metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m879-m880

Bis(2,2′-bi­pyridine-κ2N,N′)bis­­(1H-indole-2-carboxyl­ato-κ2O,O′)cadmium–2,2′-bi­pyridine–water (1/0.5/2)

aCollege of Pharmaceutics and Material Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 13 April 2011; accepted 1 June 2011; online 11 June 2011)

The asymmetric unit of title compound, [Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2O, consists of one complex mol­ecule, one half of an uncoordinated 2,2′-bipyridine mol­ecule and two solvent water mol­ecules. The uncoordinated 2,2′-bipyridine mol­ecule is located on a center of symmetry. Within the complex mol­ecule, the CdII atom is coordinated by four N atoms from two 2,2′-bipyridine ligands and three O atoms from two 1H-indole-2-carboxyl­ate anion ligands, completing a distorted CdN4O3 penta­gonal bipyra­mid. The mol­ecules are assembled into one-dimensional chains along the [100] direction through classical hydrogen bonds (O—H⋯N, N—H⋯O and O—H⋯O). The resulting chains are further connected into two-dimensional supra­molecular layers parallel to the (110) direction by inter­molecular classical hydrogen bonds (N—H⋯O and O—H⋯O) from adjacent chains. A three-dimensional supra­molecular network is formed via interlayer and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Dillon et al. (2003[Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Zhou, Q., Davies, N. M., Biffin, J. R. & Regtop, H. L. (2003). Chem. Res. Toxicol. 16, 28-37.]). For related cadmium(II) complexes with bipyridine and 1,10-phenanthroline ligands, see: Zhang et al. (2005[Zhang, B.-S., Huang, Y.-H. & Gua, H.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 376-378.]); Lou & Zhang (2007[Lou, Q.-Z. & Zhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 199-201.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2O

  • Mr = 859.19

  • Triclinic, [P \overline 1]

  • a = 11.513 (2) Å

  • b = 12.945 (3) Å

  • c = 14.302 (3) Å

  • α = 114.95 (3)°

  • β = 94.27 (3)°

  • γ = 93.84 (3)°

  • V = 1915.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 290 K

  • 0.26 × 0.19 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.865, Tmax = 0.963

  • 15180 measured reflections

  • 6724 independent reflections

  • 4444 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.17

  • 6724 reflections

  • 515 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5C⋯O5i 0.86 2.09 2.892 (9) 155
N6—H6C⋯O2ii 0.86 2.00 2.801 (8) 156
O5—H5A⋯O6 0.82 1.96 2.748 (8) 161
O5—H5B⋯N7iii 0.82 2.09 2.879 (8) 161
O6—H6A⋯O5iv 0.82 2.01 2.781 (7) 156
O6—H6B⋯O3v 0.82 1.95 2.778 (6) 174
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indole-2-carboxylic acid moiety is present in a great number of molecules with a broad spectrum of pharmacological activity, anticonvulsant, antihypertensive and antifungal properties. It has been found that the biological activities of the therapeutic agents are considerably increased when they are bonded into metal complex molecules (Dillon et al., 2003). Cadmium(II) ion with 1.10-phenanthroline and pyridine ligands can respectively form CdN4O4 dodecahedron and CdN4O3 polyhedron complex molecules (Lou & Zhang, 2007, Zhang et al., 2005). In this paper, we report synthesis and structure of a new cadium coordination complex with indole-2-formic acid and 2,2'-bipyridine ligands. The crystal structure of the title compound consists of one complex Cd(C10H8N2)2(C9H7NO2)2 molecule, one half uncoordinated 2,2'-bipyridine molecule and two lattice water molecules (Fig. 1). The uncoordinated 2,2'-bipyridine molecule placed in the center of symmetry (0, 1, 1/2 ). In the complex molecule, the CdII atom is coordinated by four N atoms from two 2,2'-bipyridine ligands, three O atoms from two 2-indolyl-formic acid anions ligands, completing a distorted CdN4O3 pentagonal bipyramid. The equatorial positions of the CdII ion are occupied by two carboxylate O atoms (O3, O4) and three N atoms (N2, N1, N3) from different 2,2'-bipyridine molecules, and the axial ones by the other one N atom (N4) and one carboxylate O atom (O1). The Cd1—N bond length is 2.364 (4) Å to 2.450 (5) Å, and Cd1—O bond lengths are 2.239 (4) Å and 2.653 (4) Å. In the crystal structure, classical O5—H5B···N6, N6—H6C···O2ii and O6—H6A···O5iv hydrogen bonding interactions (Table 1) form one-dimensional chains. The chains are connected with each other via intermolecular hydrogen bonds (N5—H5C···O5i, O6—H6A···O5iv) from adjacent chains to form a two-dimensional layer (Fig. 2). Furthermore, a three-dimensional network is formed via intermolecular forces between layers and hydrogen bonds (O6—H6A···O5iv). Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z; (iv) -x + 1, -y + 2, -z + 1.

Related literature top

For general background, see: Dillon et al. (2003). For related cadmium(II) complexes with bipyridine and 1,10-phenanthroline ligands, see: Zhang et al. (2005); Lou & Zhang (2007).

Experimental top

CdCl2.6H2O (0.11 g, 0.54 mmol) was dissolved in appropriate amount of water, and then 1M Na2CO3 solution was added. CdCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared CdCO3, 2-indolyl-formic acid (0.0725 g, 0.5 mmol), 2,2'-bipyridine (0.0781 g, 0.5 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 5800 min. After that, autoclave was cooled to room temperature according to the procedure at 2600 min. The solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 4 months afforded colourless block single crystals.

Refinement top

The C-bound H atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 Å and Uiso(H) = 1.5Ueq(O). H atoms attached to N atoms were placed in calculated positions, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and were refined using a riding model. The largest peak in the final difference Fourier map is 1.49 Å from atom Cd1 and the deepest hole is 0.94 Å from atom Cd1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y + 2, -z + 1.
[Figure 2] Fig. 2. A packing diagram of the title compound. H atoms are omitted for clarity.
Bis(2,2'-bipyridine-κ2N,N')bis(1H-indole-2- carboxylato-κ2O,O')cadmium–2,2'-bipyridine–water (1/0.5/2) top
Crystal data top
[Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2OZ = 2
Mr = 859.19F(000) = 878
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.513 (2) ÅCell parameters from 10384 reflections
b = 12.945 (3) Åθ = 3.2–25°
c = 14.302 (3) ŵ = 0.63 mm1
α = 114.95 (3)°T = 290 K
β = 94.27 (3)°Block, colourless
γ = 93.84 (3)°0.26 × 0.19 × 0.06 mm
V = 1915.8 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6724 independent reflections
Radiation source: fine-focus sealed tube4444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1312
Tmin = 0.865, Tmax = 0.963k = 1515
15180 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.P)2 + 4.4876P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
6724 reflectionsΔρmax = 1.26 e Å3
515 parametersΔρmin = 1.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Crystal data top
[Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2Oγ = 93.84 (3)°
Mr = 859.19V = 1915.8 (9) Å3
Triclinic, P1Z = 2
a = 11.513 (2) ÅMo Kα radiation
b = 12.945 (3) ŵ = 0.63 mm1
c = 14.302 (3) ÅT = 290 K
α = 114.95 (3)°0.26 × 0.19 × 0.06 mm
β = 94.27 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6724 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4444 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.963Rint = 0.058
15180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.17Δρmax = 1.26 e Å3
6724 reflectionsΔρmin = 1.55 e Å3
515 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.36632 (4)0.14575 (4)0.19144 (3)0.03937 (15)
N10.3953 (4)0.3521 (4)0.2404 (4)0.0463 (12)
N20.3905 (4)0.1847 (4)0.0463 (3)0.0414 (11)
N30.2855 (4)0.2010 (4)0.3542 (3)0.0421 (11)
N40.1600 (4)0.1689 (4)0.1760 (4)0.0512 (13)
N50.7181 (4)0.2314 (4)0.4379 (3)0.0427 (11)
H5C0.68050.16700.42720.051*
N60.2909 (4)0.2837 (4)0.0315 (3)0.0460 (12)
H6C0.31870.25810.07270.055*
N70.1248 (4)0.9667 (5)0.4058 (4)0.0660 (15)
O10.5438 (3)0.1593 (3)0.2739 (3)0.0506 (10)
O20.6372 (3)0.2675 (4)0.2080 (3)0.0620 (12)
O30.3234 (4)0.0430 (3)0.2186 (3)0.0583 (11)
O40.3252 (3)0.0426 (3)0.0641 (3)0.0558 (11)
O50.6427 (3)1.0228 (3)0.4546 (3)0.0622 (12)
H5A0.58870.98110.41170.093*
H5B0.70610.99680.44730.093*
O60.4400 (4)0.8833 (4)0.3526 (3)0.0711 (13)
H6A0.39780.90920.39910.107*
H6B0.40820.90140.30940.107*
C10.3993 (5)0.4320 (5)0.3376 (5)0.0562 (17)
H10.39430.40850.39050.067*
C20.4103 (5)0.5467 (6)0.3634 (5)0.0623 (18)
H20.41430.60000.43230.075*
C30.4153 (6)0.5814 (5)0.2856 (6)0.0674 (19)
H30.42060.65880.30040.081*
C40.4124 (5)0.4995 (6)0.1847 (5)0.0623 (18)
H40.41590.52150.13090.075*
C50.4043 (5)0.3852 (5)0.1639 (5)0.0429 (14)
C60.4060 (4)0.2936 (5)0.0575 (4)0.0413 (14)
C70.4251 (5)0.3177 (6)0.0262 (5)0.0568 (17)
H70.43400.39330.01720.068*
C80.4309 (5)0.2301 (6)0.1221 (5)0.0570 (17)
H80.44430.24570.17840.068*
C90.4166 (5)0.1195 (6)0.1335 (5)0.0501 (15)
H90.42050.05870.19760.060*
C100.3961 (4)0.0996 (5)0.0480 (5)0.0464 (15)
H100.38570.02430.05620.056*
C110.3500 (5)0.2125 (5)0.4401 (5)0.0542 (16)
H110.42720.19580.43520.065*
C120.3092 (6)0.2475 (6)0.5350 (5)0.0668 (19)
H120.35710.25400.59300.080*
C130.1967 (7)0.2724 (6)0.5417 (5)0.070 (2)
H130.16670.29840.60540.084*
C140.1268 (6)0.2589 (6)0.4539 (5)0.0622 (18)
H140.04920.27470.45790.075*
C150.1731 (5)0.2216 (4)0.3596 (4)0.0415 (14)
C160.1037 (5)0.2016 (5)0.2606 (4)0.0435 (14)
C170.0148 (5)0.2143 (6)0.2558 (6)0.0626 (18)
H170.05300.23600.31510.075*
C180.0748 (6)0.1945 (7)0.1626 (6)0.083 (2)
H180.15450.20210.15820.099*
C190.0180 (6)0.1636 (8)0.0765 (6)0.099 (3)
H190.05700.15150.01290.119*
C200.1004 (5)0.1506 (7)0.0866 (5)0.085 (3)
H200.13960.12800.02780.101*
C210.6248 (5)0.2348 (5)0.2767 (4)0.0424 (14)
C220.7075 (4)0.2856 (5)0.3740 (4)0.0406 (14)
C230.7796 (4)0.3861 (5)0.4152 (4)0.0446 (14)
H230.78920.43800.38640.054*
C240.8374 (4)0.3962 (5)0.5108 (4)0.0410 (14)
C250.9183 (5)0.4786 (5)0.5900 (5)0.0546 (16)
H250.94510.54560.58560.066*
C260.9571 (5)0.4596 (6)0.6732 (5)0.0598 (18)
H261.01040.51430.72560.072*
C270.9183 (5)0.3594 (6)0.6811 (5)0.0600 (18)
H270.94730.34800.73810.072*
C280.8382 (5)0.2776 (5)0.6066 (5)0.0538 (16)
H280.81140.21150.61260.065*
C290.7985 (4)0.2967 (5)0.5217 (4)0.0400 (13)
C310.3117 (5)0.0931 (5)0.1209 (5)0.0449 (14)
C320.2787 (4)0.2191 (5)0.0709 (4)0.0392 (13)
C330.2308 (5)0.2888 (5)0.1117 (5)0.0524 (16)
H330.21470.26640.17990.063*
C340.2103 (5)0.4011 (5)0.0308 (4)0.0480 (15)
C350.1611 (5)0.5075 (5)0.0239 (5)0.0614 (18)
H350.13280.51300.08100.074*
C360.1561 (6)0.6015 (6)0.0683 (6)0.074 (2)
H360.12260.67170.07420.088*
C370.1997 (6)0.5951 (6)0.1537 (6)0.070 (2)
H370.19620.66150.21510.084*
C380.2484 (6)0.4927 (6)0.1504 (5)0.0606 (17)
H380.27760.48900.20790.073*
C390.2515 (5)0.3961 (5)0.0576 (4)0.0441 (14)
C410.1487 (6)0.9382 (7)0.3045 (6)0.083 (2)
H410.22700.92640.27760.100*
C420.0659 (7)0.9251 (6)0.2373 (6)0.077 (2)
H420.08750.90370.16710.092*
C430.0489 (6)0.9446 (5)0.2767 (5)0.0643 (18)
H430.10770.93760.23390.077*
C440.0766 (5)0.9749 (5)0.3810 (5)0.0550 (16)
H440.15470.98880.40900.066*
C450.0117 (5)0.9847 (5)0.4443 (4)0.0465 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0375 (2)0.0444 (3)0.0352 (2)0.00611 (17)0.00440 (16)0.01586 (19)
N10.049 (3)0.040 (3)0.050 (3)0.009 (2)0.009 (2)0.019 (3)
N20.042 (3)0.044 (3)0.036 (3)0.009 (2)0.005 (2)0.015 (2)
N30.051 (3)0.045 (3)0.027 (3)0.007 (2)0.008 (2)0.011 (2)
N40.035 (3)0.075 (4)0.043 (3)0.014 (2)0.006 (2)0.023 (3)
N50.048 (3)0.042 (3)0.037 (3)0.000 (2)0.002 (2)0.018 (2)
N60.053 (3)0.051 (3)0.034 (3)0.006 (2)0.005 (2)0.019 (3)
N70.047 (3)0.085 (4)0.063 (4)0.000 (3)0.002 (3)0.031 (3)
O10.042 (2)0.050 (3)0.056 (3)0.0005 (19)0.0068 (19)0.022 (2)
O20.048 (2)0.101 (4)0.048 (3)0.000 (2)0.006 (2)0.044 (3)
O30.071 (3)0.044 (3)0.050 (3)0.001 (2)0.010 (2)0.011 (2)
O40.063 (3)0.047 (3)0.070 (3)0.007 (2)0.010 (2)0.036 (2)
O50.051 (2)0.071 (3)0.068 (3)0.002 (2)0.001 (2)0.035 (3)
O60.083 (3)0.072 (3)0.054 (3)0.004 (3)0.005 (2)0.026 (3)
C10.069 (4)0.047 (4)0.044 (4)0.008 (3)0.019 (3)0.009 (3)
C20.062 (4)0.048 (4)0.061 (5)0.009 (3)0.017 (3)0.007 (4)
C30.074 (5)0.033 (4)0.088 (6)0.008 (3)0.013 (4)0.018 (4)
C40.068 (4)0.053 (4)0.065 (5)0.010 (3)0.011 (3)0.024 (4)
C50.039 (3)0.037 (4)0.055 (4)0.010 (3)0.003 (3)0.022 (3)
C60.035 (3)0.049 (4)0.046 (4)0.007 (3)0.005 (3)0.026 (3)
C70.064 (4)0.056 (4)0.061 (4)0.007 (3)0.009 (3)0.035 (4)
C80.071 (4)0.069 (5)0.039 (4)0.014 (4)0.012 (3)0.029 (4)
C90.045 (3)0.063 (4)0.042 (4)0.018 (3)0.008 (3)0.021 (3)
C100.042 (3)0.054 (4)0.049 (4)0.008 (3)0.005 (3)0.027 (3)
C110.059 (4)0.062 (4)0.040 (4)0.007 (3)0.009 (3)0.020 (3)
C120.084 (5)0.074 (5)0.043 (4)0.004 (4)0.006 (4)0.027 (4)
C130.098 (6)0.070 (5)0.046 (4)0.023 (4)0.029 (4)0.023 (4)
C140.061 (4)0.071 (5)0.056 (4)0.023 (4)0.026 (3)0.023 (4)
C150.044 (3)0.034 (3)0.046 (4)0.007 (3)0.017 (3)0.014 (3)
C160.040 (3)0.038 (3)0.049 (4)0.007 (3)0.010 (3)0.014 (3)
C170.039 (3)0.076 (5)0.076 (5)0.016 (3)0.018 (3)0.031 (4)
C180.045 (4)0.120 (7)0.092 (6)0.020 (4)0.006 (4)0.054 (6)
C190.052 (5)0.179 (9)0.074 (6)0.018 (5)0.008 (4)0.064 (6)
C200.046 (4)0.156 (8)0.053 (5)0.018 (4)0.001 (3)0.045 (5)
C210.036 (3)0.048 (4)0.046 (4)0.019 (3)0.007 (3)0.020 (3)
C220.033 (3)0.055 (4)0.035 (3)0.009 (3)0.007 (2)0.019 (3)
C230.039 (3)0.049 (4)0.049 (4)0.000 (3)0.007 (3)0.025 (3)
C240.035 (3)0.044 (4)0.043 (4)0.003 (3)0.006 (3)0.018 (3)
C250.056 (4)0.050 (4)0.053 (4)0.007 (3)0.001 (3)0.020 (3)
C260.057 (4)0.063 (5)0.046 (4)0.012 (3)0.004 (3)0.015 (4)
C270.050 (4)0.076 (5)0.053 (4)0.001 (3)0.007 (3)0.030 (4)
C280.055 (4)0.059 (4)0.053 (4)0.002 (3)0.002 (3)0.032 (4)
C290.037 (3)0.047 (4)0.037 (3)0.002 (3)0.004 (2)0.020 (3)
C310.034 (3)0.043 (4)0.054 (4)0.011 (3)0.008 (3)0.015 (3)
C320.042 (3)0.037 (3)0.037 (3)0.008 (3)0.008 (2)0.013 (3)
C330.063 (4)0.053 (4)0.043 (4)0.002 (3)0.013 (3)0.021 (3)
C340.048 (3)0.046 (4)0.044 (4)0.004 (3)0.003 (3)0.015 (3)
C350.071 (4)0.048 (4)0.066 (5)0.004 (3)0.009 (3)0.027 (4)
C360.086 (5)0.047 (5)0.080 (6)0.005 (4)0.010 (4)0.023 (4)
C370.094 (5)0.043 (4)0.057 (5)0.008 (4)0.013 (4)0.008 (4)
C380.075 (5)0.062 (5)0.039 (4)0.013 (4)0.003 (3)0.016 (4)
C390.046 (3)0.045 (4)0.036 (3)0.003 (3)0.002 (3)0.013 (3)
C410.058 (5)0.114 (7)0.067 (5)0.005 (4)0.007 (4)0.033 (5)
C420.088 (6)0.080 (6)0.053 (5)0.002 (4)0.001 (4)0.022 (4)
C430.079 (5)0.055 (4)0.061 (5)0.014 (4)0.017 (4)0.024 (4)
C440.048 (4)0.052 (4)0.070 (5)0.007 (3)0.007 (3)0.030 (4)
C450.045 (3)0.041 (4)0.054 (4)0.001 (3)0.002 (3)0.022 (3)
Geometric parameters (Å, º) top
Cd1—O12.239 (4)C12—H120.9300
Cd1—O42.336 (4)C13—C141.378 (9)
Cd1—N22.364 (4)C13—H130.9300
Cd1—N32.408 (4)C14—C151.389 (7)
Cd1—N42.419 (4)C14—H140.9300
Cd1—N12.450 (5)C15—C161.484 (8)
Cd1—O32.653 (4)C16—C171.385 (7)
N1—C11.333 (7)C17—C181.368 (9)
N1—C51.340 (7)C17—H170.9300
N2—C101.344 (7)C18—C191.357 (9)
N2—C61.347 (7)C18—H180.9300
N3—C111.333 (7)C19—C201.388 (9)
N3—C151.341 (6)C19—H190.9300
N4—C201.325 (7)C20—H200.9300
N4—C161.335 (7)C21—C221.491 (7)
N5—C221.371 (6)C22—C231.365 (7)
N5—C291.372 (6)C23—C241.425 (7)
N5—H5C0.8600C23—H230.9300
N6—C321.370 (6)C24—C251.407 (7)
N6—C391.375 (7)C24—C291.410 (7)
N6—H6C0.8600C25—C261.364 (8)
N7—C411.336 (8)C25—H250.9300
N7—C451.341 (7)C26—C271.395 (8)
O1—C211.290 (6)C26—H260.9300
O2—C211.236 (6)C27—C281.371 (8)
O3—C311.261 (7)C27—H270.9300
O4—C311.250 (7)C28—C291.389 (7)
O5—H5A0.8200C28—H280.9300
O5—H5B0.8200C31—C321.486 (7)
O6—H6A0.8200C32—C331.372 (7)
O6—H6B0.8200C33—C341.415 (8)
C1—C21.364 (8)C33—H330.9300
C1—H10.9300C34—C391.408 (7)
C2—C31.368 (9)C34—C351.413 (8)
C2—H20.9300C35—C361.359 (9)
C3—C41.380 (8)C35—H350.9300
C3—H30.9300C36—C371.387 (9)
C4—C51.376 (8)C36—H360.9300
C4—H40.9300C37—C381.384 (9)
C5—C61.486 (8)C37—H370.9300
C6—C71.387 (7)C38—C391.383 (8)
C7—C81.373 (8)C38—H380.9300
C7—H70.9300C41—C421.371 (9)
C8—C91.368 (8)C41—H410.9300
C8—H80.9300C42—C431.361 (9)
C9—C101.384 (7)C42—H420.9300
C9—H90.9300C43—C441.377 (8)
C10—H100.9300C43—H430.9300
C11—C121.369 (8)C44—C451.389 (8)
C11—H110.9300C44—H440.9300
C12—C131.356 (9)C45—C45i1.468 (11)
O1—Cd1—O4107.11 (14)N3—C15—C14120.3 (5)
O1—Cd1—N2108.36 (14)N3—C15—C16116.3 (5)
O4—Cd1—N282.76 (15)C14—C15—C16123.4 (5)
O1—Cd1—N389.13 (15)N4—C16—C17121.4 (6)
O4—Cd1—N3119.52 (14)N4—C16—C15117.2 (5)
N2—Cd1—N3146.91 (16)C17—C16—C15121.4 (5)
O1—Cd1—N4156.39 (15)C18—C17—C16119.2 (6)
O4—Cd1—N489.06 (16)C18—C17—H17120.4
N2—Cd1—N490.32 (16)C16—C17—H17120.4
N3—Cd1—N467.69 (16)C19—C18—C17119.9 (6)
O1—Cd1—N189.04 (15)C19—C18—H18120.0
O4—Cd1—N1150.16 (15)C17—C18—H18120.0
N2—Cd1—N168.19 (16)C18—C19—C20117.8 (7)
N3—Cd1—N184.76 (16)C18—C19—H19121.1
N4—Cd1—N184.58 (16)C20—C19—H19121.1
O1—Cd1—O384.88 (14)N4—C20—C19123.2 (6)
O4—Cd1—O352.23 (13)N4—C20—H20118.4
N2—Cd1—O3134.85 (15)C19—C20—H20118.4
N3—Cd1—O372.87 (14)O2—C21—O1125.9 (5)
N4—Cd1—O392.11 (15)O2—C21—C22119.4 (5)
N1—Cd1—O3156.86 (15)O1—C21—C22114.6 (5)
C1—N1—C5118.9 (5)C23—C22—N5109.8 (5)
C1—N1—Cd1123.7 (4)C23—C22—C21129.4 (5)
C5—N1—Cd1117.4 (4)N5—C22—C21120.8 (5)
C10—N2—C6118.2 (5)C22—C23—C24106.9 (5)
C10—N2—Cd1121.1 (4)C22—C23—H23126.5
C6—N2—Cd1120.6 (4)C24—C23—H23126.5
C11—N3—C15118.6 (5)C25—C24—C29118.0 (5)
C11—N3—Cd1121.7 (4)C25—C24—C23135.2 (5)
C15—N3—Cd1119.7 (4)C29—C24—C23106.8 (5)
C20—N4—C16118.5 (5)C26—C25—C24119.6 (6)
C20—N4—Cd1122.5 (4)C26—C25—H25120.2
C16—N4—Cd1119.1 (4)C24—C25—H25120.2
C22—N5—C29108.8 (4)C25—C26—C27121.1 (6)
C22—N5—H5C125.6C25—C26—H26119.4
C29—N5—H5C125.6C27—C26—H26119.4
C32—N6—C39109.0 (5)C28—C27—C26121.3 (6)
C32—N6—H6C125.5C28—C27—H27119.3
C39—N6—H6C125.5C26—C27—H27119.3
C41—N7—C45117.4 (6)C27—C28—C29117.7 (6)
C21—O1—Cd1119.1 (3)C27—C28—H28121.1
C31—O3—Cd184.5 (3)C29—C28—H28121.1
C31—O4—Cd199.5 (4)N5—C29—C28130.1 (5)
H5A—O5—H5B114.5N5—C29—C24107.7 (5)
H6A—O6—H6B100.4C28—C29—C24122.3 (5)
N1—C1—C2123.1 (6)O4—C31—O3123.7 (6)
N1—C1—H1118.4O4—C31—C32118.5 (5)
C2—C1—H1118.4O3—C31—C32117.7 (5)
C1—C2—C3118.5 (6)N6—C32—C33109.2 (5)
C1—C2—H2120.7N6—C32—C31121.3 (5)
C3—C2—H2120.7C33—C32—C31129.6 (5)
C2—C3—C4118.9 (6)C32—C33—C34107.4 (5)
C2—C3—H3120.6C32—C33—H33126.3
C4—C3—H3120.6C34—C33—H33126.3
C5—C4—C3119.9 (6)C39—C34—C35119.1 (6)
C5—C4—H4120.0C39—C34—C33106.9 (5)
C3—C4—H4120.0C35—C34—C33134.1 (6)
N1—C5—C4120.6 (6)C36—C35—C34118.5 (6)
N1—C5—C6117.1 (5)C36—C35—H35120.8
C4—C5—C6122.3 (6)C34—C35—H35120.8
N2—C6—C7121.1 (5)C35—C36—C37121.5 (6)
N2—C6—C5116.5 (5)C35—C36—H36119.3
C7—C6—C5122.3 (5)C37—C36—H36119.3
C8—C7—C6120.1 (6)C38—C37—C36122.0 (6)
C8—C7—H7119.9C38—C37—H37119.0
C6—C7—H7119.9C36—C37—H37119.0
C9—C8—C7118.9 (6)C39—C38—C37117.0 (6)
C9—C8—H8120.6C39—C38—H38121.5
C7—C8—H8120.6C37—C38—H38121.5
C8—C9—C10119.0 (6)N6—C39—C38130.4 (6)
C8—C9—H9120.5N6—C39—C34107.6 (5)
C10—C9—H9120.5C38—C39—C34122.0 (6)
N2—C10—C9122.7 (6)N7—C41—C42124.7 (7)
N2—C10—H10118.7N7—C41—H41117.6
C9—C10—H10118.7C42—C41—H41117.6
N3—C11—C12123.9 (6)C43—C42—C41117.8 (7)
N3—C11—H11118.1C43—C42—H42121.1
C12—C11—H11118.1C41—C42—H42121.1
C13—C12—C11117.8 (6)C42—C43—C44119.0 (6)
C13—C12—H12121.1C42—C43—H43120.5
C11—C12—H12121.1C44—C43—H43120.5
C12—C13—C14119.9 (6)C43—C44—C45120.2 (6)
C12—C13—H13120.1C43—C44—H44119.9
C14—C13—H13120.1C45—C44—H44119.9
C13—C14—C15119.5 (6)N7—C45—C44120.8 (6)
C13—C14—H14120.2N7—C45—C45i116.2 (6)
C15—C14—H14120.2C44—C45—C45i122.9 (7)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O5ii0.862.092.892 (9)155
N6—H6C···O2iii0.862.002.801 (8)156
O5—H5A···O60.821.962.748 (8)161
O5—H5B···N7iv0.822.092.879 (8)161
O6—H6A···O5v0.822.012.781 (7)156
O6—H6B···O3vi0.821.952.778 (6)174
Symmetry codes: (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y+2, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2O
Mr859.19
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)11.513 (2), 12.945 (3), 14.302 (3)
α, β, γ (°)114.95 (3), 94.27 (3), 93.84 (3)
V3)1915.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.26 × 0.19 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.865, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
15180, 6724, 4444
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.17
No. of reflections6724
No. of parameters515
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.55

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O5i0.8602.0892.892 (9)155
N6—H6C···O2ii0.8601.9952.801 (8)156
O5—H5A···O60.8201.9612.748 (8)161
O5—H5B···N7iii0.8202.0902.879 (8)161
O6—H6A···O5iv0.8202.0092.781 (7)156
O6—H6B···O3v0.8201.9532.778 (6)174
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang province (grant No. 20051316) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

References

First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Zhou, Q., Davies, N. M., Biffin, J. R. & Regtop, H. L. (2003). Chem. Res. Toxicol. 16, 28–37.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLou, Q.-Z. & Zhang, B.-S. (2007). Z. Kristallogr. New Cryst. Struct. 222, 199–201.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S., Huang, Y.-H. & Gua, H.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 376–378.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m879-m880
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds