metal-organic compounds
Poly[[(1,10-phenanthroline)(μ-L-tartrato)zinc] hexahydrate]
aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tscghua@126.com
The title compouand {[Zn(C4H4O6)(C12H8N2)]·6H2O}n, has a linear chain structure parallel to [100] with Zn(C4H4O6)(C12H8N2) repeat units; the consists of one Zn2+ cation, one L-tartrate dianion, one 1,10-phenanthroline and six free water molecules. The Zn atom is in a distorted octahedral ZnN2O4 coordination environment. The is stabilized by O—H⋯O hydrogen bonds and π–π stacking of the phenanthroline units [centroid–centroid distances in the range 3.552 (2)–3.625 (2)Å] occurs between the chains. The title compound is isotypic with the Cu and Mn analogues.
Related literature
For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008, 2010); Gelbrich et al. (2006); Kitagawa et al. (2004); Ma et al. (2007); Adama et al. (2007); Lin et al. (2009); Templeton et al. (1985). For the isotypic copper and manganese analogues, see: McCann et al. (1997); Zhang et al. (2003).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811024780/rk2279sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024780/rk2279Isup2.hkl
A mixture of Zn(NO3)2.6H2O (298 mg, 1 mmol), L-(+)-tartaric acid (150 mg, 1 mmol) and 1,10-phenanthroline (180 mg, 1 mmol) in H2O (12 ml) was placed in a teflon-lined stainless vessel and heated to 413 K for 72 h. Then, the reaction system was cooled to room temperature during 24 h to give rise to colourless crystals, which were collected and washed with water. Yield 0.191 g (38% based on Zn). Analysis calculated for C16H24N2ZnO12 (501.76): C 38.30, H 4.82, N 5.58%; found: C 38.06, H 4.71 N 5.49%.
H atoms bonded to C atoms were placed at calculated idealized positions using a riding model - C–H = 0.93%A for 1,10-phenanthroline and 0.98%A for L-tartrate, and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined isotropically, with O–H and H···H distance restraints of 0.85 (1) and 1.37 (1)Å, respectively.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Part of the structure of I, showing the bridging mode of the L-tartrate anion and one of the independent structural units with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. | |
Fig. 2. The one-dimensional helical chain water clusters in I. |
[Zn(C4H4O6)(C12H8N2)]·6H2O | F(000) = 1040 |
Mr = 501.76 | Dx = 1.635 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3086 reflections |
a = 6.632 (2) Å | θ = 4.3–23.8° |
b = 15.301 (4) Å | µ = 1.27 mm−1 |
c = 20.087 (5) Å | T = 295 K |
V = 2038.4 (10) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.18 × 0.16 mm |
Bruker SMART CCD area-detector diffractometer | 3541 independent reflections |
Radiation source: fine-focus sealed tube | 3251 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.754, Tmax = 0.844 | k = −18→18 |
16280 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.136P] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max = 0.001 |
3541 reflections | Δρmax = 0.32 e Å−3 |
280 parameters | Δρmin = −0.29 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 1456 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.025 (12) |
[Zn(C4H4O6)(C12H8N2)]·6H2O | V = 2038.4 (10) Å3 |
Mr = 501.76 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.632 (2) Å | µ = 1.27 mm−1 |
b = 15.301 (4) Å | T = 295 K |
c = 20.087 (5) Å | 0.25 × 0.18 × 0.16 mm |
Bruker SMART CCD area-detector diffractometer | 3541 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3251 reflections with I > 2σ(I) |
Tmin = 0.754, Tmax = 0.844 | Rint = 0.036 |
16280 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.071 | Δρmax = 0.32 e Å−3 |
S = 0.96 | Δρmin = −0.29 e Å−3 |
3541 reflections | Absolute structure: Flack (1983), 1456 Friedel pairs |
280 parameters | Absolute structure parameter: 0.025 (12) |
3 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.1075 (3) | −0.01758 (12) | 0.20025 (11) | 0.0366 (5) | |
C16 | 0.2759 (4) | −0.02548 (17) | 0.22862 (14) | 0.0298 (6) | |
O4 | 0.3195 (3) | 0.12657 (10) | 0.20244 (9) | 0.0284 (4) | |
C15 | 0.3940 (4) | 0.05857 (18) | 0.24324 (14) | 0.0250 (6) | |
H15 | 0.3646 | 0.0748 | 0.2894 | 0.030* | |
Zn1 | 1.00853 (5) | 0.102577 (17) | 0.169795 (13) | 0.02690 (10) | |
C12 | 1.0062 (5) | 0.22189 (16) | 0.05463 (11) | 0.0271 (5) | |
O5W | 1.0162 (4) | 0.30592 (14) | 0.32821 (11) | 0.0563 (6) | |
N2 | 1.0235 (4) | 0.06704 (14) | 0.06729 (11) | 0.0314 (5) | |
N1 | 1.0013 (4) | 0.22682 (12) | 0.12231 (9) | 0.0275 (4) | |
C4 | 1.0048 (5) | 0.29597 (17) | 0.01369 (13) | 0.0338 (6) | |
C11 | 1.0136 (5) | 0.13644 (17) | 0.02535 (12) | 0.0287 (5) | |
O1 | 0.8915 (3) | 0.14883 (13) | 0.25782 (9) | 0.0361 (5) | |
O2 | 0.6953 (3) | 0.05600 (11) | 0.17118 (9) | 0.0304 (4) | |
C5 | 1.0043 (5) | 0.2840 (2) | −0.05749 (13) | 0.0422 (7) | |
H5 | 1.0039 | 0.3328 | −0.0851 | 0.051* | |
C1 | 0.9968 (5) | 0.30549 (16) | 0.14973 (13) | 0.0353 (6) | |
H1 | 0.9926 | 0.3097 | 0.1959 | 0.042* | |
C3 | 1.0025 (5) | 0.37765 (18) | 0.04495 (16) | 0.0431 (7) | |
H3 | 1.0040 | 0.4286 | 0.0197 | 0.052* | |
C6 | 1.0043 (6) | 0.2046 (2) | −0.08455 (13) | 0.0466 (7) | |
H6 | 0.9991 | 0.1992 | −0.1306 | 0.056* | |
C14 | 0.6229 (4) | 0.04665 (19) | 0.23801 (14) | 0.0265 (6) | |
H14 | 0.6551 | −0.0127 | 0.2529 | 0.032* | |
C2 | 0.9980 (5) | 0.38216 (16) | 0.11246 (16) | 0.0425 (7) | |
H2 | 0.9957 | 0.4362 | 0.1337 | 0.051* | |
C7 | 1.0121 (5) | 0.12713 (19) | −0.04425 (13) | 0.0367 (6) | |
C8 | 1.0180 (6) | 0.0416 (2) | −0.06949 (15) | 0.0472 (8) | |
H8 | 1.0127 | 0.0323 | −0.1152 | 0.057* | |
O4W | 0.6195 (4) | 0.77423 (16) | 0.23686 (14) | 0.0661 (8) | |
C9 | 1.0313 (5) | −0.0270 (2) | −0.02751 (17) | 0.0488 (9) | |
H9 | 1.0393 | −0.0836 | −0.0443 | 0.059* | |
O6 | 0.3450 (3) | −0.09500 (13) | 0.24989 (13) | 0.0541 (6) | |
O6W | 0.9593 (4) | 0.09008 (17) | 0.44919 (13) | 0.0668 (8) | |
O5 | 0.6820 (3) | 0.11830 (13) | 0.34059 (9) | 0.0421 (5) | |
C13 | 0.7393 (4) | 0.11022 (17) | 0.28205 (13) | 0.0284 (6) | |
O2W | 0.5435 (5) | 0.93830 (16) | 0.08799 (12) | 0.0691 (9) | |
C10 | 1.0329 (5) | −0.0129 (2) | 0.04130 (16) | 0.0433 (8) | |
H10 | 1.0407 | −0.0607 | 0.0697 | 0.052* | |
O3W | 0.4092 (5) | 0.76383 (18) | 0.08031 (13) | 0.0717 (9) | |
O1W | 0.8120 (4) | 0.74506 (16) | 0.05396 (12) | 0.0688 (8) | |
H2A | 0.5009 | 0.8888 | 0.1012 | 0.103* | |
H4A | 0.7053 | 0.7907 | 0.2081 | 0.103* | |
H4B | 0.5115 | 0.8013 | 0.2270 | 0.103* | |
H6B | 0.8707 | 0.0962 | 0.4190 | 0.103* | |
H6A | 0.9938 | 0.1431 | 0.4439 | 0.103* | |
H5A | 0.9930 | 0.3578 | 0.3153 | 0.103* | |
H2B | 0.5516 | 0.9338 | 0.0459 | 0.103* | |
H5B | 0.9921 | 0.2536 | 0.3163 | 0.103* | |
H1A | 0.8804 | 0.7738 | 0.0823 | 0.103* | |
H1B | 0.6869 | 0.7508 | 0.0620 | 0.103* | |
H3B | 0.3756 | 0.7608 | 0.0396 | 0.103* | |
H3A | 0.3169 | 0.7389 | 0.1028 | 0.103* | |
H21 | 0.6634 | 0.0119 | 0.1475 | 0.103* | |
H22 | 0.3426 | 0.1744 | 0.2228 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0324 (12) | 0.0319 (10) | 0.0456 (12) | −0.0066 (8) | −0.0060 (10) | 0.0044 (9) |
C16 | 0.0262 (16) | 0.0296 (14) | 0.0336 (15) | −0.0017 (11) | 0.0054 (12) | 0.0052 (12) |
O4 | 0.0266 (10) | 0.0255 (9) | 0.0330 (10) | 0.0005 (8) | −0.0037 (8) | 0.0036 (8) |
C15 | 0.0249 (15) | 0.0290 (13) | 0.0211 (15) | −0.0003 (11) | 0.0004 (12) | 0.0035 (12) |
Zn1 | 0.02568 (16) | 0.03218 (15) | 0.02283 (15) | 0.00036 (16) | 0.00039 (16) | 0.00170 (11) |
C12 | 0.0165 (12) | 0.0402 (12) | 0.0246 (12) | 0.0009 (15) | −0.0026 (14) | 0.0047 (10) |
O5W | 0.0625 (16) | 0.0543 (12) | 0.0520 (13) | 0.0103 (13) | −0.0063 (17) | 0.0013 (10) |
N2 | 0.0297 (14) | 0.0366 (11) | 0.0279 (11) | −0.0001 (11) | 0.0019 (12) | −0.0022 (9) |
N1 | 0.0238 (11) | 0.0356 (10) | 0.0230 (10) | 0.0007 (12) | 0.0002 (12) | 0.0012 (8) |
C4 | 0.0178 (13) | 0.0480 (14) | 0.0355 (14) | 0.0030 (16) | −0.0017 (16) | 0.0086 (11) |
C11 | 0.0167 (13) | 0.0449 (13) | 0.0247 (12) | −0.0039 (14) | −0.0001 (13) | −0.0012 (10) |
O1 | 0.0322 (12) | 0.0496 (12) | 0.0263 (10) | −0.0117 (9) | 0.0021 (9) | −0.0066 (9) |
O2 | 0.0253 (10) | 0.0444 (10) | 0.0215 (10) | −0.0036 (8) | 0.0049 (8) | −0.0063 (8) |
C5 | 0.0266 (15) | 0.0682 (19) | 0.0317 (14) | −0.0002 (19) | −0.0007 (16) | 0.0209 (13) |
C1 | 0.0337 (15) | 0.0380 (13) | 0.0341 (13) | 0.0063 (15) | −0.0014 (15) | −0.0038 (11) |
C3 | 0.0305 (15) | 0.0443 (15) | 0.0545 (18) | 0.0027 (17) | 0.0012 (18) | 0.0182 (13) |
C6 | 0.0348 (17) | 0.085 (2) | 0.0199 (13) | −0.004 (2) | −0.0027 (17) | 0.0078 (14) |
C14 | 0.0231 (16) | 0.0336 (14) | 0.0229 (14) | 0.0021 (11) | 0.0023 (12) | 0.0053 (12) |
C2 | 0.0375 (16) | 0.0327 (13) | 0.0572 (19) | 0.0038 (17) | −0.0030 (18) | −0.0016 (12) |
C7 | 0.0215 (14) | 0.0637 (17) | 0.0250 (13) | −0.0066 (16) | −0.0028 (14) | −0.0034 (12) |
C8 | 0.0355 (18) | 0.075 (2) | 0.0308 (15) | −0.006 (2) | −0.0018 (17) | −0.0196 (14) |
O4W | 0.0657 (18) | 0.0476 (14) | 0.0849 (19) | 0.0199 (12) | 0.0118 (15) | 0.0257 (13) |
C9 | 0.040 (2) | 0.0525 (17) | 0.054 (2) | −0.0013 (16) | −0.0003 (17) | −0.0231 (15) |
O6 | 0.0400 (13) | 0.0317 (11) | 0.0906 (18) | 0.0011 (10) | 0.0008 (12) | 0.0195 (12) |
O6W | 0.079 (2) | 0.0599 (14) | 0.0614 (16) | −0.0124 (15) | −0.0221 (14) | 0.0128 (12) |
O5 | 0.0411 (12) | 0.0659 (14) | 0.0193 (10) | −0.0092 (10) | 0.0030 (9) | −0.0049 (9) |
C13 | 0.0284 (15) | 0.0348 (13) | 0.0220 (14) | 0.0016 (12) | −0.0018 (11) | −0.0002 (12) |
O2W | 0.099 (3) | 0.0630 (14) | 0.0455 (14) | −0.0279 (15) | 0.0035 (15) | −0.0172 (11) |
C10 | 0.042 (2) | 0.0426 (15) | 0.0450 (17) | −0.0001 (15) | 0.0033 (16) | −0.0089 (13) |
O3W | 0.096 (2) | 0.0713 (18) | 0.0477 (15) | −0.0241 (15) | 0.0004 (14) | 0.0072 (13) |
O1W | 0.0779 (19) | 0.0765 (17) | 0.0521 (15) | 0.0169 (15) | −0.0096 (14) | −0.0161 (13) |
O3—C16 | 1.260 (3) | C5—C6 | 1.331 (4) |
O3—Zn1i | 2.046 (2) | C5—H5 | 0.9300 |
C16—O6 | 1.235 (3) | C1—C2 | 1.392 (4) |
C16—C15 | 1.534 (4) | C1—H1 | 0.9300 |
O4—C15 | 1.414 (3) | C3—C2 | 1.358 (4) |
O4—Zn1i | 2.1952 (19) | C3—H3 | 0.9300 |
O4—H22 | 0.8525 | C6—C7 | 1.437 (4) |
C15—C14 | 1.533 (4) | C6—H6 | 0.9300 |
C15—H15 | 0.9800 | C14—C13 | 1.524 (4) |
Zn1—O3ii | 2.046 (2) | C14—H14 | 0.9800 |
Zn1—O1 | 2.0567 (19) | C2—H2 | 0.9300 |
Zn1—N1 | 2.1274 (19) | C7—C8 | 1.403 (4) |
Zn1—N2 | 2.132 (2) | C8—C9 | 1.350 (5) |
Zn1—O4ii | 2.1952 (19) | C8—H8 | 0.9300 |
Zn1—O2 | 2.1966 (19) | O4W—H4A | 0.8490 |
C12—N1 | 1.362 (3) | O4W—H4B | 0.8507 |
C12—C4 | 1.400 (3) | C9—C10 | 1.399 (4) |
C12—C11 | 1.434 (4) | C9—H9 | 0.9300 |
O5W—H5A | 0.8493 | O6W—H6B | 0.8495 |
O5W—H5B | 0.8502 | O6W—H6A | 0.8494 |
N2—C10 | 1.331 (4) | O5—C13 | 1.242 (3) |
N2—C11 | 1.357 (3) | O2W—H2A | 0.8511 |
N1—C1 | 1.324 (3) | O2W—H2B | 0.8494 |
C4—C3 | 1.399 (4) | C10—H10 | 0.9300 |
C4—C5 | 1.442 (4) | O3W—H3B | 0.8496 |
C11—C7 | 1.406 (4) | O3W—H3A | 0.8513 |
O1—C13 | 1.267 (3) | O1W—H1A | 0.8500 |
O2—C14 | 1.433 (3) | O1W—H1B | 0.8500 |
O2—H21 | 0.8519 | ||
C16—O3—Zn1i | 120.39 (17) | C14—O2—Zn1 | 111.16 (15) |
O6—C16—O3 | 124.6 (3) | C14—O2—H21 | 111.1 |
O6—C16—C15 | 117.8 (3) | Zn1—O2—H21 | 119.0 |
O3—C16—C15 | 117.3 (2) | C6—C5—C4 | 121.4 (2) |
C15—O4—Zn1i | 112.24 (15) | C6—C5—H5 | 119.3 |
C15—O4—H22 | 106.9 | C4—C5—H5 | 119.3 |
Zn1i—O4—H22 | 117.1 | N1—C1—C2 | 122.8 (2) |
O4—C15—C14 | 113.2 (2) | N1—C1—H1 | 118.6 |
O4—C15—C16 | 109.1 (2) | C2—C1—H1 | 118.6 |
C14—C15—C16 | 113.1 (2) | C2—C3—C4 | 119.6 (2) |
O4—C15—H15 | 107.0 | C2—C3—H3 | 120.2 |
C14—C15—H15 | 107.0 | C4—C3—H3 | 120.2 |
C16—C15—H15 | 107.0 | C5—C6—C7 | 121.5 (2) |
O3ii—Zn1—O1 | 99.98 (9) | C5—C6—H6 | 119.2 |
O3ii—Zn1—N1 | 160.80 (9) | C7—C6—H6 | 119.2 |
O1—Zn1—N1 | 93.98 (8) | O2—C14—C13 | 108.1 (2) |
O3ii—Zn1—N2 | 92.56 (9) | O2—C14—C15 | 112.6 (2) |
O1—Zn1—N2 | 159.34 (9) | C13—C14—C15 | 112.7 (2) |
N1—Zn1—N2 | 78.22 (8) | O2—C14—H14 | 107.8 |
O3ii—Zn1—O4ii | 76.09 (7) | C13—C14—H14 | 107.8 |
O1—Zn1—O4ii | 92.31 (8) | C15—C14—H14 | 107.8 |
N1—Zn1—O4ii | 90.32 (8) | C3—C2—C1 | 119.6 (2) |
N2—Zn1—O4ii | 106.70 (9) | C3—C2—H2 | 120.2 |
O3ii—Zn1—O2 | 90.46 (8) | C1—C2—H2 | 120.2 |
O1—Zn1—O2 | 75.15 (7) | C11—C7—C8 | 117.0 (3) |
N1—Zn1—O2 | 105.92 (9) | C11—C7—C6 | 118.5 (3) |
N2—Zn1—O2 | 88.49 (8) | C8—C7—C6 | 124.5 (3) |
O4ii—Zn1—O2 | 159.91 (7) | C9—C8—C7 | 120.1 (3) |
N1—C12—C4 | 122.8 (2) | C9—C8—H8 | 119.9 |
N1—C12—C11 | 117.4 (2) | C7—C8—H8 | 119.9 |
C4—C12—C11 | 119.8 (2) | H4A—O4W—H4B | 105.1 |
H5A—O5W—H5B | 139.5 | C8—C9—C10 | 119.8 (3) |
C10—N2—C11 | 118.5 (2) | C8—C9—H9 | 120.1 |
C10—N2—Zn1 | 128.0 (2) | C10—C9—H9 | 120.1 |
C11—N2—Zn1 | 113.43 (16) | H6B—O6W—H6A | 89.5 |
C1—N1—C12 | 117.8 (2) | O5—C13—O1 | 124.1 (2) |
C1—N1—Zn1 | 128.78 (17) | O5—C13—C14 | 117.3 (2) |
C12—N1—Zn1 | 113.42 (15) | O1—C13—C14 | 118.6 (2) |
C3—C4—C12 | 117.4 (2) | H2A—O2W—H2B | 105.1 |
C3—C4—C5 | 124.0 (2) | N2—C10—C9 | 122.0 (3) |
C12—C4—C5 | 118.7 (2) | N2—C10—H10 | 119.0 |
N2—C11—C7 | 122.6 (2) | C9—C10—H10 | 119.0 |
N2—C11—C12 | 117.4 (2) | H3B—O3W—H3A | 107.4 |
C7—C11—C12 | 120.0 (2) | H1A—O1W—H1B | 109.9 |
C13—O1—Zn1 | 118.07 (17) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O5Wiii | 0.85 | 1.99 | 2.787 (3) | 157 |
O2W—H2A···O3W | 0.85 | 2.05 | 2.819 (4) | 150 |
O2W—H2B···O6Wiv | 0.85 | 1.98 | 2.822 (4) | 172 |
O3W—H3A···O5v | 0.85 | 2.17 | 2.802 (3) | 131 |
O3W—H3B···O1Wvi | 0.85 | 1.93 | 2.776 (4) | 177 |
O4W—H4A···O5Wiii | 0.85 | 2.00 | 2.789 (4) | 154 |
O4W—H4B···O6vii | 0.85 | 1.99 | 2.718 (3) | 143 |
O5W—H5A···O3v | 0.85 | 2.04 | 2.880 (3) | 168 |
O5W—H5B···O1 | 0.85 | 2.10 | 2.909 (3) | 160 |
O6W—H6A···O1Wviii | 0.85 | 2.02 | 2.816 (4) | 155 |
O6W—H6B···O5 | 0.85 | 2.04 | 2.886 (3) | 174 |
O2—H21···O2Wix | 0.85 | 1.82 | 2.655 (3) | 164 |
O4—H22···O4Wx | 0.85 | 1.75 | 2.599 (3) | 178 |
Symmetry codes: (iii) −x+2, y+1/2, −z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1/2, −y+3/2, −z; (vii) x, y+1, z; (viii) −x+2, y−1/2, −z+1/2; (ix) x, y−1, z; (x) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C4H4O6)(C12H8N2)]·6H2O |
Mr | 501.76 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 6.632 (2), 15.301 (4), 20.087 (5) |
V (Å3) | 2038.4 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.25 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.754, 0.844 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16280, 3541, 3251 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.071, 0.96 |
No. of reflections | 3541 |
No. of parameters | 280 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.29 |
Absolute structure | Flack (1983), 1456 Friedel pairs |
Absolute structure parameter | 0.025 (12) |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O5Wi | 0.85 | 1.99 | 2.787 (3) | 157 |
O2W—H2A···O3W | 0.85 | 2.05 | 2.819 (4) | 150 |
O2W—H2B···O6Wii | 0.85 | 1.98 | 2.822 (4) | 172 |
O3W—H3A···O5iii | 0.85 | 2.17 | 2.802 (3) | 131 |
O3W—H3B···O1Wiv | 0.85 | 1.93 | 2.776 (4) | 177 |
O4W—H4A···O5Wi | 0.85 | 2.00 | 2.789 (4) | 154 |
O4W—H4B···O6v | 0.85 | 1.99 | 2.718 (3) | 143 |
O5W—H5A···O3iii | 0.85 | 2.04 | 2.880 (3) | 168 |
O5W—H5B···O1 | 0.85 | 2.10 | 2.909 (3) | 160 |
O6W—H6A···O1Wvi | 0.85 | 2.02 | 2.816 (4) | 155 |
O6W—H6B···O5 | 0.85 | 2.04 | 2.886 (3) | 174 |
O2—H21···O2Wvii | 0.85 | 1.82 | 2.655 (3) | 164 |
O4—H22···O4Wviii | 0.85 | 1.75 | 2.599 (3) | 178 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+3/2, −y+1, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, −z; (v) x, y+1, z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, y−1, z; (viii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Hebei United University for supporting this work.
References
Adama, S., Mohamed, G., Abdou Salam, S., Aliou Hamady, B. & Ahmed, D. (2007). Acta Cryst. E63, m574–m575. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937–944. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Lin, H.-Y., Hu, H.-L., Chen, B.-K. & Li, J. (2009). PhD thesis (No. 8225, 26, 803), University of California, USA. Google Scholar
Liu, H.-T., Lu, J. & Wang, D.-Q. (2010). Acta Cryst. E66, m374. Web of Science CrossRef IUCr Journals Google Scholar
Liu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334. Web of Science CSD CrossRef CAS Google Scholar
Ma, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107–4109. Web of Science CSD CrossRef Google Scholar
McCann, M., Humphreys, F. & McKee, V. (1997). Polyhedron, pp. 3655–3661. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Templeton, L. K., Templeton, D. H., Zhang, D. & Zalkin, A. (1985). Acta Cryst. C41, 363–365. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhang, X.-F., Huang, D.-G., Feng, C., Chen, C.-N., Liu, Q.-T. & Sun, L.-C. (2003). Acta Cryst. C59, m402–m404. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
An enormous effort has been devoted to the development of new homochiral coordination polymer duo to their the possibility of applications to enantioselective separation, catalytic processes and magneto-optical processes (Kitagawa et al., 2004; Ma et al., 2007; Liu et al., 2008; Gelbrich et al., 2006)). L-tartaric acid, a simple and inexpensive chiral ligand source, was often used to construct novel chiral multifunctional metal-organic frameworks (McCann et al.,1997; Zhang et al., 2003). However, only four zinc-tartrate compounds have been reported (Adama et al., 2007; Lin et al., 2009; Liu et al., 2010; Templeton et al., 1985) up to now. We report here the synthesis and crystal structure of the first mixed-ligand zinc(II) complex with tartrate and 1,10-phenanthroline, I, which has a linear chain structure.
The asymmetric unit of I consists of one Zn atom, one L-tartrate dianion, one phenanthroline and six free water molecules, (Fig. 1). The Zn atom is hexacoordinated by four O atoms (Zn-O = 2.046 (2)-2.200 (2)Å) and two N atoms (Zn-N = 2.127 (2)Å and 2.132 (2)Å) forming [ZnO4N2] distorted octahedral geometry with three trans-angles form 159.21 (10)° to 160.73 (10)°. The Zn-O(hydroxy) and Zn–O(carboxylate) distances are typical for Zn-O bonds. The L-tartrate dianion adopts η4µ2-chelating/bridging mode to extend Zn(C12H8N2)2+ to one-dimensional polymeric chain, which is assembled together to genterate a zipper-like double chain through strong π–π packing interactions between parallel phenanthroline aromatic rings with centroid–centroid distances of 3.552 (2)-3.625 (2)Å. The most noteworthy structural feature of I, is the existence of one-dimensional helical chain water cluster (Fig. 2). In crystal achitecture of I, there are six crystllography independent lattice water molecules, which are interconnected by hydrogen bonds forming a right-handed helical chain. The average Ow···Ow distance of 2.79 (2)Å in I is slightly small than the Ow···Ow distance observed in liquid water (2.85 (3)Å). The hydrogen bonding interactions between the Ow atoms from water cluster chains and the tartrate O atoms from one-dimensional double zipper chains with the average Ow···O distance of 2.77 (2)Å lead to the formation of a three-dimensional supramolecular framework of I.