organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­butanoyl)-N′-(2-fluoro­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 6 June 2011; accepted 23 June 2011; online 30 June 2011)

In the title compound, C11H12ClFN2OS, the asymmetric unit consists of two indenpendent mol­ecules. Both mol­ecules maintain a transcis configuration of the positions of the butanoyl and fluoro­phenyl groups with respect to the thiono group across their C—N bonds and are stabilized by classical intra­molecular N—H⋯O hydrogen bonds. In the crystal, inter­molecular N—H⋯O, C—H⋯S and N—H⋯S hydrogen bonds link the mol­ecules into infinite chains along the c axis.

Related literature

For a related structure, see: Yamin et al. (2011[Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClFN2OS

  • Mr = 274.75

  • Monoclinic, P 21 /c

  • a = 14.818 (7) Å

  • b = 10.291 (5) Å

  • c = 18.201 (9) Å

  • β = 112.599 (12)°

  • V = 2562 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 K

  • 0.50 × 0.22 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.803, Tmax = 0.969

  • 13771 measured reflections

  • 4501 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.138

  • S = 0.89

  • 4501 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.02 2.691 (5) 134
N2—H2⋯O2i 0.86 2.40 3.128 (5) 143
N4—H4⋯O2 0.86 2.02 2.676 (5) 133
N4—H4⋯O1ii 0.86 2.32 3.033 (5) 141
N3—H3⋯S1iii 0.86 2.59 3.447 (4) 176
N1—H1⋯S2iii 0.86 2.52 3.364 (4) 169
C14—H14A⋯S1iii 0.97 2.96 3.784 (5) 143
C14—H14B⋯S2iv 0.97 2.74 3.691 (5) 168
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) -x, -y+2, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, is analogous to the previously reported N-(4-chlorobutanoyl)-N'-(phenyl)thiourea (Yamin et al., 2011) except the fluoro atom is attached at the ortho-position of the phenyl ring. The asymmetric unit consists of two independent molecules (Fig. 1). The whole molecule is not planar. However, the thiourea N1/C5/S1/N2/C6, N3/C16/S2/N4/C17 fragments and the benzene rings, (C6–C11) and (C17–C22) are each planar with maximum deviation of 0.020 (3)Å for N4 atom from the least square plane. In each molecule, the benzene ring and thiourea moiety forms dihedral angle of 74.78 (19)° and 82.3 (2)°, respectively. The same dihedral angle in N-(4-chlorobutanoyl)-N'-(phenyl)thiourea are 72.98 (12)° and 81.47 (14)°, respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in the analog. Both molecules maintain their transcis-configuration with respect to the position of the butanoyl and fluorophenyl groups against the thiono CS-group bond across the C—N bonds. Like in most of the carbonylthiourea derivatives, the classical intramolecular hydrogen bonds between the carbonyl oxygen atom and thioamide hydrogen atom, N2—H2···O1 and N4—H4···O2, in both molecules are present. In the crystal packing, the molecules are linked by N3—H3···S1iii and N1—H1···S2iii; N2—H2···O2i and N4—H4···O1ii; C14—H14A···S1iii and C14—H14B···S2iv intermolecular hydrogen bonds (symmetry codes as in Table 1) and form infinite chains along the c-axis (Fig. 2).

Related literature top

For a related structure, see: Yamin et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A solution of 4-chlorobutanoylisothiocyanate (1.25 g, 6.33 mmol) in 30 ml acetone was added into a flask containing 30 ml acetone solution of 2-floroaniline (0.71 g, 6.33 mmol. The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature. The colourless solid was obtained after one day of evaporation (yield 83%, m.p. 411.7 K–415.5 K)

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93Å or 0.97Å (aromatic and methylene) and N—H = 0.86Å (amino) with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. intramolecular H bonds are presented by dashed lines.
[Figure 2] Fig. 2. A packing diagram of title compound viewed down the a-axis. H bonds are shown by dashed lines.
N-(4-Chlorobutanoyl)-N'-(2-fluorophenyl)thiourea top
Crystal data top
C11H12ClFN2OSF(000) = 1136
Mr = 274.75Dx = 1.425 Mg m3
Monoclinic, P21/cMelting point = 411.7–415.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.818 (7) ÅCell parameters from 1404 reflections
b = 10.291 (5) Åθ = 1.5–25.0°
c = 18.201 (9) ŵ = 0.46 mm1
β = 112.599 (12)°T = 298 K
V = 2562 (2) Å3Plate, colourless
Z = 80.50 × 0.22 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4501 independent reflections
Radiation source: fine-focus sealed tube2231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.5°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.803, Tmax = 0.969l = 1321
13771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
4501 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H12ClFN2OSV = 2562 (2) Å3
Mr = 274.75Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.818 (7) ŵ = 0.46 mm1
b = 10.291 (5) ÅT = 298 K
c = 18.201 (9) Å0.50 × 0.22 × 0.07 mm
β = 112.599 (12)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2231 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.969Rint = 0.119
13771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.89Δρmax = 0.34 e Å3
4501 reflectionsΔρmin = 0.30 e Å3
307 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49078 (11)0.21242 (19)0.00799 (10)0.1269 (7)
F11.0669 (2)0.1688 (3)0.35144 (16)0.0795 (9)
F20.3894 (2)0.7354 (3)0.12270 (17)0.0868 (9)
S11.02276 (8)0.03047 (12)0.17159 (6)0.0509 (3)
S20.24427 (8)1.01331 (12)0.02342 (6)0.0502 (3)
Cl20.23288 (9)0.68710 (13)0.21630 (7)0.0804 (5)
O10.80228 (19)0.1449 (3)0.26210 (18)0.0562 (9)
O20.0637 (2)0.6917 (3)0.07106 (17)0.0552 (9)
N10.8543 (2)0.0465 (3)0.17333 (18)0.0424 (9)
H10.83350.02120.12460.051*
N20.9869 (2)0.0693 (3)0.29214 (19)0.0428 (9)
H20.94670.10330.31030.051*
N30.0918 (2)0.8641 (3)0.00426 (18)0.0421 (9)
H30.06580.90860.03880.051*
N40.2217 (2)0.8449 (3)0.12431 (18)0.0447 (9)
H40.18830.78600.13600.054*
C10.5036 (3)0.1269 (6)0.0958 (3)0.0858 (19)
H1A0.45710.16080.11670.103*
H1B0.48850.03590.08310.103*
C20.6047 (3)0.1386 (5)0.1580 (3)0.0718 (16)
H2A0.61950.22990.17000.086*
H2B0.60650.09660.20630.086*
C30.6818 (3)0.0806 (5)0.1350 (2)0.0547 (13)
H3A0.67900.12080.08600.066*
H3B0.66820.01130.12460.066*
C40.7839 (3)0.0961 (4)0.1974 (3)0.0453 (11)
C50.9539 (3)0.0312 (4)0.2162 (2)0.0410 (11)
C61.0875 (3)0.0553 (4)0.3442 (2)0.0407 (11)
C71.1249 (3)0.0633 (5)0.3737 (3)0.0522 (12)
C81.2206 (4)0.0794 (6)0.4252 (3)0.0739 (16)
H81.24480.16130.44450.089*
C91.2793 (4)0.0285 (7)0.4472 (3)0.0822 (19)
H91.34430.01980.48160.099*
C101.2431 (3)0.1484 (6)0.4192 (3)0.0786 (17)
H101.28350.22100.43460.094*
C111.1459 (3)0.1625 (5)0.3675 (3)0.0610 (14)
H111.12090.24440.34890.073*
C120.2143 (3)0.6210 (5)0.1206 (3)0.0691 (15)
H12A0.25320.66960.09770.083*
H12B0.23690.53160.12690.083*
C130.1093 (3)0.6249 (4)0.0646 (2)0.0530 (13)
H13A0.07130.57230.08650.064*
H13B0.10360.58620.01450.064*
C140.0659 (3)0.7590 (4)0.0487 (2)0.0490 (12)
H14A0.06390.79340.09770.059*
H14B0.10860.81470.03340.059*
C150.0351 (3)0.7652 (4)0.0149 (2)0.0418 (11)
C160.1846 (3)0.9006 (4)0.0537 (2)0.0386 (10)
C170.3156 (3)0.8794 (4)0.1821 (2)0.0453 (12)
C180.3983 (3)0.8244 (5)0.1795 (3)0.0566 (13)
C190.4902 (3)0.8541 (6)0.2342 (3)0.0781 (17)
H190.54570.81510.23190.094*
C200.4970 (4)0.9431 (7)0.2921 (4)0.091 (2)
H200.55840.96570.32910.109*
C210.4160 (4)0.9992 (5)0.2966 (3)0.0777 (17)
H210.42211.05880.33660.093*
C220.3243 (3)0.9664 (4)0.2409 (3)0.0571 (13)
H220.26861.00390.24380.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0706 (11)0.1612 (18)0.1063 (14)0.0426 (11)0.0131 (9)0.0101 (12)
F10.077 (2)0.0548 (19)0.098 (2)0.0034 (15)0.0232 (16)0.0093 (16)
F20.068 (2)0.111 (3)0.081 (2)0.0213 (17)0.0283 (16)0.0051 (19)
S10.0373 (6)0.0695 (9)0.0458 (7)0.0083 (6)0.0157 (5)0.0007 (6)
S20.0383 (6)0.0665 (9)0.0432 (7)0.0099 (6)0.0128 (5)0.0030 (6)
Cl20.0695 (9)0.0838 (10)0.0632 (9)0.0010 (7)0.0020 (7)0.0005 (7)
O10.0393 (18)0.072 (2)0.051 (2)0.0063 (15)0.0105 (15)0.0195 (17)
O20.0491 (19)0.050 (2)0.053 (2)0.0104 (15)0.0043 (15)0.0103 (16)
N10.0292 (19)0.059 (2)0.035 (2)0.0022 (17)0.0072 (16)0.0047 (16)
N20.0299 (19)0.052 (2)0.041 (2)0.0042 (16)0.0075 (16)0.0039 (17)
N30.032 (2)0.052 (2)0.036 (2)0.0023 (17)0.0056 (16)0.0003 (16)
N40.031 (2)0.054 (2)0.043 (2)0.0076 (16)0.0067 (16)0.0077 (17)
C10.030 (3)0.135 (5)0.086 (4)0.007 (3)0.014 (3)0.035 (4)
C20.037 (3)0.110 (5)0.065 (3)0.002 (3)0.017 (2)0.014 (3)
C30.031 (2)0.078 (4)0.051 (3)0.006 (2)0.011 (2)0.003 (2)
C40.037 (3)0.051 (3)0.045 (3)0.003 (2)0.013 (2)0.001 (2)
C50.033 (2)0.040 (3)0.045 (3)0.0013 (19)0.009 (2)0.003 (2)
C60.032 (2)0.053 (3)0.033 (2)0.004 (2)0.0073 (18)0.004 (2)
C70.046 (3)0.055 (3)0.051 (3)0.007 (3)0.013 (2)0.002 (2)
C80.058 (4)0.089 (4)0.061 (3)0.032 (3)0.007 (3)0.008 (3)
C90.034 (3)0.133 (6)0.063 (4)0.022 (3)0.001 (3)0.007 (4)
C100.036 (3)0.100 (5)0.089 (4)0.013 (3)0.011 (3)0.026 (3)
C110.047 (3)0.055 (3)0.070 (3)0.003 (2)0.010 (2)0.007 (3)
C120.050 (3)0.082 (4)0.068 (3)0.022 (3)0.015 (3)0.010 (3)
C130.046 (3)0.059 (3)0.048 (3)0.012 (2)0.011 (2)0.004 (2)
C140.032 (2)0.052 (3)0.060 (3)0.003 (2)0.014 (2)0.004 (2)
C150.032 (2)0.042 (3)0.045 (3)0.000 (2)0.008 (2)0.007 (2)
C160.028 (2)0.048 (3)0.038 (3)0.0008 (19)0.0109 (19)0.003 (2)
C170.031 (3)0.053 (3)0.043 (3)0.005 (2)0.005 (2)0.010 (2)
C180.045 (3)0.069 (4)0.053 (3)0.000 (3)0.016 (2)0.005 (3)
C190.037 (3)0.104 (5)0.082 (4)0.006 (3)0.011 (3)0.025 (4)
C200.047 (4)0.105 (5)0.089 (5)0.022 (4)0.007 (3)0.022 (4)
C210.068 (4)0.077 (4)0.068 (4)0.016 (3)0.005 (3)0.013 (3)
C220.050 (3)0.053 (3)0.058 (3)0.001 (2)0.009 (2)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C11.769 (6)C6—C71.361 (6)
F1—C71.347 (5)C6—C111.365 (5)
F2—C181.350 (5)C7—C81.377 (6)
S1—C51.654 (4)C8—C91.372 (7)
S2—C161.675 (4)C8—H80.9300
Cl2—C121.791 (5)C9—C101.364 (7)
O1—C41.212 (4)C9—H90.9300
O2—C151.210 (4)C10—C111.393 (6)
N1—C41.374 (5)C10—H100.9300
N1—C51.388 (4)C11—H110.9300
N1—H10.8600C12—C131.498 (5)
N2—C51.336 (5)C12—H12A0.9700
N2—C61.433 (5)C12—H12B0.9700
N2—H20.8600C13—C141.502 (5)
N3—C161.375 (4)C13—H13A0.9700
N3—C151.380 (5)C13—H13B0.9700
N3—H30.8600C14—C151.501 (5)
N4—C161.318 (4)C14—H14A0.9700
N4—C171.430 (5)C14—H14B0.9700
N4—H40.8600C17—C221.363 (6)
C1—C21.496 (5)C17—C181.366 (6)
C1—H1A0.9700C18—C191.377 (6)
C1—H1B0.9700C19—C201.369 (7)
C2—C31.485 (6)C19—H190.9300
C2—H2A0.9700C20—C211.363 (8)
C2—H2B0.9700C20—H200.9300
C3—C41.511 (5)C21—C221.389 (6)
C3—H3A0.9700C21—H210.9300
C3—H3B0.9700C22—H220.9300
C4—N1—C5129.5 (4)C9—C10—C11120.2 (5)
C4—N1—H1115.2C9—C10—H10119.9
C5—N1—H1115.2C11—C10—H10119.9
C5—N2—C6121.9 (4)C6—C11—C10119.5 (5)
C5—N2—H2119.0C6—C11—H11120.2
C6—N2—H2119.0C10—C11—H11120.2
C16—N3—C15128.2 (3)C13—C12—Cl2112.4 (4)
C16—N3—H3115.9C13—C12—H12A109.1
C15—N3—H3115.9Cl2—C12—H12A109.1
C16—N4—C17122.1 (3)C13—C12—H12B109.1
C16—N4—H4118.9Cl2—C12—H12B109.1
C17—N4—H4118.9H12A—C12—H12B107.8
C2—C1—Cl1111.9 (4)C12—C13—C14114.3 (4)
C2—C1—H1A109.2C12—C13—H13A108.7
Cl1—C1—H1A109.2C14—C13—H13A108.7
C2—C1—H1B109.2C12—C13—H13B108.7
Cl1—C1—H1B109.2C14—C13—H13B108.7
H1A—C1—H1B107.9H13A—C13—H13B107.6
C3—C2—C1114.2 (4)C15—C14—C13114.4 (3)
C3—C2—H2A108.7C15—C14—H14A108.7
C1—C2—H2A108.7C13—C14—H14A108.7
C3—C2—H2B108.7C15—C14—H14B108.7
C1—C2—H2B108.7C13—C14—H14B108.7
H2A—C2—H2B107.6H14A—C14—H14B107.6
C2—C3—C4113.7 (4)O2—C15—N3123.0 (4)
C2—C3—H3A108.8O2—C15—C14123.2 (4)
C4—C3—H3A108.8N3—C15—C14113.8 (4)
C2—C3—H3B108.8N4—C16—N3117.2 (4)
C4—C3—H3B108.8N4—C16—S2123.2 (3)
H3A—C3—H3B107.7N3—C16—S2119.7 (3)
O1—C4—N1123.3 (4)C22—C17—C18119.0 (4)
O1—C4—C3124.0 (4)C22—C17—N4120.8 (4)
N1—C4—C3112.6 (4)C18—C17—N4120.3 (4)
N2—C5—N1115.8 (4)F2—C18—C17118.9 (4)
N2—C5—S1124.8 (3)F2—C18—C19118.9 (5)
N1—C5—S1119.4 (3)C17—C18—C19122.2 (5)
C7—C6—C11119.3 (4)C20—C19—C18117.7 (5)
C7—C6—N2120.9 (4)C20—C19—H19121.2
C11—C6—N2119.8 (4)C18—C19—H19121.2
F1—C7—C6119.2 (4)C21—C20—C19121.6 (5)
F1—C7—C8118.6 (5)C21—C20—H20119.2
C6—C7—C8122.2 (5)C19—C20—H20119.2
C9—C8—C7118.2 (5)C20—C21—C22119.4 (5)
C9—C8—H8120.9C20—C21—H21120.3
C7—C8—H8120.9C22—C21—H21120.3
C10—C9—C8120.6 (5)C17—C22—C21120.2 (5)
C10—C9—H9119.7C17—C22—H22119.9
C8—C9—H9119.7C21—C22—H22119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.691 (5)134
N2—H2···O2i0.862.403.128 (5)143
N4—H4···O20.862.022.676 (5)133
N4—H4···O1ii0.862.323.033 (5)141
N3—H3···S1iii0.862.593.447 (4)176
N1—H1···S2iii0.862.523.364 (4)169
C3—H3A···Cl10.972.763.189 (5)107
C14—H14A···Cl20.972.823.190 (4)103
C14—H14A···S1iii0.972.963.784 (5)143
C14—H14B···S2iv0.972.743.691 (5)168
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H12ClFN2OS
Mr274.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.818 (7), 10.291 (5), 18.201 (9)
β (°) 112.599 (12)
V3)2562 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.50 × 0.22 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.803, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
13771, 4501, 2231
Rint0.119
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.138, 0.89
No. of reflections4501
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.691 (5)134
N2—H2···O2i0.862.403.128 (5)143
N4—H4···O20.862.022.676 (5)133
N4—H4···O1ii0.862.323.033 (5)141
N3—H3···S1iii0.862.593.447 (4)176
N1—H1···S2iii0.862.523.364 (4)169
C3—H3A···Cl10.972.763.189 (5)107
C14—H14A···Cl20.972.823.190 (4)103
C14—H14A···S1iii0.972.963.784 (5)143
C14—H14B···S2iv0.972.743.691 (5)168
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+2, z.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants UKM–GUP–NBT–08–27–110 and FRGS 59178.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds