metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m1005-m1006

Poly[[(1,10-phenanthroline)(μ-L-tartrato)zinc] hexa­hydrate]

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tscghua@126.com

(Received 1 June 2011; accepted 23 June 2011; online 30 June 2011)

The title compouand {[Zn(C4H4O6)(C12H8N2)]·6H2O}n, has a linear chain structure parallel to [100] with Zn(C4H4O6)(C12H8N2) repeat units; the asymmetric unit consists of one Zn2+ cation, one L-tartrate dianion, one 1,10-phenanthroline and six free water mol­ecules. The Zn atom is in a distorted octa­hedral ZnN2O4 coordination environment. The crystal structure is stabilized by O—H⋯O hydrogen bonds and ππ stacking of the phenanthroline units [centroid–centroid distances in the range 3.552 (2)–3.625 (2)Å] occurs between the chains. The title compound is isotypic with the Cu and Mn analogues.

Related literature

For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008[Liu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327-2334.], 2010[Liu, H.-T., Lu, J. & Wang, D.-Q. (2010). Acta Cryst. E66, m374.]); Gelbrich et al. (2006[Gelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937-944.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Ma et al. (2007[Ma, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107-4109.]); Adama et al. (2007[Adama, S., Mohamed, G., Abdou Salam, S., Aliou Hamady, B. & Ahmed, D. (2007). Acta Cryst. E63, m574-m575.]); Lin et al. (2009[Lin, H.-Y., Hu, H.-L., Chen, B.-K. & Li, J. (2009). PhD thesis (No. 8225, 26, 803), University of California, USA.]); Templeton et al. (1985[Templeton, L. K., Templeton, D. H., Zhang, D. & Zalkin, A. (1985). Acta Cryst. C41, 363-365.]). For the isotypic copper and manganese analogues, see: McCann et al. (1997[McCann, M., Humphreys, F. & McKee, V. (1997). Polyhedron, pp. 3655-3661.]); Zhang et al. (2003[Zhang, X.-F., Huang, D.-G., Feng, C., Chen, C.-N., Liu, Q.-T. & Sun, L.-C. (2003). Acta Cryst. C59, m402-m404.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H4O6)(C12H8N2)]·6H2O

  • Mr = 501.76

  • Orthorhombic, P 21 21 21

  • a = 6.632 (2) Å

  • b = 15.301 (4) Å

  • c = 20.087 (5) Å

  • V = 2038.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 295 K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 0.844

  • 16280 measured reflections

  • 3541 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 0.96

  • 3541 reflections

  • 280 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1456 Friedel pairs

  • Flack parameter: 0.025 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O5Wi 0.85 1.99 2.787 (3) 157
O2W—H2A⋯O3W 0.85 2.05 2.819 (4) 150
O2W—H2B⋯O6Wii 0.85 1.98 2.822 (4) 172
O3W—H3A⋯O5iii 0.85 2.17 2.802 (3) 131
O3W—H3B⋯O1Wiv 0.85 1.93 2.776 (4) 177
O4W—H4A⋯O5Wi 0.85 2.00 2.789 (4) 154
O4W—H4B⋯O6v 0.85 1.99 2.718 (3) 143
O5W—H5A⋯O3iii 0.85 2.04 2.880 (3) 168
O5W—H5B⋯O1 0.85 2.10 2.909 (3) 160
O6W—H6A⋯O1Wvi 0.85 2.02 2.816 (4) 155
O6W—H6B⋯O5 0.85 2.04 2.886 (3) 174
O2—H21⋯O2Wvii 0.85 1.82 2.655 (3) 164
O4—H22⋯O4Wviii 0.85 1.75 2.599 (3) 178
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) x, y+1, z; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x, y-1, z; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

An enormous effort has been devoted to the development of new homochiral coordination polymer duo to their the possibility of applications to enantioselective separation, catalytic processes and magneto-optical processes (Kitagawa et al., 2004; Ma et al., 2007; Liu et al., 2008; Gelbrich et al., 2006)). L-tartaric acid, a simple and inexpensive chiral ligand source, was often used to construct novel chiral multifunctional metal-organic frameworks (McCann et al.,1997; Zhang et al., 2003). However, only four zinc-tartrate compounds have been reported (Adama et al., 2007; Lin et al., 2009; Liu et al., 2010; Templeton et al., 1985) up to now. We report here the synthesis and crystal structure of the first mixed-ligand zinc(II) complex with tartrate and 1,10-phenanthroline, I, which has a linear chain structure.

The asymmetric unit of I consists of one Zn atom, one L-tartrate dianion, one phenanthroline and six free water molecules, (Fig. 1). The Zn atom is hexacoordinated by four O atoms (Zn-O = 2.046 (2)-2.200 (2)Å) and two N atoms (Zn-N = 2.127 (2)Å and 2.132 (2)Å) forming [ZnO4N2] distorted octahedral geometry with three trans-angles form 159.21 (10)° to 160.73 (10)°. The Zn-O(hydroxy) and Zn–O(carboxylate) distances are typical for Zn-O bonds. The L-tartrate dianion adopts η4µ2-chelating/bridging mode to extend Zn(C12H8N2)2+ to one-dimensional polymeric chain, which is assembled together to genterate a zipper-like double chain through strong ππ packing interactions between parallel phenanthroline aromatic rings with centroid–centroid distances of 3.552 (2)-3.625 (2)Å. The most noteworthy structural feature of I, is the existence of one-dimensional helical chain water cluster (Fig. 2). In crystal achitecture of I, there are six crystllography independent lattice water molecules, which are interconnected by hydrogen bonds forming a right-handed helical chain. The average Ow···Ow distance of 2.79 (2)Å in I is slightly small than the Ow···Ow distance observed in liquid water (2.85 (3)Å). The hydrogen bonding interactions between the Ow atoms from water cluster chains and the tartrate O atoms from one-dimensional double zipper chains with the average Ow···O distance of 2.77 (2)Å lead to the formation of a three-dimensional supramolecular framework of I.

Related literature top

For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008, 2010); Gelbrich et al. (2006); Kitagawa et al. (2004); Ma et al. (2007); Adama et al. (2007); Lin et al. (2009); Templeton et al. (1985). For the isotypic copper and manganese analogues, see: McCann et al. (1997); Zhang et al. (2003).

Experimental top

A mixture of Zn(NO3)2.6H2O (298 mg, 1 mmol), L-(+)-tartaric acid (150 mg, 1 mmol) and 1,10-phenanthroline (180 mg, 1 mmol) in H2O (12 ml) was placed in a teflon-lined stainless vessel and heated to 413 K for 72 h. Then, the reaction system was cooled to room temperature during 24 h to give rise to colourless crystals, which were collected and washed with water. Yield 0.191 g (38% based on Zn). Analysis calculated for C16H24N2ZnO12 (501.76): C 38.30, H 4.82, N 5.58%; found: C 38.06, H 4.71 N 5.49%.

Refinement top

H atoms bonded to C atoms were placed at calculated idealized positions using a riding model - C–H = 0.93%A for 1,10-phenanthroline and 0.98%A for L-tartrate, and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined isotropically, with O–H and H···H distance restraints of 0.85 (1) and 1.37 (1)Å, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of I, showing the bridging mode of the L-tartrate anion and one of the independent structural units with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 2] Fig. 2. The one-dimensional helical chain water clusters in I.
Poly[[(1,10-phenanthroline)(µ-L-tartrato)zinc] hexahydrate] top
Crystal data top
[Zn(C4H4O6)(C12H8N2)]·6H2OF(000) = 1040
Mr = 501.76Dx = 1.635 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3086 reflections
a = 6.632 (2) Åθ = 4.3–23.8°
b = 15.301 (4) ŵ = 1.27 mm1
c = 20.087 (5) ÅT = 295 K
V = 2038.4 (10) Å3Block, colourless
Z = 40.25 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3541 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.754, Tmax = 0.844k = 1818
16280 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.136P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
3541 reflectionsΔρmax = 0.32 e Å3
280 parametersΔρmin = 0.29 e Å3
3 restraintsAbsolute structure: Flack (1983), 1456 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (12)
Crystal data top
[Zn(C4H4O6)(C12H8N2)]·6H2OV = 2038.4 (10) Å3
Mr = 501.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.632 (2) ŵ = 1.27 mm1
b = 15.301 (4) ÅT = 295 K
c = 20.087 (5) Å0.25 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3251 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.844Rint = 0.036
16280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.32 e Å3
S = 0.96Δρmin = 0.29 e Å3
3541 reflectionsAbsolute structure: Flack (1983), 1456 Friedel pairs
280 parametersAbsolute structure parameter: 0.025 (12)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.1075 (3)0.01758 (12)0.20025 (11)0.0366 (5)
C160.2759 (4)0.02548 (17)0.22862 (14)0.0298 (6)
O40.3195 (3)0.12657 (10)0.20244 (9)0.0284 (4)
C150.3940 (4)0.05857 (18)0.24324 (14)0.0250 (6)
H150.36460.07480.28940.030*
Zn11.00853 (5)0.102577 (17)0.169795 (13)0.02690 (10)
C121.0062 (5)0.22189 (16)0.05463 (11)0.0271 (5)
O5W1.0162 (4)0.30592 (14)0.32821 (11)0.0563 (6)
N21.0235 (4)0.06704 (14)0.06729 (11)0.0314 (5)
N11.0013 (4)0.22682 (12)0.12231 (9)0.0275 (4)
C41.0048 (5)0.29597 (17)0.01369 (13)0.0338 (6)
C111.0136 (5)0.13644 (17)0.02535 (12)0.0287 (5)
O10.8915 (3)0.14883 (13)0.25782 (9)0.0361 (5)
O20.6953 (3)0.05600 (11)0.17118 (9)0.0304 (4)
C51.0043 (5)0.2840 (2)0.05749 (13)0.0422 (7)
H51.00390.33280.08510.051*
C10.9968 (5)0.30549 (16)0.14973 (13)0.0353 (6)
H10.99260.30970.19590.042*
C31.0025 (5)0.37765 (18)0.04495 (16)0.0431 (7)
H31.00400.42860.01970.052*
C61.0043 (6)0.2046 (2)0.08455 (13)0.0466 (7)
H60.99910.19920.13060.056*
C140.6229 (4)0.04665 (19)0.23801 (14)0.0265 (6)
H140.65510.01270.25290.032*
C20.9980 (5)0.38216 (16)0.11246 (16)0.0425 (7)
H20.99570.43620.13370.051*
C71.0121 (5)0.12713 (19)0.04425 (13)0.0367 (6)
C81.0180 (6)0.0416 (2)0.06949 (15)0.0472 (8)
H81.01270.03230.11520.057*
O4W0.6195 (4)0.77423 (16)0.23686 (14)0.0661 (8)
C91.0313 (5)0.0270 (2)0.02751 (17)0.0488 (9)
H91.03930.08360.04430.059*
O60.3450 (3)0.09500 (13)0.24989 (13)0.0541 (6)
O6W0.9593 (4)0.09008 (17)0.44919 (13)0.0668 (8)
O50.6820 (3)0.11830 (13)0.34059 (9)0.0421 (5)
C130.7393 (4)0.11022 (17)0.28205 (13)0.0284 (6)
O2W0.5435 (5)0.93830 (16)0.08799 (12)0.0691 (9)
C101.0329 (5)0.0129 (2)0.04130 (16)0.0433 (8)
H101.04070.06070.06970.052*
O3W0.4092 (5)0.76383 (18)0.08031 (13)0.0717 (9)
O1W0.8120 (4)0.74506 (16)0.05396 (12)0.0688 (8)
H2A0.50090.88880.10120.103*
H4A0.70530.79070.20810.103*
H4B0.51150.80130.22700.103*
H6B0.87070.09620.41900.103*
H6A0.99380.14310.44390.103*
H5A0.99300.35780.31530.103*
H2B0.55160.93380.04590.103*
H5B0.99210.25360.31630.103*
H1A0.88040.77380.08230.103*
H1B0.68690.75080.06200.103*
H3B0.37560.76080.03960.103*
H3A0.31690.73890.10280.103*
H210.66340.01190.14750.103*
H220.34260.17440.22280.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0324 (12)0.0319 (10)0.0456 (12)0.0066 (8)0.0060 (10)0.0044 (9)
C160.0262 (16)0.0296 (14)0.0336 (15)0.0017 (11)0.0054 (12)0.0052 (12)
O40.0266 (10)0.0255 (9)0.0330 (10)0.0005 (8)0.0037 (8)0.0036 (8)
C150.0249 (15)0.0290 (13)0.0211 (15)0.0003 (11)0.0004 (12)0.0035 (12)
Zn10.02568 (16)0.03218 (15)0.02283 (15)0.00036 (16)0.00039 (16)0.00170 (11)
C120.0165 (12)0.0402 (12)0.0246 (12)0.0009 (15)0.0026 (14)0.0047 (10)
O5W0.0625 (16)0.0543 (12)0.0520 (13)0.0103 (13)0.0063 (17)0.0013 (10)
N20.0297 (14)0.0366 (11)0.0279 (11)0.0001 (11)0.0019 (12)0.0022 (9)
N10.0238 (11)0.0356 (10)0.0230 (10)0.0007 (12)0.0002 (12)0.0012 (8)
C40.0178 (13)0.0480 (14)0.0355 (14)0.0030 (16)0.0017 (16)0.0086 (11)
C110.0167 (13)0.0449 (13)0.0247 (12)0.0039 (14)0.0001 (13)0.0012 (10)
O10.0322 (12)0.0496 (12)0.0263 (10)0.0117 (9)0.0021 (9)0.0066 (9)
O20.0253 (10)0.0444 (10)0.0215 (10)0.0036 (8)0.0049 (8)0.0063 (8)
C50.0266 (15)0.0682 (19)0.0317 (14)0.0002 (19)0.0007 (16)0.0209 (13)
C10.0337 (15)0.0380 (13)0.0341 (13)0.0063 (15)0.0014 (15)0.0038 (11)
C30.0305 (15)0.0443 (15)0.0545 (18)0.0027 (17)0.0012 (18)0.0182 (13)
C60.0348 (17)0.085 (2)0.0199 (13)0.004 (2)0.0027 (17)0.0078 (14)
C140.0231 (16)0.0336 (14)0.0229 (14)0.0021 (11)0.0023 (12)0.0053 (12)
C20.0375 (16)0.0327 (13)0.0572 (19)0.0038 (17)0.0030 (18)0.0016 (12)
C70.0215 (14)0.0637 (17)0.0250 (13)0.0066 (16)0.0028 (14)0.0034 (12)
C80.0355 (18)0.075 (2)0.0308 (15)0.006 (2)0.0018 (17)0.0196 (14)
O4W0.0657 (18)0.0476 (14)0.0849 (19)0.0199 (12)0.0118 (15)0.0257 (13)
C90.040 (2)0.0525 (17)0.054 (2)0.0013 (16)0.0003 (17)0.0231 (15)
O60.0400 (13)0.0317 (11)0.0906 (18)0.0011 (10)0.0008 (12)0.0195 (12)
O6W0.079 (2)0.0599 (14)0.0614 (16)0.0124 (15)0.0221 (14)0.0128 (12)
O50.0411 (12)0.0659 (14)0.0193 (10)0.0092 (10)0.0030 (9)0.0049 (9)
C130.0284 (15)0.0348 (13)0.0220 (14)0.0016 (12)0.0018 (11)0.0002 (12)
O2W0.099 (3)0.0630 (14)0.0455 (14)0.0279 (15)0.0035 (15)0.0172 (11)
C100.042 (2)0.0426 (15)0.0450 (17)0.0001 (15)0.0033 (16)0.0089 (13)
O3W0.096 (2)0.0713 (18)0.0477 (15)0.0241 (15)0.0004 (14)0.0072 (13)
O1W0.0779 (19)0.0765 (17)0.0521 (15)0.0169 (15)0.0096 (14)0.0161 (13)
Geometric parameters (Å, º) top
O3—C161.260 (3)C5—C61.331 (4)
O3—Zn1i2.046 (2)C5—H50.9300
C16—O61.235 (3)C1—C21.392 (4)
C16—C151.534 (4)C1—H10.9300
O4—C151.414 (3)C3—C21.358 (4)
O4—Zn1i2.1952 (19)C3—H30.9300
O4—H220.8525C6—C71.437 (4)
C15—C141.533 (4)C6—H60.9300
C15—H150.9800C14—C131.524 (4)
Zn1—O3ii2.046 (2)C14—H140.9800
Zn1—O12.0567 (19)C2—H20.9300
Zn1—N12.1274 (19)C7—C81.403 (4)
Zn1—N22.132 (2)C8—C91.350 (5)
Zn1—O4ii2.1952 (19)C8—H80.9300
Zn1—O22.1966 (19)O4W—H4A0.8490
C12—N11.362 (3)O4W—H4B0.8507
C12—C41.400 (3)C9—C101.399 (4)
C12—C111.434 (4)C9—H90.9300
O5W—H5A0.8493O6W—H6B0.8495
O5W—H5B0.8502O6W—H6A0.8494
N2—C101.331 (4)O5—C131.242 (3)
N2—C111.357 (3)O2W—H2A0.8511
N1—C11.324 (3)O2W—H2B0.8494
C4—C31.399 (4)C10—H100.9300
C4—C51.442 (4)O3W—H3B0.8496
C11—C71.406 (4)O3W—H3A0.8513
O1—C131.267 (3)O1W—H1A0.8500
O2—C141.433 (3)O1W—H1B0.8500
O2—H210.8519
C16—O3—Zn1i120.39 (17)C14—O2—Zn1111.16 (15)
O6—C16—O3124.6 (3)C14—O2—H21111.1
O6—C16—C15117.8 (3)Zn1—O2—H21119.0
O3—C16—C15117.3 (2)C6—C5—C4121.4 (2)
C15—O4—Zn1i112.24 (15)C6—C5—H5119.3
C15—O4—H22106.9C4—C5—H5119.3
Zn1i—O4—H22117.1N1—C1—C2122.8 (2)
O4—C15—C14113.2 (2)N1—C1—H1118.6
O4—C15—C16109.1 (2)C2—C1—H1118.6
C14—C15—C16113.1 (2)C2—C3—C4119.6 (2)
O4—C15—H15107.0C2—C3—H3120.2
C14—C15—H15107.0C4—C3—H3120.2
C16—C15—H15107.0C5—C6—C7121.5 (2)
O3ii—Zn1—O199.98 (9)C5—C6—H6119.2
O3ii—Zn1—N1160.80 (9)C7—C6—H6119.2
O1—Zn1—N193.98 (8)O2—C14—C13108.1 (2)
O3ii—Zn1—N292.56 (9)O2—C14—C15112.6 (2)
O1—Zn1—N2159.34 (9)C13—C14—C15112.7 (2)
N1—Zn1—N278.22 (8)O2—C14—H14107.8
O3ii—Zn1—O4ii76.09 (7)C13—C14—H14107.8
O1—Zn1—O4ii92.31 (8)C15—C14—H14107.8
N1—Zn1—O4ii90.32 (8)C3—C2—C1119.6 (2)
N2—Zn1—O4ii106.70 (9)C3—C2—H2120.2
O3ii—Zn1—O290.46 (8)C1—C2—H2120.2
O1—Zn1—O275.15 (7)C11—C7—C8117.0 (3)
N1—Zn1—O2105.92 (9)C11—C7—C6118.5 (3)
N2—Zn1—O288.49 (8)C8—C7—C6124.5 (3)
O4ii—Zn1—O2159.91 (7)C9—C8—C7120.1 (3)
N1—C12—C4122.8 (2)C9—C8—H8119.9
N1—C12—C11117.4 (2)C7—C8—H8119.9
C4—C12—C11119.8 (2)H4A—O4W—H4B105.1
H5A—O5W—H5B139.5C8—C9—C10119.8 (3)
C10—N2—C11118.5 (2)C8—C9—H9120.1
C10—N2—Zn1128.0 (2)C10—C9—H9120.1
C11—N2—Zn1113.43 (16)H6B—O6W—H6A89.5
C1—N1—C12117.8 (2)O5—C13—O1124.1 (2)
C1—N1—Zn1128.78 (17)O5—C13—C14117.3 (2)
C12—N1—Zn1113.42 (15)O1—C13—C14118.6 (2)
C3—C4—C12117.4 (2)H2A—O2W—H2B105.1
C3—C4—C5124.0 (2)N2—C10—C9122.0 (3)
C12—C4—C5118.7 (2)N2—C10—H10119.0
N2—C11—C7122.6 (2)C9—C10—H10119.0
N2—C11—C12117.4 (2)H3B—O3W—H3A107.4
C7—C11—C12120.0 (2)H1A—O1W—H1B109.9
C13—O1—Zn1118.07 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5Wiii0.851.992.787 (3)157
O2W—H2A···O3W0.852.052.819 (4)150
O2W—H2B···O6Wiv0.851.982.822 (4)172
O3W—H3A···O5v0.852.172.802 (3)131
O3W—H3B···O1Wvi0.851.932.776 (4)177
O4W—H4A···O5Wiii0.852.002.789 (4)154
O4W—H4B···O6vii0.851.992.718 (3)143
O5W—H5A···O3v0.852.042.880 (3)168
O5W—H5B···O10.852.102.909 (3)160
O6W—H6A···O1Wviii0.852.022.816 (4)155
O6W—H6B···O50.852.042.886 (3)174
O2—H21···O2Wix0.851.822.655 (3)164
O4—H22···O4Wx0.851.752.599 (3)178
Symmetry codes: (iii) x+2, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+3/2, z; (vii) x, y+1, z; (viii) x+2, y1/2, z+1/2; (ix) x, y1, z; (x) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H4O6)(C12H8N2)]·6H2O
Mr501.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.632 (2), 15.301 (4), 20.087 (5)
V3)2038.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.754, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
16280, 3541, 3251
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 0.96
No. of reflections3541
No. of parameters280
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29
Absolute structureFlack (1983), 1456 Friedel pairs
Absolute structure parameter0.025 (12)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5Wi0.851.992.787 (3)157
O2W—H2A···O3W0.852.052.819 (4)150
O2W—H2B···O6Wii0.851.982.822 (4)172
O3W—H3A···O5iii0.852.172.802 (3)131
O3W—H3B···O1Wiv0.851.932.776 (4)177
O4W—H4A···O5Wi0.852.002.789 (4)154
O4W—H4B···O6v0.851.992.718 (3)143
O5W—H5A···O3iii0.852.042.880 (3)168
O5W—H5B···O10.852.102.909 (3)160
O6W—H6A···O1Wvi0.852.022.816 (4)155
O6W—H6B···O50.852.042.886 (3)174
O2—H21···O2Wvii0.851.822.655 (3)164
O4—H22···O4Wviii0.851.752.599 (3)178
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y+1, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y+3/2, z; (v) x, y+1, z; (vi) x+2, y1/2, z+1/2; (vii) x, y1, z; (viii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Hebei United University for supporting this work.

References

First citationAdama, S., Mohamed, G., Abdou Salam, S., Aliou Hamady, B. & Ahmed, D. (2007). Acta Cryst. E63, m574–m575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937–944.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLin, H.-Y., Hu, H.-L., Chen, B.-K. & Li, J. (2009). PhD thesis (No. 8225, 26, 803), University of California, USA.  Google Scholar
First citationLiu, H.-T., Lu, J. & Wang, D.-Q. (2010). Acta Cryst. E66, m374.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107–4109.  Web of Science CSD CrossRef Google Scholar
First citationMcCann, M., Humphreys, F. & McKee, V. (1997). Polyhedron, pp. 3655–3661.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTempleton, L. K., Templeton, D. H., Zhang, D. & Zalkin, A. (1985). Acta Cryst. C41, 363–365.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, X.-F., Huang, D.-G., Feng, C., Chen, C.-N., Liu, Q.-T. & Sun, L.-C. (2003). Acta Cryst. C59, m402–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m1005-m1006
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds