H60120.6
C6—C5—C4119.17 (11)C60—C61—C62119.72 (13)
C6—C5—C9119.98 (12)C60—C61—H61120.1
C4—C5—C9120.85 (12)C62—C61—H61120.1
C5—C6—C7121.03 (12)C61—C62—C57123.53 (13)
C5—C6—H6A119.5C61—C62—H62118.2
C7—C6—H6A119.5C57—C62—H62118.2
C8—C7—C6119.32 (12)C64—C63—C68114.59 (12)
C8—C7—C11122.29 (12)C64—C63—B2121.56 (11)
C6—C7—C11118.26 (12)C68—C63—B2123.83 (11)
C3—C8—C7119.94 (12)C65—C64—C63123.44 (12)
C3—C8—H8A120.0C65—C64—H64118.3
C7—C8—H8A120.0C63—C64—H64118.3
C10—C9—C5178.08 (14)C64—C65—C66120.20 (12)
C9—C10—Co1173.79 (12)C64—C65—H65119.9
C12—C11—C7169.37 (14)C66—C65—H65119.9
C11—C12—Co2171.04 (12)C67—C66—C65118.55 (13)
C22—C13—C14113.56 (12)C67—C66—H66120.7
C22—C13—H13A108.9C65—C66—H66120.7
C14—C13—H13A108.9C66—C67—C68120.43 (12)
C22—C13—H13B108.9C66—C67—H67119.8
C14—C13—H13B108.9C68—C67—H67119.8
H13A—C13—H13B107.7C67—C68—C63122.75 (12)
N2—C14—C13111.62 (11)C67—C68—H68118.6
N2—C14—H14A109.3C63—C68—H68118.6
C13—C14—H14A109.3C74—C69—C70115.08 (12)
N2—C14—H14B109.3C74—C69—B2121.57 (12)
C13—C14—H14B109.3C70—C69—B2122.61 (12)
H14A—C14—H14B108.0C71—C70—C69122.65 (14)
N2—C15—C16106.66 (11)C71—C70—H70118.7
N2—C15—H15A110.4C69—C70—H70118.7
C16—C15—H15A110.4C72—C71—C70120.37 (15)
N2—C15—H15B110.4C72—C71—H71119.8
C16—C15—H15B110.4C70—C71—H71119.8
H15A—C15—H15B108.6C73—C72—C71118.77 (14)
N4—C16—C15107.56 (11)C73—C72—H72120.6
N4—C16—H16A110.2C71—C72—H72120.6
C15—C16—H16A110.2C72—C73—C74120.15 (15)
N4—C16—H16B110.2C72—C73—H73119.9
C15—C16—H16B110.2C74—C73—H73119.9
H16A—C16—H16B108.5C73—C74—C69122.97 (15)
N4—C17—C18111.90 (10)C73—C74—H74118.5
N4—C17—H17A109.2C69—C74—H74118.5
C18—C17—H17A109.2C76—C75—C80114.78 (12)
N4—C17—H17B109.2C76—C75—B2122.69 (12)
C18—C17—H17B109.2C80—C75—B2122.12 (11)
H17A—C17—H17B107.9C77—C76—C75122.97 (13)
C17—C18—C19114.00 (11)C77—C76—H76118.5
C17—C18—H18A108.8C75—C76—H76118.5
C19—C18—H18A108.8C78—C77—C76120.38 (14)
C17—C18—H18B108.8C78—C77—H77119.8
C19—C18—H18B108.8C76—C77—H77119.8
H18A—C18—H18B107.6C79—C78—C77118.62 (13)
N3—C19—C18111.67 (11)C79—C78—H78120.7
N3—C19—H19A109.3C77—C78—H78120.7
C18—C19—H19A109.3C78—C79—C80120.13 (13)
N3—C19—H19B109.3C78—C79—H79119.9
C18—C19—H19B109.3C80—C79—H79119.9
H19A—C19—H19B107.9C79—C80—C75123.08 (12)
N3—C20—C21107.42 (11)C79—C80—H80118.5
N3—C20—H20A110.2C75—C80—H80118.5
C21—C20—H20A110.2C82—C81—H81A109.5
N3—C20—H20B110.2C82—C81—H81B109.5
C21—C20—H20B110.2H81A—C81—H81B109.5
H20A—C20—H20B108.5C82—C81—H81C109.5
N1—C21—C20106.89 (10)H81A—C81—H81C109.5
N1—C21—H21A110.3H81B—C81—H81C109.5
C20—C21—H21A110.3O1—C82—C83121.67 (17)
N1—C21—H21B110.3O1—C82—C81121.55 (17)
C20—C21—H21B110.3C83—C82—C81116.78 (16)
H21A—C21—H21B108.6C82—C83—H83A109.5
N1—C22—C13112.21 (11)C82—C83—H83B109.5
N1—C22—H22A109.2H83A—C83—H83B109.5
C13—C22—H22A109.2C82—C83—H83C109.5
N1—C22—H22B109.2H83A—C83—H83C109.5
C13—C22—H22B109.2H83B—C83—H83C109.5
H22A—C22—H22B107.9C85—C84—H84A109.5
N8—C23—C24107.16 (11)C85—C84—H84B109.5
N8—C23—H23A110.3H84A—C84—H84B109.5
C24—C23—H23A110.3C85—C84—H84C109.5
N8—C23—H23B110.3H84A—C84—H84C109.5
C24—C23—H23B110.3H84B—C84—H84C109.5
H23A—C23—H23B108.5O2—C85—C84121.66 (17)
N5—C24—C23107.02 (11)O2—C85—C86122.14 (17)
N5—C24—H24A110.3C84—C85—C86116.21 (15)
C23—C24—H24A110.3C85—C86—H86A109.5
N5—C24—H24B110.3C85—C86—H86B109.5
C23—C24—H24B110.3H86A—C86—H86B109.5
H24A—C24—H24B108.6C85—C86—H86C109.5
N5—C25—C26111.35 (12)H86A—C86—H86C109.5
N5—C25—H25A109.4H86B—C86—H86C109.5
C26—C25—H25A109.4C88—C87—H87A109.5
N5—C25—H25B109.4C88—C87—H87B109.5
C26—C25—H25B109.4H87A—C87—H87B109.5
H25A—C25—H25B108.0C88—C87—H87C109.5
C27—C26—C25114.01 (12)H87A—C87—H87C109.5
C27—C26—H26A108.7H87B—C87—H87C109.5
C25—C26—H26A108.7O3—C88—C87122.1 (2)
C27—C26—H26B108.7O3—C88—C89119.9 (2)
C25—C26—H26B108.7C87—C88—C89118.0 (2)
H26A—C26—H26B107.6C88—C89—H89A109.5
N6—C27—C26111.46 (12)C88—C89—H89B109.5
N6—C27—H27A109.3H89A—C89—H89B109.5
C26—C27—H27A109.3C88—C89—H89C109.5
N6—C27—H27B109.3H89A—C89—H89C109.5
C26—C27—H27B109.3H89B—C89—H89C109.5
H27A—C27—H27B108.0C91—C90—H90A109.5
N6—C28—C29107.21 (12)C91—C90—H90B109.5
N6—C28—H28A110.3H90A—C90—H90B109.5
C29—C28—H28A110.3C91—C90—H90C109.5
N6—C28—H28B110.3H90A—C90—H90C109.5
C29—C28—H28B110.3H90B—C90—H90C109.5
H28A—C28—H28B108.5O4—C91—C90123.3 (3)
N7—C29—C28107.56 (12)O4—C91—C92121.1 (3)
N7—C29—H29A110.2C90—C91—C92115.5 (2)
C28—C29—H29A110.2C91—C92—H92A109.5
N7—C29—H29B110.2C91—C92—H92B109.5
C28—C29—H29B110.2H92A—C92—H92B109.5
H29A—C29—H29B108.5C91—C92—H92C109.5
N7—C30—C31111.89 (13)H92A—C92—H92C109.5
N7—C30—H30A109.2H92B—C92—H92C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Cl2i0.932.483.2377 (12)139
N6—H6···O30.932.152.9440 (19)143
N7—H7···O20.932.112.9894 (17)157
N8—H8···O10.932.032.8730 (17)149
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2(C12H4)Cl2(C10H24N4)2]0.88[Co2(C10H3Br)Cl2(C10H24N4)2]0.12·(C24H20B)2·4C3H6O
Mr1614.61
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.1434 (4), 17.1412 (7), 25.5250 (11)
α, β, γ (°)92.609 (1), 96.864 (1), 104.323 (1)
V3)4256.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.60 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.729, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
40567, 25801, 20379
Rint0.016
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02
No. of reflections25801
No. of parameters1001
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Cl2i0.932.483.2377 (12)139.1
N6—H6···O30.932.152.9440 (19)142.6
N7—H7···O20.932.112.9894 (17)157.4
N8—H8···O10.932.032.8730 (17)149.3
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors wish to thank Colorado State University and the ACS Petroleum Research Fund for financial support.

References

First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIvaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553–m1554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcDonagh, A. M., Powell, C. E., Morall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.  CrossRef CAS Google Scholar
First citationMery, D. & Astruc, D. (2006). Coord. Chem. Rev. 250, 1965–1979.  CAS Google Scholar
First citationOnitsuka, K., Fujimoto, M., Kitajima, H., Ohshiro, N., Takei, F. & Takahashi, S. (2004). Chem. Eur. J. 10, 6433–6446.  CrossRef PubMed CAS Google Scholar
First citationOnitsuka, K. & Takahashi, S. (2003). Top. Curr. Chem. 228, 39–63.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobinson, J. M. A., Kariuki, B. M., Harris, K. D. M. & Philp, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2459–2470.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, E., Hecker, M., Koepp, E., Orlia, W., Czugler, M. & Csöregh, I. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1251–1257.  CrossRef Google Scholar
First citationWeyland, T., Costuas, K., Mari, A., Halet, J.-F. & Lapinte, C. (1998). Organometallics, 17, 5569–5579.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m853-m854
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds