organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-p-tolyl-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 13 May 2011; accepted 6 June 2011; online 18 June 2011)

In the title compound, C19H18N2O2, the dihedral angle between the mean planes of the fused chromeno and isoxazole units is 43.71 (7)°. The isoxazole and pyran rings exhibit envelope and half chair conformations, respectively. The crystal packing is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For uses of chromeno derivatives, see: Carlson (1993[Carlson, J. (1993). Neur. Transm., 94, 11-19.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147-151.]) and for uses of isoxazole derivatives, see: Kozikowski (1984[Kozikowski, A. P. (1984). Acc. Chem. Res., 17, 410-416.]); Howe & Shelton (1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]). For a related structure, see: Gangadharan et al. (2011[Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length and bond-angle distortions, see: Rybarczyk-Pirek et al. (2002[Rybarczyk-Pirek, A. J., Małecka, M., Grabowski, S. J. & Nawrot-Modranka, J. (2002). Acta Cryst. C58, o405-o406.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Raju et al. (2002[Raju, K. V. N., Krishnaiah, M., Kumar, N. J. & Rao, S. N. (2002). Acta Cryst. A58, C128.]); For the synthesis of isoxazolidines, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N2O2

  • Mr = 306.35

  • Monoclinic, P 21 /c

  • a = 8.5344 (3) Å

  • b = 7.6980 (3) Å

  • c = 24.6017 (8) Å

  • β = 98.234 (2)°

  • V = 1599.62 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 16796 measured reflections

  • 3606 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.04

  • 3606 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg3i 0.93 2.99 3.8075 (18) 147
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromenopyrroles are used in the treatment of Parkinsons disease (Carlson, 1993) and memory disorders(Sokoloff et al., 1990). Isoxazoline derivatives have been shown to be efficient precursors for many synthetic intermediates including γ-amino alchols and β-hydroxy ketones (Kozikowski, 1984). Spiroisoxazolines display interesting biological properties such as herbicidal, plant growth regulators and antitumour activities (Howe & Shelton, 1990). These observations prompted us to synthesize the title compound with fused chromeno and isoxazole rings (Bakthadoss & Murugan, 2010).

In the title molecule (Fig 1), the fused benzene and pyran rings forming the chromeno system are inclined to one another at a dihedral angle of 4.47 (7)° between the best planes of the rings. The six membered pyran ring adopts a half chair conformation with puckering amplitude Q= 0.4782 (15)Å, θ = 50.93 (17)° and ϕ = 278.3 (2)° (Cremer & Pople, 1975). In the pyran ring the C—C bond distances vary from a minimum of 1.3901 (19)Å to a maximum of 1.5332 (19)Å in comparison with a typical aromatic bond length of 1.384 (13)Å (Allen et al., 1987). This could be attributed to the presence of the heteroatom O1 in the cyclic system and also to the fusion of the pyran and isoxazole ring systems (Rybarczyk-Pirek et al., 2002).

The fusion between the isoxazole and the pyran rings at C7 and C8 is in cis-form. The dihedral angle between the fused chromeno and the isoxazole moieties is 43.71 (7)°.

The isoxazole ring adopts an envelope conformation at N1 with puckering parameters q2 = 0.5179 (14)Å and ϕ2 = 217.11 (16)° (Cremer & Pople,1975). In the isoxazole ring, enlargement of bond lengths and bond angles are observed at the points of linkages of substituents and fusion to the pyran ring (Raju et al., 2002).

The phenyl ring (C12–C17) substituent is almost perpendicular to the five membered isoxazole ring, the dihedral angle between them being 81.26 (8)°. The geometric parameters of the title compound agree well with reported structure (Gangadharan et al., 2011).

The crystal packing is stabilized by C—H···C and C—H···π interactions (C3—H···Cg3, where Cg3 is the centroid of the six membered ring defined by atoms C1–C6). The symmetry codes are: (i) x, y-1, z; (ii) -x, 1/2+y, 1/2-z. The packing view of the title compound shown in Fig. 2.

Related literature top

For the uses of chromeno derivatives, see: Carlson (1993); Sokoloff et al. (1990) and for the uses of isoxazole derivatives, see: Kozikowski (1984); Howe & Shelton (1990). For a related structure, see: Gangadharan et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For bond length and bond angle distorsions, see: Rybarczyk-Pirek et al. (2002); Allen et al. (1987); Raju et al. (2002); For the synthesis of isoxazolidines, see: Bakthadoss & Murugan (2010).

Experimental top

A mixture of compound (E)-2-((2-formylphenoxy)methyl)-3-p-tolylacylonitrile (1 mmol) with N-methylhydroxylamine hydrochloride (1.1 mmol), pyridine (0.24 ml,3 mmol) and ethanol (5 ml) were placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml), dilute HCl (5 ml) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concentrated. The crude product was purified by column chromatography to provide the pure desired product as colourless solid.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98Å and refined in riding model with isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H)=1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius.
[Figure 2] Fig. 2. Formation of C—H···C intermolecular bonding in the title compound.
1-Methyl-3-p-tolyl-3,3a,4,9b-tetrahydro-1H-chromeno[4,3-c] isoxazole-3a-carbonitrile top
Crystal data top
C19H18N2O2F(000) = 648
Mr = 306.35Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3606 reflections
a = 8.5344 (3) Åθ = 1.0–27.4°
b = 7.6980 (3) ŵ = 0.08 mm1
c = 24.6017 (8) ÅT = 295 K
β = 98.234 (2)°Block, colourless
V = 1599.62 (10) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.4°, θmin = 2.4°
ω–scansh = 1011
16796 measured reflectionsk = 99
3606 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.223P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H18N2O2V = 1599.62 (10) Å3
Mr = 306.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5344 (3) ŵ = 0.08 mm1
b = 7.6980 (3) ÅT = 295 K
c = 24.6017 (8) Å0.30 × 0.25 × 0.25 mm
β = 98.234 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2571 reflections with I > 2σ(I)
16796 measured reflectionsRint = 0.030
3606 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3606 reflectionsΔρmin = 0.14 e Å3
210 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22956 (16)0.74379 (19)0.22503 (6)0.0473 (3)
C20.20315 (19)0.8782 (2)0.25995 (6)0.0580 (4)
H20.25180.87710.29630.070*
C30.1058 (2)1.0123 (2)0.24110 (8)0.0655 (5)
H30.08821.10220.26470.079*
C40.0333 (2)1.0157 (2)0.18741 (8)0.0661 (5)
H40.03301.10730.17470.079*
C50.05999 (17)0.8817 (2)0.15272 (7)0.0559 (4)
H50.01230.88510.11630.067*
C60.15635 (15)0.74186 (18)0.17079 (5)0.0436 (3)
C70.19011 (15)0.60029 (18)0.13206 (5)0.0437 (3)
H70.21070.65130.09730.052*
C80.33071 (16)0.48679 (18)0.15615 (5)0.0442 (3)
C90.32444 (19)0.4600 (2)0.21731 (6)0.0540 (4)
H9A0.22600.40260.22190.065*
H9B0.41100.38490.23260.065*
C100.29378 (17)0.3102 (2)0.12512 (6)0.0527 (4)
H100.27510.22120.15190.063*
C110.07140 (19)0.5205 (3)0.08314 (8)0.0816 (6)
H11A0.03770.56470.05020.122*
H11B0.12720.60960.09980.122*
H11C0.14020.42270.07430.122*
C120.41716 (17)0.24478 (18)0.09254 (6)0.0474 (3)
C130.43199 (19)0.3076 (2)0.04099 (6)0.0570 (4)
H130.36100.39030.02460.068*
C140.5515 (2)0.2484 (2)0.01362 (6)0.0594 (4)
H140.55910.29130.02120.071*
C150.65985 (18)0.1273 (2)0.03664 (6)0.0540 (4)
C160.64196 (19)0.0627 (2)0.08744 (7)0.0602 (4)
H160.71240.02100.10360.072*
C170.52204 (19)0.1192 (2)0.11499 (6)0.0564 (4)
H170.51170.07220.14910.068*
C180.7938 (2)0.0675 (3)0.00727 (8)0.0795 (6)
H18A0.76380.08060.03160.119*
H18B0.81650.05250.01570.119*
H18C0.88620.13620.01910.119*
C190.47926 (17)0.57010 (19)0.14768 (6)0.0469 (3)
N10.06659 (14)0.46627 (17)0.12132 (5)0.0582 (4)
N20.59187 (16)0.64169 (19)0.14207 (6)0.0678 (4)
O10.33511 (13)0.61910 (14)0.24647 (4)0.0597 (3)
O20.14917 (12)0.34224 (16)0.08996 (5)0.0686 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (8)0.0510 (8)0.0507 (8)0.0054 (6)0.0103 (6)0.0034 (6)
C20.0541 (9)0.0643 (10)0.0576 (9)0.0120 (8)0.0154 (7)0.0173 (8)
C30.0567 (10)0.0600 (10)0.0846 (12)0.0077 (8)0.0269 (9)0.0238 (9)
C40.0535 (9)0.0552 (10)0.0924 (13)0.0099 (8)0.0198 (9)0.0044 (9)
C50.0453 (8)0.0591 (10)0.0635 (9)0.0059 (7)0.0086 (7)0.0008 (7)
C60.0345 (7)0.0484 (8)0.0494 (7)0.0031 (6)0.0114 (5)0.0031 (6)
C70.0363 (7)0.0498 (8)0.0451 (7)0.0003 (6)0.0063 (5)0.0022 (6)
C80.0403 (7)0.0442 (8)0.0485 (7)0.0010 (6)0.0077 (6)0.0006 (6)
C90.0603 (9)0.0506 (9)0.0511 (8)0.0042 (7)0.0078 (7)0.0046 (7)
C100.0504 (9)0.0462 (8)0.0630 (9)0.0033 (7)0.0137 (7)0.0057 (7)
C110.0406 (9)0.1028 (15)0.0972 (13)0.0017 (9)0.0049 (8)0.0387 (12)
C120.0488 (8)0.0407 (8)0.0528 (8)0.0017 (6)0.0076 (6)0.0052 (6)
C130.0638 (10)0.0455 (8)0.0614 (9)0.0078 (7)0.0084 (7)0.0074 (7)
C140.0741 (11)0.0536 (9)0.0529 (8)0.0037 (8)0.0173 (8)0.0015 (7)
C150.0541 (9)0.0487 (9)0.0603 (9)0.0047 (7)0.0122 (7)0.0128 (7)
C160.0563 (9)0.0580 (10)0.0644 (10)0.0141 (8)0.0026 (7)0.0008 (8)
C170.0637 (10)0.0576 (9)0.0474 (8)0.0064 (8)0.0057 (7)0.0036 (7)
C180.0744 (12)0.0772 (13)0.0927 (13)0.0026 (10)0.0327 (10)0.0224 (10)
C190.0395 (8)0.0453 (8)0.0549 (8)0.0063 (7)0.0038 (6)0.0034 (6)
N10.0395 (7)0.0621 (8)0.0736 (8)0.0039 (6)0.0095 (6)0.0215 (7)
N20.0468 (8)0.0640 (9)0.0923 (10)0.0020 (7)0.0093 (7)0.0111 (8)
O10.0649 (7)0.0651 (7)0.0462 (5)0.0059 (6)0.0022 (5)0.0047 (5)
O20.0461 (6)0.0732 (8)0.0851 (8)0.0001 (6)0.0041 (5)0.0351 (6)
Geometric parameters (Å, º) top
C1—O11.3692 (18)C10—C121.4989 (19)
C1—C21.384 (2)C10—H100.9800
C1—C61.3901 (19)C11—N11.458 (2)
C2—C31.364 (2)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.376 (2)C11—H11C0.9600
C3—H30.9300C12—C171.378 (2)
C4—C51.378 (2)C12—C131.380 (2)
C4—H40.9300C13—C141.378 (2)
C5—C61.389 (2)C13—H130.9300
C5—H50.9300C14—C151.377 (2)
C6—C71.5025 (19)C14—H140.9300
C7—N11.4716 (18)C15—C161.374 (2)
C7—C81.5332 (19)C15—C181.509 (2)
C7—H70.9800C16—C171.376 (2)
C8—C191.462 (2)C16—H160.9300
C8—C91.5272 (19)C17—H170.9300
C8—C101.569 (2)C18—H18A0.9600
C9—O11.4155 (18)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700C19—N21.1333 (18)
C10—O21.4235 (18)N1—O21.4694 (16)
O1—C1—C2116.22 (13)O2—C10—H10108.6
O1—C1—C6122.86 (13)C12—C10—H10108.6
C2—C1—C6120.87 (14)C8—C10—H10108.6
C3—C2—C1120.02 (15)N1—C11—H11A109.5
C3—C2—H2120.0N1—C11—H11B109.5
C1—C2—H2120.0H11A—C11—H11B109.5
C2—C3—C4120.58 (15)N1—C11—H11C109.5
C2—C3—H3119.7H11A—C11—H11C109.5
C4—C3—H3119.7H11B—C11—H11C109.5
C3—C4—C5119.26 (16)C17—C12—C13118.32 (14)
C3—C4—H4120.4C17—C12—C10119.16 (13)
C5—C4—H4120.4C13—C12—C10122.51 (14)
C4—C5—C6121.65 (15)C14—C13—C12120.32 (15)
C4—C5—H5119.2C14—C13—H13119.8
C6—C5—H5119.2C12—C13—H13119.8
C5—C6—C1117.59 (13)C15—C14—C13121.60 (14)
C5—C6—C7121.19 (12)C15—C14—H14119.2
C1—C6—C7121.06 (13)C13—C14—H14119.2
N1—C7—C6115.14 (11)C16—C15—C14117.62 (14)
N1—C7—C899.83 (11)C16—C15—C18121.05 (16)
C6—C7—C8112.25 (11)C14—C15—C18121.33 (16)
N1—C7—H7109.7C15—C16—C17121.40 (15)
C6—C7—H7109.7C15—C16—H16119.3
C8—C7—H7109.7C17—C16—H16119.3
C19—C8—C9110.68 (12)C16—C17—C12120.70 (14)
C19—C8—C7109.97 (11)C16—C17—H17119.7
C9—C8—C7108.78 (11)C12—C17—H17119.7
C19—C8—C10115.37 (12)C15—C18—H18A109.5
C9—C8—C10109.25 (12)C15—C18—H18B109.5
C7—C8—C10102.36 (11)H18A—C18—H18B109.5
O1—C9—C8111.94 (12)C15—C18—H18C109.5
O1—C9—H9A109.2H18A—C18—H18C109.5
C8—C9—H9A109.2H18B—C18—H18C109.5
O1—C9—H9B109.2N2—C19—C8176.76 (16)
C8—C9—H9B109.2C11—N1—O2104.57 (12)
H9A—C9—H9B107.9C11—N1—C7114.00 (14)
O2—C10—C12110.34 (12)O2—N1—C799.48 (10)
O2—C10—C8104.01 (11)C1—O1—C9114.86 (11)
C12—C10—C8116.36 (12)C10—O2—N1103.46 (10)
O1—C1—C2—C3176.76 (13)C9—C8—C10—C12123.06 (14)
C6—C1—C2—C30.8 (2)C7—C8—C10—C12121.75 (13)
C1—C2—C3—C40.1 (2)O2—C10—C12—C17142.83 (14)
C2—C3—C4—C50.0 (2)C8—C10—C12—C1799.01 (16)
C3—C4—C5—C61.0 (2)O2—C10—C12—C1338.3 (2)
C4—C5—C6—C11.9 (2)C8—C10—C12—C1379.82 (18)
C4—C5—C6—C7177.41 (14)C17—C12—C13—C141.5 (2)
O1—C1—C6—C5175.61 (13)C10—C12—C13—C14177.30 (14)
C2—C1—C6—C51.8 (2)C12—C13—C14—C150.6 (3)
O1—C1—C6—C70.1 (2)C13—C14—C15—C162.0 (2)
C2—C1—C6—C7177.32 (13)C13—C14—C15—C18177.88 (15)
C5—C6—C7—N181.82 (17)C14—C15—C16—C171.3 (2)
C1—C6—C7—N1102.86 (15)C18—C15—C16—C17178.64 (16)
C5—C6—C7—C8164.86 (13)C15—C16—C17—C120.9 (3)
C1—C6—C7—C810.46 (18)C13—C12—C17—C162.3 (2)
N1—C7—C8—C19154.67 (11)C10—C12—C17—C16176.59 (14)
C6—C7—C8—C1982.87 (14)C6—C7—N1—C1177.26 (16)
N1—C7—C8—C983.97 (13)C8—C7—N1—C11162.35 (12)
C6—C7—C8—C938.50 (15)C6—C7—N1—O2172.04 (11)
N1—C7—C8—C1031.56 (12)C8—C7—N1—O251.65 (12)
C6—C7—C8—C10154.02 (11)C2—C1—O1—C9161.37 (13)
C19—C8—C9—O160.05 (16)C6—C1—O1—C921.07 (19)
C7—C8—C9—O160.88 (15)C8—C9—O1—C152.08 (17)
C10—C8—C9—O1171.86 (12)C12—C10—O2—N1157.88 (11)
C19—C8—C10—O2119.20 (13)C8—C10—O2—N132.38 (14)
C9—C8—C10—O2115.38 (13)C11—N1—O2—C10172.10 (14)
C7—C8—C10—O20.19 (14)C7—N1—O2—C1054.09 (13)
C19—C8—C10—C122.36 (18)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···C4i0.982.843.662 (2)143
C3—H3···Cg3ii0.932.993.8075 (18)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18N2O2
Mr306.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.5344 (3), 7.6980 (3), 24.6017 (8)
β (°) 98.234 (2)
V3)1599.62 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16796, 3606, 2571
Rint0.030
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.04
No. of reflections3606
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···C4i0.982.843.662 (2)143
C3—H3···Cg3ii0.932.993.8075 (18)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

RG and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U.S.A.  Google Scholar
First citationCarlson, J. (1993). Neur. Transm., 94, 11–19.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKozikowski, A. P. (1984). Acc. Chem. Res., 17, 410–416.  CrossRef CAS Google Scholar
First citationRaju, K. V. N., Krishnaiah, M., Kumar, N. J. & Rao, S. N. (2002). Acta Cryst. A58, C128.  CrossRef IUCr Journals Google Scholar
First citationRybarczyk-Pirek, A. J., Małecka, M., Grabowski, S. J. & Nawrot-Modranka, J. (2002). Acta Cryst. C58, o405–o406.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds