metal-organic compounds
catena-Poly[[diformatocopper(II)]-μ-1,4-bis(imidazol-1-yl)benzene]
aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: nwuchem@126.com
In the title compound, [Cu(CHO2)2(C12H10N4)], the CuII ion lies on an inversion center and is coordinated by two formate O atoms and two N atoms from two 1,4-bis(imidazol-1-yl)phenyl ligands (L), forming a square-planar coordination environment. The linear molecule L acts as a bidente bridging ligand, connecting the metal atoms into a chain along [101].
Related literature
For background to coordination polymers containing imidazole-derived ligands, see: Cui et al. (2005); Jin et al. (2008); Li et al. (2009).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811024019/rn2086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024019/rn2086Isup2.hkl
A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of Cu(HCO2)2 in H2O (6 ml). Then a solution of 1,4-bis(imidazol-1-yl)phenyl (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca. three weeks, blue block single crystals appeared at the boundary. Yield: ~25% (based on L).
C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq (C).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(CHO2)2(C12H10N4)] | F(000) = 370 |
Mr = 363.82 | Dx = 1.746 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0971 (16) Å | Cell parameters from 2022 reflections |
b = 10.426 (2) Å | θ = 2.0–27.9° |
c = 8.5723 (17) Å | µ = 1.61 mm−1 |
β = 107.02 (3)° | T = 293 K |
V = 692.0 (2) Å3 | Block, blue |
Z = 2 | 0.30 × 0.25 × 0.20 mm |
Rigaku Mercury CCD area-detector diffractometer | 1204 independent reflections |
Radiation source: fine-focus sealed tube | 1108 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 3.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→12 |
Tmin = 0.624, Tmax = 0.725 | l = −10→10 |
6003 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0452P)2 + 0.4041P] where P = (Fo2 + 2Fc2)/3 |
1204 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Cu(CHO2)2(C12H10N4)] | V = 692.0 (2) Å3 |
Mr = 363.82 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0971 (16) Å | µ = 1.61 mm−1 |
b = 10.426 (2) Å | T = 293 K |
c = 8.5723 (17) Å | 0.30 × 0.25 × 0.20 mm |
β = 107.02 (3)° |
Rigaku Mercury CCD area-detector diffractometer | 1204 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1108 reflections with I > 2σ(I) |
Tmin = 0.624, Tmax = 0.725 | Rint = 0.026 |
6003 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.40 e Å−3 |
1204 reflections | Δρmin = −0.39 e Å−3 |
106 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.0000 | 0.01074 (16) | |
O2 | 0.3615 (2) | 0.73953 (14) | −0.05814 (18) | 0.0215 (4) | |
O1 | 0.55129 (17) | 0.64376 (14) | 0.15185 (16) | 0.0154 (3) | |
N2 | 0.1326 (2) | 0.44066 (17) | 0.24042 (19) | 0.0116 (4) | |
N1 | 0.3015 (2) | 0.45187 (17) | 0.0816 (2) | 0.0128 (4) | |
C7 | 0.4602 (3) | 0.73795 (19) | 0.0823 (3) | 0.0168 (4) | |
H7 | 0.4686 | 0.8130 | 0.1427 | 0.020* | |
C4 | 0.0645 (3) | 0.4692 (2) | 0.3731 (2) | 0.0123 (4) | |
C3 | 0.0710 (2) | 0.35192 (19) | 0.1173 (2) | 0.0142 (4) | |
H3 | −0.0238 | 0.2981 | 0.1032 | 0.017* | |
C2 | 0.1769 (3) | 0.35939 (19) | 0.0218 (2) | 0.0146 (4) | |
H2 | 0.1673 | 0.3097 | −0.0706 | 0.018* | |
C6 | −0.1121 (3) | 0.4657 (2) | 0.3490 (2) | 0.0142 (4) | |
H6 | −0.1864 | 0.4419 | 0.2482 | 0.017* | |
C1 | 0.2703 (3) | 0.49981 (17) | 0.2138 (3) | 0.0112 (4) | |
H1 | 0.3340 | 0.5647 | 0.2786 | 0.013* | |
C5 | 0.1772 (3) | 0.50202 (18) | 0.5231 (3) | 0.0144 (5) | |
H5 | 0.2957 | 0.5025 | 0.5382 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0110 (2) | 0.0136 (2) | 0.0095 (2) | 0.00028 (12) | 0.00592 (16) | −0.00072 (12) |
O2 | 0.0258 (8) | 0.0209 (8) | 0.0175 (8) | 0.0000 (7) | 0.0058 (6) | 0.0008 (6) |
O1 | 0.0144 (7) | 0.0196 (8) | 0.0142 (7) | 0.0003 (6) | 0.0073 (6) | −0.0034 (6) |
N2 | 0.0118 (8) | 0.0144 (9) | 0.0107 (8) | 0.0009 (7) | 0.0063 (7) | 0.0008 (7) |
N1 | 0.0144 (8) | 0.0131 (8) | 0.0123 (8) | 0.0014 (7) | 0.0062 (7) | 0.0000 (7) |
C7 | 0.0202 (10) | 0.0138 (10) | 0.0205 (11) | −0.0035 (8) | 0.0124 (9) | −0.0034 (9) |
C4 | 0.0158 (10) | 0.0131 (9) | 0.0104 (9) | 0.0010 (8) | 0.0077 (8) | 0.0029 (8) |
C3 | 0.0139 (9) | 0.0150 (10) | 0.0140 (9) | −0.0027 (8) | 0.0045 (8) | −0.0008 (8) |
C2 | 0.0181 (10) | 0.0150 (10) | 0.0117 (9) | −0.0005 (8) | 0.0059 (8) | −0.0030 (8) |
C6 | 0.0128 (10) | 0.0216 (10) | 0.0080 (9) | −0.0016 (8) | 0.0028 (8) | −0.0006 (8) |
C1 | 0.0115 (11) | 0.0137 (10) | 0.0098 (10) | 0.0003 (7) | 0.0050 (9) | 0.0012 (7) |
C5 | 0.0101 (10) | 0.0201 (12) | 0.0143 (11) | −0.0004 (7) | 0.0055 (9) | 0.0014 (7) |
Cu1—O1i | 1.9485 (14) | C7—H7 | 0.9300 |
Cu1—O1 | 1.9485 (14) | C4—C5 | 1.384 (3) |
Cu1—N1i | 1.9953 (17) | C4—C6 | 1.384 (3) |
Cu1—N1 | 1.9953 (17) | C3—C2 | 1.350 (3) |
O2—C7 | 1.235 (3) | C3—H3 | 0.9300 |
O1—C7 | 1.267 (3) | C2—H2 | 0.9300 |
N2—C1 | 1.351 (3) | C6—C5ii | 1.390 (3) |
N2—C3 | 1.382 (3) | C6—H6 | 0.9300 |
N2—C4 | 1.433 (3) | C1—H1 | 0.9300 |
N1—C1 | 1.329 (3) | C5—C6ii | 1.390 (3) |
N1—C2 | 1.381 (3) | C5—H5 | 0.9300 |
O1i—Cu1—O1 | 180.00 (8) | C5—C4—N2 | 119.09 (19) |
O1i—Cu1—N1i | 89.73 (7) | C6—C4—N2 | 119.75 (19) |
O1—Cu1—N1i | 90.27 (7) | C2—C3—N2 | 105.86 (17) |
O1i—Cu1—N1 | 90.27 (7) | C2—C3—H3 | 127.1 |
O1—Cu1—N1 | 89.73 (7) | N2—C3—H3 | 127.1 |
N1i—Cu1—N1 | 180.0 | C3—C2—N1 | 109.86 (17) |
C7—O1—Cu1 | 107.51 (12) | C3—C2—H2 | 125.1 |
C1—N2—C3 | 107.92 (16) | N1—C2—H2 | 125.1 |
C1—N2—C4 | 124.60 (17) | C4—C6—C5ii | 119.3 (2) |
C3—N2—C4 | 127.48 (17) | C4—C6—H6 | 120.4 |
C1—N1—C2 | 106.15 (17) | C5ii—C6—H6 | 120.4 |
C1—N1—Cu1 | 125.33 (14) | N1—C1—N2 | 110.19 (18) |
C2—N1—Cu1 | 128.41 (13) | N1—C1—H1 | 124.9 |
O2—C7—O1 | 126.19 (19) | N2—C1—H1 | 124.9 |
O2—C7—H7 | 116.9 | C4—C5—C6ii | 119.6 (2) |
O1—C7—H7 | 116.9 | C4—C5—H5 | 120.2 |
C5—C4—C6 | 121.1 (2) | C6ii—C5—H5 | 120.2 |
O1i—Cu1—O1—C7 | −151.1 (3) | C1—N2—C3—C2 | 1.1 (2) |
N1i—Cu1—O1—C7 | 93.37 (13) | C4—N2—C3—C2 | −179.90 (19) |
N1—Cu1—O1—C7 | −86.63 (13) | N2—C3—C2—N1 | −0.7 (2) |
O1i—Cu1—N1—C1 | 168.60 (17) | C1—N1—C2—C3 | 0.1 (2) |
O1—Cu1—N1—C1 | −11.40 (17) | Cu1—N1—C2—C3 | 176.50 (14) |
N1i—Cu1—N1—C1 | −7 (100) | C5—C4—C6—C5ii | 1.2 (3) |
O1i—Cu1—N1—C2 | −7.16 (17) | N2—C4—C6—C5ii | −177.73 (18) |
O1—Cu1—N1—C2 | 172.84 (17) | C2—N1—C1—N2 | 0.6 (2) |
N1i—Cu1—N1—C2 | 177 (100) | Cu1—N1—C1—N2 | −175.95 (12) |
Cu1—O1—C7—O2 | −2.2 (3) | C3—N2—C1—N1 | −1.1 (2) |
C1—N2—C4—C5 | −35.7 (3) | C4—N2—C1—N1 | 179.88 (17) |
C3—N2—C4—C5 | 145.4 (2) | C6—C4—C5—C6ii | −1.2 (3) |
C1—N2—C4—C6 | 143.3 (2) | N2—C4—C5—C6ii | 177.73 (18) |
C3—N2—C4—C6 | −35.6 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CHO2)2(C12H10N4)] |
Mr | 363.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.0971 (16), 10.426 (2), 8.5723 (17) |
β (°) | 107.02 (3) |
V (Å3) | 692.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD area-detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.624, 0.725 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6003, 1204, 1108 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.075, 1.11 |
No. of reflections | 1204 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.39 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
References
Cui, G. H., Li, J. R., Tian, J. L., Bu, X. H. & Batten, S. R. (2005). Cryst. Growth Des. 5, 1775–1780. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jin, C. M., Wu, L. Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215–218. Web of Science CSD CrossRef CAS Google Scholar
Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazole has been extensively used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied (Cui et al., 2005; Jin et al., 2008). However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2009). For the title compound, the geometry of the CuII ion is bound by two imidazole rings of individual L ligands and two formate ions forming a square planar coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinate CuII center is bridged by the linear ligand L to form an infinite one-dimensional chain along the [101] direction.